
Automatic Generation of Custom SIMD Instructions for
Superword Level Parallelism

Taemin Kim
Intel Corporation

taemin.kim@intel.com

Yatin Hoskote
Intel Corporation

yatin.hoskote@intel.com

ABSTRACT
Application specific instruction-set processors (ASIPs) have

drawn significant attention from System-on-a-Chip (SoC) com-
munity due to the capability of fine grain flexibility and cus-
tomizability. In order to maximize the benefit of ASIP, auto-
matic instruction set extension (ISE) is required. In the past
decade, there have been plethora of researches on automatic
ISE for custom scalar instruction. However, due to increasing
usage of SIMD instructions to exploit data level parallelism
(DLP) that exists both across loop iterations and within a ba-
sic block called Superword Level Parallelism (SLP), automatic
generation of custom SIMD instructions is the inevitable direc-
tion of automatic ISE. In this paper, we propose an algorithm
that automatically generates custom SIMD instructions from
a set of custom scalar instructions to exploit SLP. We have
demonstrated 52.4% and 30.8% performance improvement on
average over base instruction set and additional custom scalar
instructions, respectively.

1. INTRODUCTION
Application specific instruction-set processors (ASIPs) have

drawn significant attention from System-on-a-Chip (SoC) com-
munity due to fine grain flexibility and customizability. They
can support multiple applications and provides energy effi-
ciency comparable to fixed function hardware by customizing
their instructions and architectures accordingly.

However, manual design of custom instructions is a time
consuming task that requires significant amount of effort to
identify customization opportunity and construct best possi-
ble custom instructions in terms of performance, power, area
and etc. Thus, in order to maximize the benefit of ASIP and
improve design productivity to meet aggressive requirement
on time-to-market, automatic instruction set extension (ISE)
is inevitable. There have been extensive researches on ISE as
shown in [13, 11].They are mainly focused on automatic gener-
ation of custom scalar instructions to exploit instruction level
parallelism (ILP) by integrating multiple instructions and re-
claiming cycle losses by fusing multiple instructions.

Furthermore, ISE by constructing custom single-instruction-
multiple-data (SIMD) instructions is a natural direction to
further advance automatic ISE technology. SIMD instructions
have been used in general purpose processors for many decades
[7] to improve performance more by exploiting data level par-
allelism (DLP) in applications. ASIPs also take advantage of
DLP by integrating custom SIMD instructions [1, 2] However,
there is almost no tool support to construct them automat-
ically except the work in [6]. It generates custom SIMD in-
structions to exploit DLP that exists across loop iterations
by performing dependency analysis and pattern recognition
technique. However, DLP exists not only across loop itera-
tions but also within a loop (i.e. in a straight line code) [9, 4]
called superword level parallelism (SLP). We focus on auto-
matic generation of custom SIMD instructions for SLP which
has not been studied in ASIP community.

In this paper, we propose an algorithm to automatically
generate custom SIMD instructions targeted at SLP. Main
idea is that multiple instances of a scalar custom instruction
that are independent of one another in a target application
are clustered to form a custom SIMD instruction. Since we
start from the result of custom scalar ISE, our algorithm can
be easily integrated into the existing ISE flow. The algorithm

is composed of two parts at large. One is to generate can-
didates of custom SIMD instructions out of the input cus-
tom scalar instructions. However, those candidates could form
cyclic dependencies with one another that makes it impossi-
ble to schedule them correctly. Thus, in the second part, we
prune some of them to remove cyclic dependency with mini-
mal impact on performance. We performed experimentation
with Mibench [8] to demonstrate performance improvement
of our algorithm over base instruction set and custom scalar
instruction combined with the base instruction set. We have
demonstrated 52.4% and 30.8% performance improvement on
average, respectively.

Our contributions are summarized as follows.
• We have developed an algorithm to perform automatic

generation of custom SIMD instructions to exploit SLP.
• Our custom SIMD generation algorithm leverages exist-

ing tools of custom scalar instruction generation. Thus,
it can be easily integrated into the existing automatic
ISE flow.
• We have demonstrated performance improvement by per-

forming experiments on widely used benchmark suite.
Our paper is organized as follows. Section 2 describes previous
works on automatic ISE and compilation with SIMD instruc-
tions targeted at SLP. Section 3 motivates our work with an
example followed by preliminaries and problem formulation in
Section 4. Then, we describe our algorithm in detail in Sec-
tion 5. Section 6 presents experimental setup and results and
Section 7 concludes the paper.

