
System-level Scheduling of Real-time Streaming
Applications using a Semi-partitioned Approach

Emanuele Cannella, Mohamed A. Bamakhrama, and Todor Stefanov
Leiden Institute of Advanced Computer Science

Leiden University, Leiden, The Netherlands
Email: {e.cannella, m.a.m.bamakhrama, t.p.stefanov}@liacs.leidenuniv.nl

978-3-9815370-2-4/DATE14/ c©2014 EDAA

Abstract—Modern multiprocessor streaming systems have
hard real-time constraints that must be always met to ensure
correct functionality. At the same time, these streaming systems
must be designed to use the minimum required amount of
resources (such as processors and memory). In order to meet
such constraints, using scheduling algorithms from the classical
real-time scheduling theory represents an attractive solution ap-
proach. These algorithms enable: (1) providing timing guarantees
to the applications running on the system, and (2) deriving ana-
lytically the minimum number of processors required to schedule
the applications. So far, designers in the embedded systems
community have focused on global and partitioned scheduling
algorithms. However, recently, a new hybrid class of scheduling
algorithms has been proposed. In this work, we investigate the
applicability of a sub-class of these hybrid algorithms, called
semi-partitioned algorithms, to applications modeled as Cyclo-
Static Dataflow (CSDF) graphs. The contribution of this paper
is two fold. First, we devise an approach that enables semi-
partitioned scheduling algorithms, even soft real-time ones, to be
applied to CSDF graphs while providing hard real-time guaran-
tees at the input/output interfaces with the external environment.
Second, we focus on an existing soft real-time semi-partitioned
approach, for which we propose an allocation heuristic, called
FFD-SP. The proposed heuristic reduces the minimum number
of processors required to schedule the applications compared to a
pure partitioned scheduling algorithm, while trying to minimize
the buffer size and latency increases incurred by the soft real-
time approach.

I. INTRODUCTION

The design of modern embedded systems is a difficult task
due to the complex functionalities that have to be implemented
and the strict constraints that must be met. In order to implement
these complex functionalities, Multiprocessor Systems-on-Chip
(MPSoCs) are nowadays the standard choice for system designers.
Realizing such complex functionalities on MPSoCs entails two
challenges. The first challenge is expressing the parallelism in the
applications in order to efficiently exploit the multiple processors
found in MPSoCs. The common practice for expressing the paral-
lelism in an application is to use Models of Computation (MoCs)
[1]. Several MoCs have been proposed such as Synchronous
Dataflow (SDF) [2] and its generalization, Cyclo-static Dataflow
(CSDF) [3].

The second challenge is how to allocate and schedule the ap-
plications’ tasks on the system in such a way that all the timing
constraints are guaranteed to be met. Many algorithms have been
proposed in the classical real-time scheduling theory to deal with
the problem of scheduling applications on multiprocessor systems
[4]. These algorithms assume that the application tasks satisfy a
certain real-time task model which allows them to analytically
reason about the timing behavior of the tasks. Several real-time
task models have been proposed such as the periodic task model
and the sporadic task model. Recent works (such as [5], [6]) have
shown that applications modeled as CSDF graphs can be sched-
uled as a set of real-time periodic tasks. This provides two main
benefits. The first benefit is that the designer can apply hard real-

time (HRT) scheduling algorithms [4] to streaming applications in
order to guarantee timing constraints and temporal isolation among
different applications. The second benefit is that applications can
be loaded at run-time on the system, provided that the appropriate
schedulability tests are satisfied. The benefits mentioned above are
advantages of [5], [6] over conventional static scheduling.

So far, the approaches proposed in [5], [6] consider only
hard real-time global or partitioned scheduling algorithms. Under
global scheduling algorithms, all the tasks can migrate among all
the processors. Such algorithms can be optimal for multiprocessor
systems, which means that they can fully exploit the available com-
putational resources (see for instance [7]). However, this comes at
the cost of high scheduling overheads due to excessive task pre-
emptions and migrations. Moreover, modern MPSoC systems that
ensure predictability of execution are commonly implemented as
distributed memory systems in order to avoid the unpredictability
of accessing shared resources. Therefore, implementing a global
scheduler on such distributed memory systems implies that the
code of each task has to be replicated1 on all the processors,
incurring a large memory overhead. Partitioned scheduling algo-
rithms, in contrast, incur neither migration overhead nor memory
overhead because each task is statically allocated to a single
processor. However, these algorithms are affected by bin-packing
issues [9]. If no limit on the maximum task utilization of a task
set is imposed, partitioned algorithms may require almost twice as
many processors compared to an optimal scheduler [10].

Recently, a third class of algorithms, called hybrid scheduling
algorithms, has been proposed. Among the hybrid scheduling algo-
rithms, semi-partitioned algorithms (e.g., [11]) seem to be a good
match for distributed memory systems. Under semi-partitioned
algorithms, most of the tasks are statically allocated to processors,
and only a subset of the tasks is allowed to migrate among different
processors. Migrating tasks follow a migration pattern derived at
design-time. Thus, semi-partitioned approaches represent a “mid-
dle ground” between partitioned and global scheduling algorithms.
In fact, semi-partitioned scheduling algorithms can overcome (or
mitigate) the bin-packing effects that affect partitioned approaches.
As a result, semi-partitioned algorithms require less processors
than partitioned algorithms to schedule certain task sets. At the
same time, these algorithms do not incur large memory overheads
and task migration/preemption overheads like global algorithms.

