
Metal Layer Planning for Silicon Interposers with Consideration of
Routability and Manufacturing Cost*

Abstract – A 2.5D IC provides a silicon interposer to integrate
multiple dies into a package, which not only offers better
performance than 2D ICs but also has lower manufacturing
complexity than true 3D ICs. In an interposer, routing wires
connect signals between dies or route signals from dies to the
package substrate. The number of metal layers in an interposer is
one of the critical factors to affect the routability and
manufacturing cost of the 2.5D IC. Thus, how to achieve 100%
routing completion rate in an interposer using a minimum
number of metal layers plays a key role for the success of a 2.5D
IC. This paper presents a global-routing-based metal layer
planner called VGR to identify a minimal number of metal layers
for an interposer with consideration of routability and
manufacturing cost. Also, VGR can identify a good stacking
order of the horizontal and vertical layers in an interposer such
that the routing solution in the interposer costs fewer vias. To our
best knowledge, this paper is the first study to solve the metal
layer planning problem for silicon interposers.

1 Introduction
Two classes of 3D ICs are under development today. The first

one consists of true 3D ICs [1], each of which is implemented as a
vertical stack of active dies using through silicon vias (TSVs) to
connect dies down to a package substrate. However, stacked dies
cannot easily dissipate heat, plus TSVs used in active dies have
their own performance and production issues, making the
implementation of true 3D ICs more problematic and difficult.

Another class, which has been seen as an alternative approach
to true 3D ICs, comes from silicon interposer-based 2.5D ICs. A
2.5D IC places active dies on a silicon interposer, which in turn is
placed on a package substrate. Only the interposer has TSVs,
while the active dies (except stacked memory dies where heat and
power distribution issues are less critical) do not have any TSV.
Besides, the interposer does not contain any active transistors but
interconnects and decoupling capacitors only. A successful 2.5D
IC that is in volume production today is Xilinx’s Virtex-7 2000T
FPGA device [2, 3], in which four FPGA dies (28-nm process
node) are mounted on top of a low-risk and high-yield interposer
(65-nm process node) by flipping them, and the via-first technique
is adopted in which each TSV is attached to the bottom metal
layer of the interposer. The metal layers and TSVs in the
interposer provide high-bandwidth and low-latency interconnects
that connect to each die using micro-bumps and to the package
substrate by C4 bumps. An example of an interposer-based 2.5D
IC is shown in Fig.1.

To our best knowledge, the size of an interposer can be up to
30×30 mm2 [4]. Due to the large size, the mask cost for each metal
layer in an interposer is higher. Thus, how to achieve 100%
routing completion rate in an interposer using a minimum number
of metal layers plays a key role for the success of a 2.5D IC. In
this paper, we assume that the floorplan of dies on an interposer is
given and the signals are already assigned to the micro-bumps and
TSVs. We study how to plan a proper number of metal layers for
an interposer such that each signal can be successfully routed by a

global router in the interposer without causing any overflow. This
is a challenging problem. If the number of metal layers is not
planned enough for the interposer, a router may find no feasible
routing result. On the other hand, planning surplus metal layers to
the interposer can resolve the routability issue but needs higher
manufacturing cost. Moreover, the metal layer planning problem
may not be solved only once in a design flow. If it can be solved
by a tool fast enough, the tool may be frequently invoked in the
design flow to help evaluate different floorplans of dies such that
a floorplan inducing low manufacturing cost and good routability
to the interposer can be determined. Thus, our goal is to solve the
metal layer planning problem efficiently.

We formulate the metal layer planning problem as a variable-
layer global routing (VLGR) problem. Different from a typical
2D-IC global routing problem [5] in which a fixed amount of
routing layers is given as the input, the VLGR problem asks to
find an overflow-free routing result that requires as few metal
layers as possible. To solve this problem, we develop a variable-
layer global router VGR that can find a layer configuration
(explained later) to strike a good balance between manufacturing
cost and routability. Also, a panel-based evaluation method is
presented to evaluate the routability of layer configurations.
Finally, VGR can plan a good stacking order for the horizontal
and vertical layers such that its routing result costs fewer vias. To
our best knowledge, this paper is the first study to solve the metal
layer planning problem for silicon interposers

The rest of this paper is organized as follows. Section 2
formulates the VLGR problem. Section 3 presents the proposed
global router VGR. Section 4 reports the experimental results.
Finally, conclusions are drawn in Section 5.