2. RELATED WORKS
In this section, we introduce previous efforts in automatic

SIMD ISE and software compiler that exploits SLP. In ASIP
community, there have been plethora works on automatic gen-
eration of custom scalar instructions (e.g. [11, 13]). However,
in these days, automatic SIMD ISE is drawing attention due
to the fact that many compute intensive applications have
rich inter loop DLP which can be exploited by SIMD instruc-
tions for performance improvement. Cong et. al [6] proposed
automatic SIMD ISE algorithm to exploit inter loop DLP.
They adopted dependency analysis technique in vectorizing
compiler [3] to determine vectorizable portions in the loop.
Then, they apply pattern recognition technique to generate
vector instructions for them. Our work is different in the
sense that we target different DLP, namely SLP. Combining
two approaches would be a future research topic. Chouliaras
and et. al [5] introduced electronic system level (ESL) design
flow that extracts SIMD extension from vectorized C/C++
description, and then converts them into System-C macros to
synthesize. However, it is unclear that they constructed the
SIMD extension automatically in their flow.

In software compiler domain, SLP has been exploited to
maximize the benefit of SIMD instructions of general purpose
processors. Larsen et. al [9] introduced SLP concept first and
proposed a compiler algorithm to exploit SLP by using SIMD
instructions. Barik et. al [4] also proposed a vectorization
algorithm to select SIMD instructions for SLP.

Our work is unique among the works previously men-
tioned in the sense that we automatically generate custom
SIMD instructions targeted at SLP.

3. MOTIVATING EXAMPLE
In this section, we present an example that motivates our

978-3-9815370-2-4/DATE14/ c©2014 EDAA



work. Figure 1 shows customization process of instructions
starting from base instructions to custom SIMD instructions.
In this example, we assume that a base processor issues one
instruction per cycle and includes a 3-read-2-write register file.
We also assume that addition and multiplication take physical
delay of 0.5 cycle and 1.4 cycles, respectively, whereas their
execution latency in processor pipeline is 1 cycle and 2 cycles,
respectively.

Figure 1(a) shows an original DFG without any instruc-
tion customization. Given the assumption of execution la-
tency of addition and multiplication, it takes 12 cycles to ex-
ecute the DFG since it performs four additions and four mul-
tiplications sequentially. Figure 1(b) shows a result of custom
scalar instruction generation. It reduces execution latency to
two cycles by combining addition and multiplication together.
Note that we cannot add more operations into the new instruc-
tion due to the constraint of register file ports. Consequently,
it takes eight cycles in total to complete the execution of whole
DFG.

We can reduce total execution cycles further by aggre-
gating the custom scalar instructions into custom SIMD in-
structions as shown in Figure 1(c). Assuming two way SIMD
architecture, two custom scalar instructions of same type are
combined together to form single custom SIMD instruction.
In Figure 1(c), two add-and-multiply instructions are grouped
into single instruction. By doing so, we exploit SLP embedded
in the DFG, thereby reducing total execution cycles to four
cycles1which is 3X improvement over base processor configu-
ration.

(a) (b) (c)
Figure 1: (a) Original Data Flow Graph (b) Enumer-
ation of Custom Scalar Instructions (c) Enumeration
of Custom SIMD Instructions

4. PRELIMINARIES AND PROBLEM FOR-
MULATION

4.1 Preliminaries
Definition 1. Scalar Instruction Dependency Graph

(DG) is a directed acyclic graph (DAG) denoted as DG(V,E)
with vertex set V and edge set E. A vertex in V represents a
custom scalar instruction and a directed edge represents de-
pendency relationship between two custom scalar instructions.
For example, if there is data flow from vi ∈ V to vj ∈ V , then
an edge eij from vi to vj is constructed.
Figure 2 shows an example of Scalar Instruction Dependency
Graph generated from Figure 1(b). Figure 2(a) is reproduced
from Figure 1(b) with indexes on custom scalar instructions
and data flows.Each custom scalar instruction numbered as
1,2,3 and 4 is mapped to a vertex and data flows denoted as
d1, d2, d3 and d4 between them are mapped to directed edges
e1, e2, e3 and e4 as shown in the figure.