Several semi-partitioned scheduling algorithms have been pro-
posed [11]–[15]. These algorithms can be classified based on
when migrations are allowed to occur. In restricted-migration ap-
proaches [11]–[13] migrations can happen at job boundaries only.
In unrestricted-migration (or portioned) approaches, migrations
can happen at any time during a job execution. We argue that
the restricted-migration class of semi-partitioned schedulers is the
most suitable for distributed memory MPSoCs. This is because
migrating at job boundaries reduces the amount of data (state) to
be transferred from one processor to the next. Moreover, if the task

1We assume task migration using code replication, as in [8], because of its
low overhead in distributed memory MPSoC systems.

HRT scheduler

vsrc I O vsnk

v1

v2

bin bout

(a) Analysis under HRT schedulers
(e.g., [5])

SRT scheduler

vsrc I O vsnk

v1

v2

bin bout

(b) Analysis under SRT schedulers
(this paper)

Fig. 1. Scheduling framework under both HRT (a) and SRT (b) schedulers.

does not keep an internal state between two successive jobs2, no
state migration is needed. Within the class of restricted-migration
semi-partitioned approaches, EDF-fm [11] is particularly suited to
distributed memory systems because in that approach a migrating
task is allowed to migrate only between two processors (contrary
to [12], [13], in which migrating tasks may span among all
the processors). This property reduces substantially the overhead
caused by replicating the task code. In addition, EDF-fm uses a
fast utilization-based schedulability test (contrary to [12], [13]),
that can be easily executed at run-time for incoming applications.
For the reasons explained above we employ EDF-fm in our work.

Although EDF-fm can have great benefits for distributed mem-
ory MPSoCs, it provides hard real-time guarantees only for mi-
grating tasks and soft real-time (SRT) guarantees for fixed tasks.
This means that fixed tasks can miss their deadlines by a bounded
value called tardiness. As a consequence, the proposed scheduling
frameworks in [5], [6] can not be used directly with such an
algorithm, since these frameworks assume that all task deadlines
are met. Therefore, in this paper, we extend the framework pro-
posed in [5] to support soft real-time scheduling algorithms while
providing hard real-time guarantees on the input/output interfaces
of the application with the external environment. This is illus-
trated in Fig. 1 which shows the difference between using HRT
and SRT schedulers. Given an application, we want to provide
hard real-time guarantees to I and O, which denote the external
provider/consumer of the data streams. I and O are assumed to ex-
ecute periodically. I delivers the data into an input buffer bin, from
which the application reads the data and processes it. After that,
the application writes the processed data into an output buffer bout
which is read by the external data consumer O. The framework in
[5] shows that the application can be scheduled under a partitioned
HRT scheduling algorithm as a set of real-time periodic tasks by
computing sufficient minimum buffer sizes between application
tasks. In this paper, we show that the same can be done under semi-
partitioned SRT schedulers, achieving the same throughput and
using less processors, albeit requiring larger buffers and increased
application latency. This increase in the buffering requirements
is visualized in Fig. 1(b) using red color. Therefore, under both
schemes (i.e., Fig. 1(a) and 1(b)), the external data consumer O
will always find enough data in bout (and I enough space in bin),
regardless of the fact that vsnk (and vsrc) might miss deadlines under
the SRT scheduler.

A. Paper Contributions
Given an implicit-deadline periodic task set representation of

a CSDF graph and any soft real-time scheduling algorithm that
ensures a bounded tardiness to each task, we derive the earliest task
start times and minimum buffer sizes that guarantee the existence
of a valid schedule of the given application. Valid schedule means
that, even in presence of task tardiness, tasks can be released
periodically and neither buffer underflow nor overflow can occur.
We call this approach tardiness-aware periodic scheduling. More-
over, we guarantee that the interfaces of the environment with the
application (see I and O in Fig. 1(b)) can execute in a strictly
periodic way with neither underflow nor overflow on input and

2Tasks that possess this property are called stateless and are common in
streaming applications.

output buffers (see bin and bout in Fig. 1(b)), i.e., we provide HRT
guarantees for the input/output interfaces.

Then, using the above result, we focus on a specific restricted-
migration semi-partitioned scheduling algorithm, namely EDF-fm
[11], with the goal of reducing the number of required processors
compared to partitioned approaches. We propose a novel heuristic,
called FFD-SP, to assign tasks to processors while taking data de-
pendencies into account. This heuristic replaces the ones proposed
in [11] that are intended for independent task sets. Our proposed
heuristic is aimed at reducing the number of required processors
while keeping a low buffer size and latency overhead when the
EDF-fm algorithm is used.