2 Preliminaries
This section first reviews the background of global routing,

and then describes how to model the metal layer planning
problem into a VLGR problem.
2.1 Background of Global Routing Problem

In the typical global routing problem, the given k-layer chip is
partitioned into a 3D array of uniform g-cells (Fig. 2(a)), and then
the array of g-cells is modeled by a 3D grid graph Gk(Vk, Ek) (Fig.
2(b)), where Vk denotes the set of g-cells, and Ek refers to the set
of grid edges (g-edges). Each g-edge is termed by the proximity
of the related g-cells to its two end nodes. The capacity (c(e)) of a
g-edge e indicates the number of routing tracks that can legally
cross the abutting boundary of g-cells. The number of wires that
pass through g-edge e is called the demand (d(e)) of e. The
overflow of e is defined as max(0, d(e)–c(e)). The goal of global
routing is to find the routing paths to connect the pins of each net
in Gk(Vk, Ek), and reduce overflows and then wirelength.

Fig. 1. Example of an interposer-based 2.5D IC

*This work was supported in part by the National Science Council of Taiwan
under Grant No. NSC-102-2220-E-007-012.
978-3-9815370-2-4/DATE14/©2014 EDAA

Wen-Hao Liu, Tzu-Kai Chien, and Ting-Chi Wang
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

dnoldnol@gmail.com, cakeboy1029@gmail.com, tcwang@cs.nthu.edu.tw

Because directly performing global routing on the 3D grid
graph is time-consuming, most global routers [6-12] compress
Gk(Vk, Ek) into a 2D grid graph G(V, E) (Fig. 2(c)), then solve the
2D global routing problem to get a 2D routing result, and finally
layer assignment techniques [12, 13] are adopted to map the 2D
routing result to Gk(Vk, Ek) to obtain a 3D result. In the 2D grid
graph G(V, E), the capacity of each g-edge in E is obtained by
accumulating the capacities of its corresponding edges in Ek. For
example, the capacity of ei in Fig. 2(c) is obtained by adding up
c(ei,1), c(ei,2) and c(ei,3) of Fig. 2(b).
2.2 Variable-layer Global Routing Problem

The notations used in the VLGR problem are introduced as
follows.
 (Lh, Lv) denotes a layer configuration, where Lh and Lv are the

numbers of metal layers with horizontal and vertical routing
directions, respectively. In this paper, we call a layer with
horizontal/vertical routing direction a horizontal/vertical layer.

 th and tv denote the capacities of each horizontal and vertical
g-edges in Gk(Vk, Ek), respectively. In this paper, we assume
that the wire width and wire spacing on each layer are uniform
for simplification, so the capacity of a horizontal/vertical g-
edge on each horizontal/vertical layer is a constant.

 G(V, E) is a 2D grid graph modeled from an interposer. The
routing resources of every metal layer in the interposer are
aggregated into G. The capacities of each horizontal and
vertical g-edges in G(V, E) are th×Lh and tv×Lv, respectively.

 N is the set of nets to be connected in the interposer, where
each net consists of a collection of pins. As shown in Fig. 1, in
an interposer, a set of pins corresponding to micro-bumps is
located on the top metal layer and a set of pins corresponding
to TSVs is located on the bottom metal layer.

 Alternate stacking constraint: Mostly existing manufacturing
solutions request that the horizontal layers and vertical layers
have to alternately stack to reduce coupling effect between
layers, so the difference between Lh and Lv is at most 1.
The VLGR problem is defined as follows: Given G(V, E), th, tv,

and N, find a layer configuration (Lh, Lv) such that N can be
globally routed on G(V, E) without any overflow and |Lh–Lv|≤1 is
satisfied to obey the alternate stacking constraint. The objective is
to minimize the following cost function.

Nvh TWLLL )( (1)
where λ is a user-defined constant and TWLN denotes the total
routing wirelength of all nets in N. In this work, we set λ to a very
large constant to make (Lh+Lv) dominate Eq. (1).