Definition 2. SIMD Dependency Graph (SDG) is a di-
rected graph SDG(V,E) with vertex set V and edge set E.
A vertex in V represents a SIMD instruction generated by
combining scalar instructions in DG defined in Definition
1. An edge in E represents dependency relationship between

1Note that butterfly interconnect between two SIMD opera-
tions is assumed to occur within the custom SIMD instruction
without incurring any additional execution cycles

(a) (b)
Figure 2: (a) DFG with custom scalar instructions (b)
DG constructed from (a)

two SIMD instructions. If there is a data flow from any opera-
tion in a SIMD instruction to any operation in another SIMD
instruction, then, we construct an edge between them.
Figure 3 illustrates how SDG is constructed from DG. Figure
3(a) is reproduced from Figure 1(c) with indexes of SIMD
instructions. Figure 3(b) is the SDG constructed from Figure
3(a). SIMD instruction 1 and 2 are mapped to vertex v1 and
v2, respectively. The butterfly data flows are mapped to an
edge. Note that multiple data flows denoted as d1, d2, d3 and
d4 are collapsed into single edge e12.

(a) (b)
Figure 3: (a) DFG with custom SIMD instructions
(b) SDG generated from (a)

Definition 3. Custom Instruction Set (CIS) is a set
C = {c1, c2, . . . , cn} where ci is a custom scalar instruction
and n is the number of custom scalar instructions.

Definition 4. Custom Instruction Instance Set (CIIS)
is a set CIi = {cii1, cii2, . . . , ciim} where ciij is an instance of
custom scalar instruction ci ∈ C and m is the number of the
instances in a given DFG G.

Definition 5. SIMD Set (SS) Si is a subset of Custom In-
struction Instance Set CIi. Si represents a SIMD instruction
composed of instances of custom scalar instruction ci.

Definition 6. SIMD Instruction Set (SIS) S = {S1, S2,
. . . , Sl} where Sk is a SIMD set and l is the number of SIMD
instructions. S is a collection of custom SIMD instructions.
An SIS is easily converted to a SDG. An element of the set is
mapped to a vertex and dependence relationship between two
elements is mapped to an edge.

Definition 7. Legality of SIMD Instruction Set : That
a SIIS is legal means that its corresponding SDG is DAG.

4.2 Problem Formulation
In this subsection we formulate the problem of generating

SIMD Instruction Set from CIS and CIISes. To simplify the
problem to solve, we assume that area constraint has already
been taken care of in the step of generation of custom scalar
instruction that provides an input of our algorithm. We also
assume that the number of input and output ports of scalar
register file and SIMD register file is same.

Problem 1 Given Custom Instruction Set C , Custom
Instruction Instance Set CIs each of which is associated with
an element of C and vector width (VW), determine SIMD In-
struction Set S that maximizes

∑
(L(Si)− LS(Si)) where L

is a function that computes execution latency of Si ∈ S when
elements of Si (i.e. custom scalar instructions) are executed
on a base processor and LS is a function that computes exe-
cution latency when elements of Si are executed in parallel as



a SIMD instruction. In other words, L(Si) − LS(Si) is cycle
reduction when Si becomes a SIMD instruction.

5. GENERATION OF CUSTOM SIMD INSTRUC-
TIONS
We divide Problem 1 into two sub-problems. Given a

set of Custom Instruction Instance Sets, a custom SIMD in-
struction is generated by combining the instances of a custom
scalar instruction by the amount of vector width. We repeat
the process for the instances of all of custom scalar instruc-
tions. However, custom SIMD instructions generated do not
necessarily form a legal SIMD Instruction Set due to the possi-
bility of cyclic dependency among custom SIMD instructions.
Thus, there should be another process to legalize each SIMD
Instruction Set in such a way that total cycle reduction is
maximized. Therefore, Problem 1 is naturally divided into
two sub-problems as follows.

Problem 2 Given Custom Instruction Set C, a set SC of
Custom Instruction Instance Sets each of which is associated
with an element of C and vector width constraint, generate
all possible SIMD Instruction Sets.