Finally, we show on a set of real-life benchmarks that our
approach can lead to significant benefits by reducing the number
of processors required to schedule a given application, compared
to a partitioned approach, while maintaining the same throughput.
Among the used benchmarks, we show that this is true for all the
applications that suffer from the bin-packing effects of partitioned
algorithms. Moreover, our experiments show that the increase in
memory requirements and application latency introduced by our
approach is acceptable (on average +24% and +29%, respectively),
especially for systems in which the throughput constraint is more
important than memory or latency constraints.

II. RELATED WORK

To the best of our knowledge, real-time semi-partitioned
scheduling algorithms have never been studied when mapping
streaming applications with inter-task data dependencies to MP-
SoCs. In fact, existing semi-partitioned solutions [11]–[15] only
consider sets of independent tasks. In the real-time community,
however, techniques different from pure partitioning to assign data-
dependent application tasks to a multiprocessor platform have
already been devised. Existing approaches which are close to our
work are [16] and [17] by Liu and Anderson. These approaches
use a global scheduler which, similar to our case, satisfies soft real-
time requirements. In particular, [16] describes a way to guarantee
bounded tardiness of an application specified as a pipeline of tasks
under a SRT global scheduler. A strong limitation in [16] is that
only simple pipeline application topologies are handled, contrary
to our approach that can handle more complex topologies like
CSDF graphs. In [17], they extend their analysis to guarantee
bounded task tardiness in more complex application graph topolo-
gies, such as Processing Graph Method (PGM) graphs. However,
PGM graphs are still less expressive than CSDF graphs, which
are supported in our approach. Moreover, the work in [17] does
not address the calculation of minimum buffer sizes, which is an
important metric to evaluate the practicability of the approach.
In contrast, the calculation of buffer sizes is supported by our
approach.

III. BACKGROUND

In Sec. III-A we introduce the system model considered in our
work. Then, we summarize two techniques instrumental to our
approach: strictly periodic scheduling of acyclic CSDF graphs
(Sec. III-B) and the EDF-fm semi-partitioned scheduling algo-
rithm (Sec. III-C).

A. System Model
We consider a system composed of a set Π = {π1, π2, · · · , πm}

of m homogeneous processors. The processors execute a task set
Γ = {τ1, τ2, · · · , τn} of n periodic tasks, which can be preempted
at any time. A periodic task τi ∈ Γ is defined by a 4-tuple
τi = (Ci, Ti, Si,∆i), where Ci is the worst-case execution time
of the task, Ti is the task period, Si is the start time of the task, and
∆i represents the task tardiness bound, as defined in Definition 1
below. In this paper we consider only implicit-deadline tasks,
which have relative deadline Di equal to their period Ti. The
utilization of a task τi is given by u(τi) = Ci/Ti (also denoted

v1
(1)

v2
(2)

v3
(2)

[1] [1,2] [0,3]

e1 e2

[1]

(a) Simple example of a CSDF graph. Actor exe-
cution times are indicated between parentheses.

0 1 2 3

2 3 4 5 6 70

4

t

v2

v1 1

0 1 2 3

v3
5 10 15

T2 V2,1

V1,2

T1

(b) Derived periodic task set and minimum start times. Down
arrows represent task deadlines, dotted lines represent data
dependencies.

Fig. 2. Example of the approach described in [5].

as ui). Given a set γ of tasks mapped onto processor πk, the total
assigned utilization on πk is denoted with U(πk) =

∑
τi∈γ u(τi).

The kth job of task τi is denoted with τi,k. Job τi,k of τi, for
all k ∈ N0, arrives in the system at the time instant ri,k = Si +
kTi. The absolute deadline of job τi,k is di,k = Si + (k + 1)Ti,
which is coincident with the arrival of job τi,k+1. We denote the
actual completion time of τi,k with fi,k. In SRT systems, tasks
are allowed to miss their deadline by a certain bounded value, as
defined below.
Definition 1 (Tardiness bound). A task τi is said to have a
tardiness bound ∆i if fi,k ≤ (di,k + ∆i), ∀k ∈ N0.

B. Strictly Periodic Scheduling of CSDF Graphs
A CSDF graph [3] is composed of a set of actors V and a set

of edges E, through which actors communicate. The authors in [5]
show that the actors in an acyclic CSDF graph can be scheduled
as a set of real-time periodic tasks. An example of this is given
in Fig. 2. Based on the properties of the graph, they derive the
minimum period of each actor using the following expression:

Ti =
Q

qi

⌈
η

Q

⌉
(1)

where qi is the number of repetitions of actor vi per graph iteration,
Ci is the worst-case execution time of vi, η = maxvi∈V {Ci qi}
and Q = lcm{q1, q2, · · · , qn}. Consider the CSDF graph shown
in Fig. 2(a). Its repetition vector is ~q = [3, 2, 3]. Its worst-case
execution time vector is ~C = [1, 2, 2]. Then, it follows that η = 6
and ~T = [2, 3, 2]. In general, the derived period vector ~T satisfies
the condition:

q1T1 = q2T2 = · · · = qnTn = α (2)
where α is defined as iteration period, and represents the duration
needed by the graph to complete one iteration.

Then, the authors in [5] define the following functions:
Definition 2 (Cumulative Production Function). The cumulative
production function of actor vi producing into channel eu during
a time interval [ts, te), denoted by prd[ts,te)(vi, eu), is the sum of
the number of tokens produced by vi into eu during the interval
[ts, te).
Definition 3 (Cumulative Consumption Function). The cumula-
tive consumption function of actor vj consuming from channel eu
over a time interval [ts, te), denoted by cns[ts,te)(vj , eu), is the
sum of the number of tokens consumed by vj from eu during the
interval [ts, te).

Note that the time interval in Definitions 2 and 3 can be either
open or closed from the right. Using the functions defined in
Definitions 2 and 3, the authors derive the earliest start times of
actors and minimum buffer sizes of the channels, as described in
the following.

1) Earliest start times: The earliest start time of actor vj , de-
noted with Sj , is derived using the following expression (according

to Lemma 3 in [5] and assuming no task tardiness):

Sj =

{
0 if prec(vj) = ∅
maxvi∈prec(vj)

(
Si→j

)
if prec(vj) 6= ∅

(3)

where
Si→j = min

t∈[0,Si+α]

{
t :

prd
[Si,max(Si,t)+k)

(vi, eu) ≥ cns
[t,max(Si,t)+k]

(vj , eu)

∀k = 0, 1, · · · , α
}

(4)

where α is the iteration period as defined by Equation (2), and Si
is the start time of the predecessor actor vi. Equation (4) considers
the dependency between predecessor actor vi and successor actor
vj , over channel eu. It computes the earliest start time Si→j such
that vj , in its periodic execution, is never blocked on read. This
is ensured by checking that at each time instant the cumulative
number of tokens produced by vi over eu is greater than or equal to
the number of tokens consumed by vj from the same channel. For
instance, actor v2 in Fig. 2(b) must start no earlier than time t = 3
to satisfy its data dependency from actor v1.

Start times Si→j are computed for each actor in the predecessor
set of vj (denoted with prec(vj)). Then, when actor vj has several
predecessors, the start time Sj has to be set to the maximum of start
times Si→j considering each predecessor in isolation, as captured
by Equation (3).

2) Minimum buffer sizes: Once the start time of actors have
been calculated, the authors derive the following expression for the
minimum size bu of communication channel eu connecting actors
vi and vj (see Lemma 4 in [5]):

bu(vi, vj) = max
k∈[0,1,··· ,α]

{
prd

[Si,max(Si,Sj)+k)
(vi, eu) −

cns
[Sj ,max(Si,Sj)+k)

(vj , eu)
}

(5)

In other terms, Equation (5) evaluates the maximum number of
unconsumed tokens in eu during one iteration of vi and vj .

C. EDF-fm Semi-partitioned Scheduling
Anderson et al. in [11] describe the EDF-fm semi-partitioned

scheduling algorithm for sporadic tasks sets in the context of soft
real-time multiprocessor systems. Under EDF-fm tasks can be
either fixed or migrating. Migrating tasks are allowed to migrate
between only two processors, with the restriction that migration
can only happen at job boundaries.

The EDF-fm approach consists of two phases: the assignment
phase and the execution phase, which are summarized in the
following sections.

1) Assignment phase: Consider the following definitions:
Definition 4 (Task share). A task τi is said to have a share si,k on
πk when a fraction si,k of πk’s available utilization is allocated to
τi.
Definition 5 (Task fraction). Given si,k, πk executes a fraction
ϕi,k =

si,k
ui

of τi’s total execution requirement.
In the assignment phase each task is assigned to either one

processor (fixed task) or two processors (migrating task). In partic-
ular, the assignment phase assigns tasks in sequence to processors.
Tasks are assigned to a processor πk until its capacity is exhausted.
If a task τi cannot entirely fit on processor πk, then a share
si,k = 1 − U(πk) of its utilization is assigned to πk and the
remaining utilization si,k+1 = (ui − si,k) is assigned to the next
processor, πk+1. The assignment phase of EDF-fm ensures that at
most two migrating tasks are assigned to any processor.
Example 1. Given the task set {τ1 = (C1 = 3, T1 = 10), τ2 =
(2, 5), τ3 = (2, 5), τ4 = (1, 2), τ5 = (1, 2), τ6 = (2, 5), τ7 =
(1, 2)}, the EDF-fm algorithm derives the task assignment shown
in Fig. 3. For instance, task τ3 in Fig. 3 cannot entirely fit onto

S1,1=3/10

S3,1=3/10

S3,2=1/10

S4,2=1/2

S5,2=2/5

S5,3=1/10

Processor p1 Processor p2 Processor p3

S2,1=2/5

S6,3=2/5

S7,3=1/2

Fig. 3. EDF-fm assignment of the task set considered in Example 1.

π1, thus its utilization is split between π1 and π2 with shares
s3,1 = 3/10 and s3,2 = 1/10, respectively.