Problem 3 Given SIMD Instruction Set S, determine
a legal SIMD Instruction set Sf that maximizes total cycle
reduction.

Clearly Problem 2 has exponential complexity due to
all possible combinations. In addition, the naive solution to
Problem 3 is to remove all possible combinations of elements
in a SIS and then check legality of the resulting SIS of each
combination and cycle reduction. Thus, it has also exponen-
tial complexity. Due to the intractable nature of the problems,
we propose heuristic algorithms to solve them in tractable
manner. In the following sections, we present details of each
algorithm to solve each problem.

5.1 Overview of Our Heuristic

Figure 4: Flowchart of our approach to custom SIMD
instruction generation

In this subsection, we overview our approach to genera-
tion of custom SIMD instructions. Figure 4 shows flow chart
of our approach. As described previously, we solve two sepa-
rate problems sequentially. For Problem 2, we heuristically
generate single SIS instead of generating all possible SISes
due to the exponential complexity. The elements of the set
are possible custom SIMD instructions, namely candidates of
custom SIMD instructions 2. In order to generate the set, we
accept a CIS C and a set of CIISes, IC. Each element of IC
is associated with an element of C. By analyzing dependency
among custom scalar instructions done in Consruct DG step,
we know which custom scalar instructions can be executed
concurrently. Then, we generate SIMD candidates as many
as possible so that the probability of maximizing performance
is maximized (Compute SIMD Candidates). The detailed al-
gorithm is given in Section 5.2.

After generating a SIMD Instruction Set (S) comprised
of SIMD candidates, we perform legalization of the set to gen-
erate final custom SIMD instructions, performed in Problem 3

2From now on, we call a candidate of custom SIMD instruction
simply as a SIMD candidate.

part in Figure 4. First we analyze dependencies among SIMD
candidates in Construct SDG step. Then, in order to legal-
ize S, we have to remove all of cyclic dependencies in SDG.
Since we are targeting maximum cycle reduction, we have to
minimize performance impact due to the removal of cyclic de-
pendency. In order to remove all of the cyclic dependency, we
first enumerate all elementary circuits [12] and then selectively
remove vertices in the cycles done in the two steps after SDG
construction. Final custom SIMD instructions are generated
at the end.

5.2 Generation of Candidates of Custom SIMD
Instructions

In this subsection, we propose the algorithm to solve
Problem 2 as described in Algorithm 1. The goal is to gen-
erate SIMD candidates as many as possible with minimum
cyclic dependency. The intuition behind the maximum num-
ber is that the more SIMD instructions the more performance
improvement. Note that even if we generate maximal number
of custom SIMD instructions, we do not guarantee maximum
performance improvement due to the fact that how many ele-
ments of the SIS would be eliminated at the legalization step
is unknown at this step. How many SIMD candidates will be
eliminated is dependent on how much cyclic dependency is in
the SIS. Thus, we have to take into consideration minimization
of cyclic dependency in the algorithm as well.

We generate the candidates basic block by basic block.
(line 1, 2 and 3). The reason is to guarantee correct func-
tionality when the SIMD instructions are inserted into the
target application. If instances of a custom scalar instruc-
tion in different basic blocks are clustered together as a SIMD
instruction, its execution might cause incorrect functionality,
since the basic blocks are not in the same control flow in gen-
eral. Thus, we collect instances of a custom scalar instruction
in the same basic block (line 3).

For each custom scalar instruction in each basic block, we
construct DG (line 4) to capture dependency relationships
among instances of the custom scalar instruction. Then, we
find instances, mapped to vertices of DG, that are indepen-
dent of one another to cluster them into a SIMD candidate
(line 6). We perform the clustering until the number of in-
stances in a SIMD candidate reaches VW . After constructing
a SIMD candidate, we remove the vertices and edges associ-
ated with the candidate from DG. We repeat the construction
until there is not enough independent vertices (line 5-10). Fi-
nally, the algorithm outputs a SIS whose elements are SIMD
candidates.

The objective of this process is two folds. One is to min-
imize the number of cyclic dependencies among SIMD can-
didates and the other is to maximize the number of SIMD
candidates. In order to achieve the objectives, we use simple
priority system to assign each vertex of DG a priority to deter-
mine the order of selection in the process of SIMD candidate
construction as described in Section 5.2.1.