2) Execution phase: The execution phase employs a simple
online scheduling algorithm that is derived from EDF and ensures
bounded tardiness with a minimal overhead compared to a canon-
ical EDF scheduler. Jobs belonging to a task τi, which migrates
between processors πk and πk+1, are assigned such that in the
long run the fraction of τi’s workload executed on πk is close to
ϕi,k. For instance, in the scenario depicted in Fig. 3, on average 1
out of 4 jobs of τ3 are assigned to π2 and the remaining 3 jobs are
assigned to π1. When two migrating tasks, τi and τj , are assigned
to πk, the tardiness bound for a fixed task τu assigned to the same
processor is given by:

∆(τu) =
Ci · (ϕi,k + 1) + Cj · (ϕj,k + 1)− Tu · (1− U(πk))

1− si,k − sj,k
(6)

where Ci and Cj are the worst-case execution times of τi and
τj (as defined in Sec. III-A), Tu is the period of task τu, and
U(πk) is the sum of fixed tasks’ utilization and migrating tasks’
shares allocated to πk. By contrast, migrating tasks do not miss
any deadline, therefore their tardiness bound is zero.

On a processor running two migrating tasks, τi and τj , EDF-fm
requires that the sum of their utilization does not exceed one:

Umig(πk) = ui + uj ≤ 1 (7)
This condition is automatically satisfied if the maximum utiliza-

tion of any task is limited to 1/2, given the fact that at most two
migrating tasks can be assigned to a single processor. However,
tasks that exceed this utilization limit can still be considered,
provided that condition (7) is valid for all the processors.

IV. TARDINESS-AWARE PERIODIC SCHEDULING
In this section, we present the first main contribution of this

paper. We show how a CSDF graph, represented by a set of pe-
riodic tasks derived using the approach in [5] (see Sec. III-B), can
be scheduled using soft real-time schedulers, i.e., schedulers that
may introduce a bounded tardiness on the completion of tasks. The
SRT scheduler considered in this paper is the EDF-fm algorithm,
whose per-task tardiness bound is given by Equation (6). Note,
however, that the results obtained in this section are valid for
any SRT scheduler which provides bounded task tardiness. Our
solution extends the framework in [5] by deriving new earliest start
times for each task (see Sec. IV-A) and minimum buffer sizes (see
Sec. IV-B) that can handle task tardiness and still allow a periodic
release of each task.
A. Earliest Start Times in Presence of Tardiness

Based on Definitions 1, 2, and 3 introduced in Sec. III, we give
the following Lemma:
Lemma 1. In presence of task tardiness, bounded by ∆i for source
actor vi and by ∆j for destination actor vj , the earliest start time
Si→j of actor vj due to its dependency from vi, under a valid
schedule, is given by:

Si→j = min
t∈[0,Si+∆i+α]

{
t :

prd
[Si+∆i,max(Si+∆i,t)+k)

(vi, eu) ≥ cns
[t,max(Si+∆i,t)+k]

(vj , eu)

∀k = 0, 1, · · · , α
}

(8)

tSi

vi

vi
~ Di

Si
~

job release job deadline

Fig. 4. Worst-case scheduling of source actor vi when deriving Si→j in
presence of tardiness.

Proof: If actors vi and vj may be affected by tardiness,
Equation (4) can not be applied in its original form. For instance,
if job v1,2 in Fig. 2(b) completes later than its deadline, job v2,1

(that depends on the completion of v1,2) cannot be released at time
t = 6. It follows that the start time of actor v2 has to be changed.

We can define a worst-case scenario of the execution of vi and
vj to derive the earliest start time Si→j in case of tardiness. This
worst-case scenario to determine task start times occurs when: (i)
all the invocations of the source actor vi are completed with the
maximum tardiness; (ii) none of the invocations of the destination
actor vj are affected by the tardiness (i.e., vj meets all its dead-
lines). In the worst-case execution of vi, the completion of all its
invocations are delayed by the maximum considered tardiness ∆i,
such that fi,k = di,k + ∆i, for all k. We can associate these worst-
case delayed invocations to a fictitious task ṽi. Task ṽi has start
time S̃i = Si + ∆i, constant period T̃i = Ti, and no tardiness.
Notice that invocations ṽi,k of ṽi are strictly periodic. Fig. 4 shows
the schedule of actor vi and its worst-case execution scenario,
represented by ṽi.

By contrast, in the worst-case scenario to determine Si→j , vj
is executed as early as possible, so we assume that all invocations
vj,k of vj are not affected by tardiness. Then, the earliest start time
that guarantees the absence of blocking of vj in its execution, even
for the worst-case production and consumption patterns of vi and
vj , is found by evaluating Equation (4) with ṽi as source actor and
vj as destination actor. This scenario is captured by Equation (8).
Note that any completion of an invocation vi,k of vi earlier than
its corresponding worst-case ṽi,k results in an earlier production
of tokens, such that the inequality in Equation (8) still holds for
all k ∈ [0, 1, · · · , α]. Similarly, if any of the invocations of vj is
affected by tardiness, the token consumption is executed later and
Equation (8) guarantees that enough tokens will be available to be
read.

Note also that the start time Si→j of actor vj due to its depen-
dency from vi is only affected by the tardiness bound ∆i of the
source actor. In addition, when actor vj has several predecessors,
the start time Sj has to be set to the maximum of the start
times Si→j given by Equation (8) considering each predecessor
in isolation, as captured by Equation (3).

B. Minimum Buffer Sizes in Presence of Tardiness
Based on Definitions 1, 2, and 3 introduced in Sec. III, and given

the actor start times calculated leveraging Lemma 1, the following
lemma provides a way to derive minimum buffer sizes in case of
task tardiness:
Lemma 2. In presence of task tardiness, bounded by ∆i for source
actor vi and by ∆j for destination actor vj , the minimum buffer
size bu of a communication channel eu connecting vi and vj , under
a valid schedule, is given by:

bu(vi, vj) = max
k∈[0,1,··· ,α]

{
prd

[Si,max(Si,Sj+∆j)+k)
(vi, eu) −

cns
[Sj+∆j ,max(Si,Sj+∆j)+k)

(vj , eu)
}

(9)

Proof: To get the minimum buffer size in presence of task
tardiness, we consider the worst-case scenario that would result in
the maximum buffer requirement for channel eu. This worst-case
scenario occurs when: (i) all the invocations vj,k of the destination
actor vj complete with the maximum tardiness (such that fj,k =

Algorithm 1: FFD-SP task assignment heuristic.
Input: The number of processors m, a task set Γ = {τ1, τ2, · · · , τn}

of n periodic tasks.
Result: True and an m-partition describing the task assignment onto m

processors if Γ is schedulable, False otherwise.
1 Find Γs = {τ : τ ∈ Γ ∧ τ is stateful};
2 Assign tasks in Γs using FFD;
3 if Γs cannot be assigned then
4 return False;

5 for τ ∈ (Γ− Γs, sorted in decreasing utilization) do
6 Try to assign task τ using First-Fit heuristic;
7 if First-Fit is successful then
8 continue;

9 for π′ ∈ (Π sorted in decr. available utilization) do
10 s1(τ) = 1− U(π′);
11 Assigned = False;
12 if sp_assign(s1(τ), π′)==True then
13 s2(τ) = u(τ)− s1(τ);
14 for π′′ ∈ (Π sorted in incr. available utilization) do
15 if sp_assign(s2(τ), π′′)==True then
16 Assigned = True;
17 break;

18 if Assigned==False then
19 Revert assignment of s1(τ) to π′;

20 else
21 break;

22 if Assigned==False then
23 return False;

24 Optimize the obtained partition;
25 return True;

dj,k+∆j , for all k); (ii) none of the invocations of the source actor
are affected by tardiness.

We can then prove Lemma 2 with a procedure similar to the one
used in the proof of Lemma 1. We associate the worst-case com-
pletion of all the invocations vj,k to a fictitious actor ṽj . Actor ṽj
is strictly periodic, with no tardiness, constant period T̃j = Tj and
start time S̃j = Sj+∆j . Then, the minimum buffer requirement of
the communication channel eu is found by evaluating Equation (5)
with vi as source actor and ṽj as destination actor. This scenario is
captured by Equation (9).

Note that any earlier completion of any of the iterations of vj
would not increase the buffer size requirement. This is because an
earlier completion of vj would results in an earlier consumption of
tokens from channel eu. Similarly, any delayed completion of an
iteration of vi would result in a delayed production of tokens to the
considered channel. Thus, the derived value of bu is sufficient and
minimum.

Note that Equations (8) and (9) can also be used to analyze the
interfaces between the external data provider and consumer (I and
O in Fig. 1(b)) and the source and sink nodes of the application
(vsrc, vsnk). Compared to the HRT approach shown in Fig. 1(a),
in the SRT approach of Fig. 1(b) vsrc and/or vsnk may experience
tardiness. In this case, Equation (8) and (9) derive delayed start
time of the external consumer O and larger buffer sizes of bin and
bout such that both I and O can execute strictly periodically with
neither buffer overflow nor underflow occurring on bin and bout.

V. FFD-SP TASK ASSIGNMENT HEURISTIC

In this section, we present the second main contribution of this
paper. Considering the results (Lemma 1 and Lemma 2) shown
in Sec. IV, we propose a task assignment heuristic that does
not follow the sequential approach common to all the heuristics
proposed in [11]. In fact, as explained in Sec. III-C, the heuristics
in [11] assign tasks to processors in a sequential way, which means
that in most cases processors are assigned migrating tasks. In turn,
this makes most tasks in the system affected by tardiness. Actor

Algorithm 2: sp_assign function.
Input: The share s of task τ to be assigned, a processor π.
Result: True if s can be assigned to π, False otherwise.

1 if (U(π) + s ≤ 1) and (U current
mig (π) + u(τ) ≤ 1) then

2 Assign s to π;
3 return True;

4 else
5 return False;

tardiness imposes larger buffer sizes (according to Lemma 2) and
postponed start times of successor actors (according to Lemma 1).
Overall, this leads to larger memory requirements and increased
application latency.

In contrast to the heuristics in [11], our proposed heuristic starts
to consider semi-partitioning only when the First-fit Decreasing
(FFD) heuristic [9] fails to assign a certain task in the system.
The proposed allocation/assignment heuristic, called FFD-SP, is
described in Algorithm 1. The algorithm accepts as input the
number of processors m onto which the task set Γ has to be
assigned. At the first execution of Algorithm 1, m is set to mOPT,
the number of processors required by an optimal scheduler. If the
task set cannot be assigned to m processors, m is increased by one
and Algorithm 1 is executed again until a successful assignment is
found.