5.2.1 Priority System
First, we minimize cyclic dependencies by giving higher

priority to an earlier vertex in topological order than a later
one. The intuition behind the idea is that two clusters do
not form cyclic dependency if vertices in one cluster are topo-
logically earlier than those in the other. However, we do not
guarantee zero cyclic dependency at this step, since our prior-
ity system considers not only topological order of vertices but
also degree of a vertex described later to maximize the num-
ber of candidates. Figure 5 shows an example of how cyclic
dependency is minimized by considering topological order of
vertices. Figure 5(a) shows a DG whose vertices and edges
represent custom scalar instructions and dependency among
them, respectively. Figure 5(b) shows a clustering result when
we do not consider topological order. We cluster vertex a and
d first and then b and c. As a result, two SIMD candidates
form cyclic dependency, which means that one of them should



be eliminated at the legalization step. Figure 5(c) demon-
strates another clustering result that does not form cyclic de-
pendency by clustering earlier vertices in topological order
first. We choose vertex a first because it is one of the earli-
est vertices in topological order and then we examine vertex c
earlier than b and d due to the same reason. By doing so, we
do not generate any cyclic dependency.

(a) (b) (c)
Figure 5: (a) Dependency Graph of Custom Scalar
Instructions (b) SIMD candidate generation with-
out consideration of topological order of vertices (c)
SIMD candidate generation with consideration of
topological order of vertices

Second, in order to maximize the number of SIMD candi-
dates, we give higher priority to a vertex with higher degree.
Specifically, we pick a vertex of DG that has the highest de-
gree and remove all of its neighbors and associated edges. We
repeat the process until the number of vertices in a cluster
reaches VW , which completes construction of a candidate of
custom SIMD instruction. The reason we give higher priority
to a vertex with higher degree than others is that the ver-
tex has less chance of finding a vertex which is independent of
itself. In other words, the later we try to find independent ver-
tex of high degree vertex, the smaller the number of vertices
that can be clustered together with it. Thus, the possibility
of the vertex to become a candidate of SIMD instruction be-
comes lower than when it is examined earlier. Figure 6 shows
an example to demonstrate that considering the degree of ver-
tices affects the number of SIMD candidates. Figure 6(a) is
a DG. When we choose vertices c and d first to construct
a SIMD candidate as shown in Figure 6(b), we generate one
SIMD candidate because vertex a and b are in dependency re-
lationship. However, if we choose vertex a first since it is the
highest degree vertex, then we generate two SIMD candidates
as demonstrated in Figure 6(c).

(a) (b) (c)
Figure 6: (a) Dependency Graph of Custom Scalar In-
structions (b) Generation of custom SIMD candidates
without consideration of degree of vertices (c) Gener-
ation of custom SIMD candidates with consideration
of degree of vertices

5.3 Legalization of SIMD Instruction Set
Once a SIS has been generated, we legalize it so that final

SIMD instructions do not form cyclic dependency as described
in Algorithm 2. The objective of this step is to maximize cy-
cle reduction of the final SIS, subject to the constraint of zero
cyclic dependency. In order to examine performance impact
of the legalization, we first compute gain of each SIMD can-
didate (line 1) that represents cycle reduction over custom
scalar instruction, described in Section 5.3.1. Then, we exam-
ine whether each SIMD candidate participates in formation of
cyclic dependency, followed by gain update to assign penalty.
After capturing performance impact of each SIMD candidate,
we break cyclic dependency by removing SIMD candidates in
such a way that performance reduction due to the removal is
minimized as described in Section 5.3.2.

5.3.1 Gain Computation

Algorithm 1: Construct a set of custom SIMD candidates

Input: CDFG (G), Custom Instruction Set (C), Custom
Instruction Instance Set (CI)

Output: SIMD Instruction Set(SIMDCandi)
1 foreach BB in G do
2 foreach cit in C do
3 CIBB = ExtractCI In The SameBB(cit,CI,BB);
4 DG = Construct Dependency Graph(CIBB);
5 while there is a vertex in DG do
6 MIS = Maximum Cardinality SIMD Instruction

Set(DG);
7 SIMDCandi += MIS;

// Remove vertices and edges associated

with MIS
8 Update Dependency Graph(DG, MIS);

9 end

10 end

11 end

Basically, gain represents cycle reduction when the in-
stances of a custom scalar instruction in a SIMD candidate
are executed in parallel. However, since SIMD instruction
typically use a separate register file to accommodate multiple
data elements in single register entry, we also have to con-
sider cycle penalty to perform packing and unpacking of data.
In addition, we need to consider overhead of shuffling and
extracting data since data are not necessarily aligned. Con-
sidering cycle saving and overhead, we compute the gain of
each SIMD candidate as shown in Equation (1). Note that
the gain computation is not final because it is refined later
to take into consideration the impact of cyclic dependency on
the performance improvement.

Gain(Si) = ∆L(Si)− {P (Si) + UP (Si)} (1)

, where P (Si) = NIsc(Si)/NRFI × (1 + Cshuffle) (2)

UP (Si) = NOsc(Si)/NRFO × (1 + Cextract) (3)

In Equation (1), ∆L(Si) is cycle saving of SIMD candidate
Si. P (Si) and UP (Si) are cycle penalty due to packing and
unpacking operands of Si, respectively. Their computation
is done as shown in Equation (2) and (3). NIsc(Si) and
NOsc(Si) are the number of input and output operands from
and to other scalar instructions, respectively. They incur over-
head of operand transfer between scalar and SIMD register
files. NRFI and NRFO are the number of input and output
ports of both scalar and SIMD register file 3, respectively.
Cshuffle and Cextract refer to cycle penalty to perform shuf-
fling and extracting operands, respectively.

Figure 7 shows an example to assign gains to SIMD can-
didates. Figure 7(a) is a DG. Each shape in the figure rep-
resents a custom instruction. Solid edge shows data flow be-
tween them while dotted edge is data flow from/to base scalar
instructions. In other words, dotted data are from/to scalar
register file. Figure 7(b) shows SIMD candidates generated
from Figure 7(a). Each box represents a SIMD candidate.
Let us suppose cycle saving of all custom scalar instructions
is four, and the numbers of inputs and outputs of scalar reg-
ister file are two and one, respectively. Considering S1 in
Figure 7(b), its scalar instances accepts four input operands
from scalar register file as shown in Figure 7(a). Its packing
overhead is 4/2 = 2 cycles assuming shuffling overhead is zero.
However, all of its outputs are connected to SIMD candidates,
which means zero unpacking overhead. Thus, its gain G1 is
two cycles (i.e. 4 - (2 + 0) = 2) as shown in the figure. Gains
for other candidates are computed in the same way and are
shown in the figure as well.

5.3.2 Removal of Cyclic Dependency
Algorithm 2 describes procedures to legalize a SIS. First,

we construct SDG to capture all dependency information among
3Recall that we assume SIMD register file has the same num-
ber of input and output ports as scalar register file



(a) (b)
Figure 7: (a) Dependency graph (DG) (b) Candidates
of custom SIMD instructions with gains

SIMD candidates (line 2). Then, we compute all of the ele-
mentary circuits (ECs) in SDG to capture all the cyclic de-
pendency that SIMD candidates form by performing the al-
gorithm in [12] (line 3). Each EC corresponds to cyclic de-
pendency. We break an EC by removing a vertex in it. Since
removing a vertex affects total cycle reduction of final SIS,
we take into consideration the performance impact of vertex
removal. We penalize a vertex by the amount proportional to
the number of ECs it belongs to (line 4-6). In other words,
we subtract the amount from the original gain of the vertex
as shown in Equation (4).

Gainnew = Gainold − α×Nc (4)

Gainold and Gainnew represent gain of a vertex computed in
Section 5.2 and updated gain of the vertex, respectively. Nc is
the number of elementary circuits where it belongs in SDG.
α is an integer weight that represents the importance of Nc.
It is an user input.

Once the gain of each vertex has been updated, we sort
vertices of SDG in ascending order of gain (line 7) and then,
we remove a vertex of the least gain. The removal of the
least gain vertex means that its impact on the total execution
cycle is possibly minimal or the number of elementary circuits
the vertex belongs to is substantially large in comparison to
others. We perform the removal until all elementary circuits
in SDG are eliminated (line 8-10). Finally, the legalization
with maximum reduction of total execution cycles is finished
by collecting remaining vertices of SDG (line 11).