At first, Algorithm 1 builds Γs, the set of stateful actors, which
are then assigned using the FFD heuristic (lines 1-4). Stateful
actors are considered first because this way they are fixed to
a processor and there is no need to migrate their state. Then,
considering task τ ∈ (Γ − Γs), the algorithm tries to assign task
τ to one of the processors using FFD (lines 6-8). If FFD does
not succeed, the algorithm tries to divide the utilization of task
τ in two shares, s1(τ) and s2(τ). Traversing the processor list in
decreasing order of available utilization, a share s1(τ) = 1−U(π′)
is tried to be mapped on processor π′ (lines 9-12). If the assignment
of s1(τ) is successful, the algorithm attempts to map a share
s2(τ) = u(τ) − s1(τ) by traversing the list of processors in
increasing order of available utilization (lines 13-17).

The rationale behind this assignment heuristic is two-fold: (1)
tasks are semi-partitioned only when the FFD assignment does not
succeed; this way the number of processors with migrating tasks
(and thus with tardiness) are likely to be less; (2) when a task has
to be semi-partitioned, the algorithm tries to allocate the largest
share possible s1(τ) from the remaining utilization on processors;
then, it tries to find the best fit for the remaining share s2(τ), in
order to leave larger “chunks” of processor available utilizations to
remaining (unallocated) tasks.

The algorithm makes use of the sp_assign function to try and
assign task shares. As shown in Algorithm 2, this function checks
two conditions. First, there must be enough available utilization on
the processor to accommodate the share. Second, in case another
migrating task has already been mapped on processor π, condition
(7) in Sec. III-C must be satisfied.

When an m-partition has been successfully found, the heuristic
tries to optimize it (line 24 in Algorithm 1). The optimization con-
sists in re-assigning the migrating task shares, whenever possible,
to processors to which less fixed tasks are assigned. This way,
less actors are affected by tardiness, leading to lower application
latency and buffer size requirements. Note that in Algorithm 1 the
first share of a migrating task s1(τ) is set to the largest possible
value, given the current available utilization of processors. This in
turns makes the second share of each migrating task s2(τ) as small
as possible, making the process of optimization of the partition
more effective.

VI. EVALUATION

We evaluate our approach using the StreamIt benchmarks con-
sidered in [18], for which we employ the unfolding technique

TABLE I
COMPARISON OF DIFFERENT ALLOCATION/SCHEDULING APPROACHES.

Benchmark OPT Partitioned (FFD) Semi-partitioned (FFD-SP) Semi-partitioned (fm-LUF)
mOPT mFFD

mFFD
mOPT

MFFD[B] LFFD[c.c.] mSP
mSP

mOPT

MSP
MFFD

LSP
LFFD

mLUF
MLUF
MFFD

LLUF
LFFD

FFT 24 30 1.25 144680 192512 26 1.083 1.413 1.483 26 1.485 1.676
Beamformer 26 28 1.077 14492 60912 26 1.0 1.145 1.474 26 1.229 1.606

TDE 20 25 1.25 516282 1127175 20 1.0 1.560 1.396 21 1.722 1.860
DES 26 33 1.269 3381 33088 27 1.038 1.138 1.218 28 1.684 1.862

MPEG2 8 9 1.125 61909 138240 8 1.0 1.290 1.217 9 3.014 3.432
Bitonic 11 13 1.182 2374 2275 11 1.0 1.139 1.185 11 1.413 1.395
Serpent 39 42 1.077 59815 370296 40 1.026 1.012 1.074 39 1.068 1.479
average - - 1.176 - - - 1.021 1.243 1.292 - 1.659 1.902

described in [18] to derive larger CSDF graphs with improved
throughput. Among these benchmarks, seven applications require,
under the partitioned FFD allocation scheme, more processors than
an optimal scheduler. This set of applications is listed in Table I.
In this section we compare the system metrics obtained with
three different allocation/scheduling approaches: (i) Partitioned
EDF with FFD heuristic; (ii) Semi-partitioned EDF-fm, with our
proposed FFD-SP heuristic; (iii) Semi-partitioned EDF-fm, with
the LUF heuristic proposed in [11]. These approaches are denoted
in Table I with FFD, FFD-SP, and fm-LUF, respectively.

Note that all the approaches in Table I lead to the same applicat-
ion throughput. This is because the throughput of an application
depends on the period of its sink actor, which is unchanged in
our analysis even in presence of task tardiness. In addition, we
choose to compare the results of the LUF heuristic with our FFD-
SP heuristic because, among the heuristics proposed in [11], LUF
achieves the smallest number of processors.

The mOPT column in Table I lists the number of processors
required by an optimal scheduler (for instance [7]) to execute the
considered applications.