(a) (b) (c)
Figure 8: (a) SIMD dependency graph (b) Elemen-
tary circuits identified and updated gains of vertices
(c) Final SDG

Figure 8 is an example that illustrates the process of legal-
izing SIS. Figure 8(a) is a SDG of SIMD candidates in Figure
7(b) with a gain of each vertex. In this example, we set α
2 in Equation 4. After computing all of elementary circuits,
the result is shown in Figure 8(b). Two elementary circuits
denoted as EC1 and EC2 are found. The set G shows up-
dated gains of vertices. As shown in the figure, since vertex
3 belongs to both elementary circuits, its gain is updated to
-1 (i.e. 3− 2× 2 = −1). Then, we remove the vertex because
it is the least gain vertex, which removes all the elementary
circuits. Finally, we get legalized SIS whose SDG is shown in
Figure 8(c).

Algorithm 2: Legalize SIMD Instruction Set

Input: A set of Custom SIMD Instructions(SIMDCandi)
Output: Legal SIMD Instruction Set(CustomSIMD)
// Assign gain a SIMD candidate

1 Compute Gain For SIMD(SIMDCandi);
2 SDG = Construct SIMD Dependency Graph(SIMDCandi);
3 SetCycles = Enumerate All Elementary Cycles(SDG);
4 foreach SIMDNode in SDG do
5 Count Cycle Attendance And Update Gain(SIMDNode,

SetCycles);

6 end
7 Sort SIMDNode In Ascending Order of Gain(SDG);
8 while There is no cycles in SetCycles do
9 Remove The Least Gain SIMDNode(SDG);

10 end
11 CustomSIMD = Vertex(SDG);

6. EXPERIMENTAL RESULTS
6.1 Experimental Setup

We have developed an automatic instruction set exten-
sion tool that generates both custom scalar instructions and
custom SIMD instructions. Since our algorithm is orthogo-
nal to the algorithm for custom scalar instruction generation,
any algorithms can be used to generate custom scalar instruc-
tions. We used Yu and Mitra’s algorithm [13]. The tool is
implemented in C++ and by using LLVM libraries [10]. The
whole flow to generate custom SIMD instructions is depicted
in Figure 9. We accept a C/C++ application as input and
perform initial compilation with LLVM front-end to generate
LLVM intermediate representation (IR) shown as LLVM IR in
the figure. Based on LLVM IR information, we construct con-
trol and data flow graph (CDFG) and then feed it to our core
procedures, namely, custom scalar and SIMD instruction gen-
eration. First, custom scalar instructions are generated. The
procedure accepts timing information of all functional blocks
from component library, profiling information that provides
edge profiling result and constraints such as area, instruction
count, vector width, issue width and etc. Based on the in-
formation and constraints provided, we generate best possible
custom scalar instructions. The custom scalar instructions
generated are used as basis for custom SIMD instruction gen-
eration as shown in the figure. Our algorithm computes cus-
tom SIMD instructions as many as possible at the end of the
flow.

Figure 9: Whole flow to generate custom SIMD in-
structions from target application description

In order to estimate performance, we used similar per-
formance model presented in [11]. We modeled software and
hardware latency of a custom instruction. While software la-
tency is execution cycle that it takes to perform a custom
instruction in a base processor, hardware latency is the one
when the instruction is executed on custom functional unit.
The performance improvement of the instruction is the differ-
ence between software latency and hardware latency.

6.2 Results
In this subsection, we present experimental results mainly

focused on performance improvement. In all experimenta-



tions, we assume 4-read-2-write scalar and SIMD register files.
In addition, we limit the number of custom scalar instructions
to 10. Note that this does not mean total number of instances
is limited.

When custom SIMD instructions are used with custom
scalar instructions, we can achieve even more performance im-
provement than the case where only custom scalar instructions
are used. Figure 10 depicts our claim. In this experiment, we
set vector width (VW) as two. The first bar in each bench-
mark application represents performance improvement over
base instruction set, when only custom scalar instructions are
used. The second bar represents the case where both custom
scalar and custom SIMD instructions are used. The last bar
is the performance improvement of the second case (Scalar +
SIMD) over the first case (only Scalar). As the graph shows,
Scalar + SIMD case improves performance up to 85.5% (i.e.
7X) and 52.4% (i.e. about 2X) on average. In addition, it is
also 30.8% better than scalar only case on average.

Figure 10: Performance improvement of instruction
set extension with custom scalar instructions and hy-
brid of custom scalar and SIMD instructions

We also performed experimentation with change of vector
width to see variation of performance improvement as shown
in Figure 11. As the figure shows, performance improvement
for larger vector width is quite limited. Performance improve-
ment is smaller even in larger vector width in some cases. One
possible reason is that as vector width increases, the number of
custom SIMD instructions we can construct decreases due to
that we do not allow a custom SIMD instruction whose num-
ber of scalar instances is smaller than vector width. Figure
12 verifies the hypothesis. As it shows, the larger the vector
width the less the number of custom SIMD instructions gen-
erated. However, if we allow SIMD instructions such that the
number of instances of custom scalar instructions is less than
vector width, we could increase performance more by gener-
ating more SIMD instructions even with large vector width.
This could be a future research topic.

Figure 11: Performance improvement with the varia-
tion of vector width

7. CONCLUSION
Instruction set extension through custom SIMD instruc-

tions is increasingly drawing attention due to its hybrid char-
acteristics of exploiting parallelism and customization toward

Figure 12: Variation of the number of custom SIMD
instructions generated as vector width increases

target applications. SLP has been recently introduced as new
parallelism that can be exploited by SIMD instructions. In
this paper, we have presented a technique to perform auto-
matic generation of custom SIMD instructions targeted at
SLP. We have demonstrated significant performance improve-
ment by applying our technique to several benchmark applica-
tions. Since applications have both SLP and inter loop DLP,
combining both SLP and inter loop DLP targeted custom
SIMD ISE would be a good research topic to investigate. We
are currently investigating what implications there are in that
context.

8. REFERENCES
[1] http:://www.retarget.com.
[2] http:://www.siliconhive.com.

[3] R. Allen and K. Kennedy. Optimizing Compilers for Modern
Architectures: A Dependence- based Approach. Morgan
Kaufmann, 2001.

[4] R. Barik, J. Zhao, and V. Sarkar. Efficient selection of vector
instructions using dynamic programming. In Proceedings of
International Symposium on Microarchitecture (MICRO),
Dec 2010.

[5] M. O. Cheema and O. Hammami. Customized simd unit
synthesis for system on programmable chip: a foundation for
hw/sw partitioning with vectorization. In Proceedings of Asia
and South Pacific Design Automation Conference
(ASP-DAC), Jan 2006.

[6] J. Cong, M. A. Ghodrat, M. Gill, H. Huang, B. Liu,
R. Prabhakar, G. Reinman, and M. Vitanza. Compilation
and architecture support for customized vector instruction
extension. In Proceedings of Asia and South Pacific Design
Automation Conference (ASP-DAC), Jan 2012.

[7] D. Culler, J. Singh, and A. Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan
Kaufmann, 1998.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free, commercially
representative embedded benchmark suite. In IEEE 4th
Annual Workshop on Workload Characterization, pages
3–14. IEEE, Dec 2001.

[9] S. Larsen and S. Amarasinghe. Exploiting superword level
parallelism with multimedia instruction sets. In Proceedings
of Programming Language Design and Implementation
(PLDI), Jun 2000.

[10] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis and Transformation. In
Proceedings of the International Symposium on Code
Generation and Optimization (CGO), Mar 2004.

[11] L. Pozzi, K. Atasu, and P. Ienne. Exact and approximate
algorithms for the extension of embedded processor
instruction sets. IEEE Transactions on CAD of Integrated
Circuits and Systems, 25(7):1209–1229, Jul 2006.

[12] J. C. Tiernan. An efficient search algorithm to find the
elementary circuits of a graph. Communications of the ACM,
13(12):722–756, December 1970.

[13] P. Yu and T. Mitra. Scalable custom instructions
identification for instruction-set extensible processors. In
Proceedings of the International Comference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES),
pages 69–78. ACM, September 2004.