Let us focus on the comparison between the partitioned ap-
proach (FFD) and our proposed semi-partitioned approach (FFD-
SP). We note that the FFD approach results in a number of
processors (mFFD) which is on average 17.6% greater than the
number required by an optimal scheduler (see column mFFD

mOPT
). In

contrast, our FFD-SP algorithm requires on average only 2.1%
more processors (see column mSP

mOPT
), while maintaining the same

throughput. This means that our proposed approach can exploit the
available processors more efficiently, getting significantly closer to
the results obtained by optimal schedulers (see columns mSP and
mOPT). However, this comes at two costs. (1) The first cost is the
increase of memory requirements. For each benchmark, column
MFFD reports the memory required by the partitioned approach,
expressed in bytes. Compared to FFD, in FFD-SP the memory
requirements increase due to both the size of buffers, that have to
be enlarged to handle task tardiness, and the code size overhead
of task replicas, which are necessary in case of migrating tasks.
In Table I this increase in memory requirements is expressed by
the ratio MSP

MFFD
. On average, our proposed approach requires 24.3%

more memory compared to FFD. We argue that this increase in
memory requirements is acceptable, given the fact that even the
most memory-demanding application requires 516 KB, which is
way less than the memory available in modern MPSoC systems. (2)
The second cost is the increase in applications’ latency, due to the
postponement of task start times needed to handle task tardiness.
Column LFFD shows the applications’ latency, expressed in clock
cycles, under FFD. The latency increase of our FFD-SP over FFD
is on average 29.2% (see column LSP

LFFD
). We consider these mem-

ory and latency overheads imposed by our approach reasonable,
especially when the throughput constraint of an application is more
important than memory or latency constraints.

Finally, to evaluate the effectiveness of our proposed FFD-SP
heuristic, we compare its results with LUF. We can see from the
last two columns of Table I that over the considered benchmarks

the EDF-fm approach with LUF heuristic incurs a much larger
memory overhead (on average +65.9%, see column MLUF

MFFD
) and

latency increase (on average +90.2%, see column LLUF
LFFD

) compared
to FFD. Moreover, we note that for most applications the number
of required processors is equal or greater when using LUF (mLUF)
compared to our FFD-SP (mSP), with the exception of the Serpent
application. This means that for most of the benchmarks our FFD-
SP heuristic is equally or more efficient than LUF in exploiting the
available processing resources.

VII. CONCLUSIONS

In this paper we prove that streaming applications modeled as
acyclic CSDF graphs can be scheduled using a semi-partitioned
soft real-time scheduler, providing hard real-time guarantees on
the input/output interfaces between the application and the envi-
ronment. We propose a novel heuristic that is aimed at reducing
the number of required processors while keeping a low buffer
size and latency overhead when this semi-partitioned approach
is used. Finally, we show on a set of real-life benchmarks that
our approach can reduce the number of processors required to
schedule those applications which incur bin-packing limitations
of partitioned approaches, guaranteeing the same throughput and
with a reasonable overhead in terms of memory requirements and
application latency.

REFERENCES

[1] E. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing
models of computation,” IEEE TCAD, 1998.

[2] E. Lee and D. Messerschmitt, “Synchronous data flow,” P. IEEE, 1987.
[3] G. Bilsen et al., “Cyclo-static dataflow,” IEEE TSP, 1996.
[4] R. Davis and A. Burns, “A survey of hard real-time scheduling for

multiprocessor systems,” ACM Comput. Surv., 2011.
[5] M. Bamakhrama and T. Stefanov, “On the hard-real-time scheduling of

embedded streaming applications,” DAES, 2012.
[6] A. Bouakaz et al., “Affine data-flow graphs for the synthesis of hard

real-time applications,” in ACSD, 2012.
[7] S. Baruah et al., “Proportionate progress: A notion of fairness in resource

allocation,” Algorithmica, 1996.
[8] E. Cannella, O. Derin, P. Meloni, G. Tuveri, and T. Stefanov, “Adaptivity

support for MPSoCs based on process migration in polyhedral process
networks,” VLSI Design, 2012.

[9] D. S. Johnson, “Near-optimal bin packing algorithms,” Ph.D. disserta-
tion, MIT, 1973.

[10] J. M. López et al., “Utilization Bounds for EDF Scheduling on Real-
Time Multiprocessor Systems,” Real-T. Syst., 2004.

[11] J. Anderson et al., “An EDF-based restricted-migration scheduling
algorithm for multiprocessor soft real-time systems,” Real-T. Syst., 2008.

[12] F. Dorin et al., “Semi-partitioned hard real-time scheduling with re-
stricted migrations upon identical multiprocessor platforms,” 2010.

[13] L. George et al., “Job vs. portioned partitioning for the earliest deadline
first semi-partitioned scheduling,” J. Syst. Architect., 2011.

[14] S. Kato and N. Yamasaki, “Portioned EDF-based scheduling on multi-
processors,” in EMSOFT, 2008.

[15] B. Andersson and E. Tovar, “Multiprocessor scheduling with few pre-
emptions,” in RTCSA, 2006.

[16] C. Liu and J. Anderson, “Supporting pipelines in soft real-time multi-
processor systems,” in ECRTS, 2009.

[17] ——, “Supporting Soft Real-Time DAG-Based Systems on Multipro-
cessors with No Utilization Loss,” in RTSS, 2010.

[18] J. Zhai et al., “Exploiting just-enough parallelism when mapping stream-
ing applications in hard real-time systems,” in DAC, 2013.