The most intuitive method to solve the VLGR problem is to
run a global router to test several layer configurations. The one
with the minimum layer number and including an overflow-free
routing result is the solution to this problem. However, this
method is inefficient because it has no better way to know which
layer configurations need to test, and the router has to route from
scratch in every test. In contrast, the proposed VGR can identify a
set of configurations that are worth to test, and the routing result
of VGR can be incrementally updated for each test to save time.
Moreover, judging whether a layer configuration has an overflow-

free result is challenging. A global router may spend hours to
evaluate a hard-to-route layer configuration, and then report this
configuration may have no overflow-free result since the router is
unable to get it. In contrast, the proposed VGR can accurately and
fast evaluate the routability of a configuration using a panel-based
method. We detail the proposed VGR in the next section.

3 The Proposed VGR
Fig. 3 shows the flow of VGR that consists of three phases:

layer range identification, layer configuration selection, and layer
stacking arrangement. To easily explain the flow of VGR, we
classify layer configurations into two types. If a layer
configuration contains at least an overflow-free routing result, the
layer configuration is defined to be routable. If it is impossible to
identify an overflow-free result for a layer configuration by VGR,
the layer configuration is defined to be unroutable. Fast and
accurately judging that a layer configuration is routable or
unroutable is the key for the success of VGR.

The layer range identification phase first uses an analytical
method to get a lower-bound layer configuration (LBh, LBv) such
that any layer configuration (Lh, Lv) is unroutable if Lh<LBh and
Lv<LBv. Next, this phase generates an initial routing result based
on (LBh, LBv), and then analyzes the routing result to get an upper-
bound layer configuration (UBh, UBv) and guarantee that any layer
configuration (Lh, Lv) is routable if Lh≥UBh and Lv≥UBv. After the
lower and upper bounds are identified, a layer range can be
formed. Namely, a layer configuration (Lh, Lv) is in the layer range
if LBh≤Lh≤UBh and LBv≤Lv≤UBv; each layer configuration except
the upper-bound one may need to be examined whether it is
routable. In order to avoid too many layer configurations included
in the layer range, this phase attempts to identify a tighter lower
and upper bounds.

The second phase explores each layer configuration in the
layer range to test whether it is routable, and then selects a
routable one that obeys the alternate stacking constraint and has
the minimum cost for Eq. (1) to be the best solution of the VLGR
problem. This phase maintains a global routing result and updates
the result incrementally for each tested layer configuration to see
whether an overflow-free routing result can be obtained.

The final phase decides the stacking order for the best layer
configuration identified by the previous phase. The stacking order
of horizontal layers and vertical layers in the interposer will
impact the via count in its routing result.
3.1 Layer Range Identification

To identify the lower-bound layer configuration of the layer
range, we first have to know what situation must cause overflows.
At first, VGR decomposes each net in N into two-pin subnets by a
rectilinear minimum spanning tree (RMST) algorithm. For each g-
cell u, if a two-pin subnet has a terminal in u and another terminal
not in u, this two-pin subnet is defined to be a global segment of u.
If the number of global segments of u exceeds the total capacity
of the g-edges connecting to u, overflows must happen.
Accordingly, we want to identify a layer configuration (LBh, LBv)

Fig. 3. Flow of VGR.

Fig. 2. (a) a 3-layer chip that is partitioned into an array of g-cells
(b) a 3D grid graph (c) a 2D grid graph.

(a) (b) (c)

to ensure that |LBh–LBv|≤1 and the number of global segments of
each g-cell is not greater than the total capacity of its adjacent g-
edges while (LBh, LBv) is as tight as possible. The approach to
obtain (LBh, LBv) is detailed as follows.

Let |S(u)| denote the number of global segments of g-cell u.
The layer configuration (LB(u)h, LB(u)v) ensures that |S(u)| is not
greater than the total capacity of the g-edges connecting to u and
makes |LB(u)h–LB(u)v|≤1. We can find (LB(u)h, LB(u)v) for each
g-cell u in G(V, E) by the following equations.

(2),1,)
)()(

|)(|(

otherwise),(
|)(|)()(ifelse),(
|)(|)()(ifelse),(

|)(|))()((if),(

))(,)((





























uu
vh

u

uu

vuhuuu

vuhuuu

vhuuu

vh

l'l
ucuc

uSl

'l'l
uSuc'lucl'll
uSucluc'll'l

uSucuclll

uLBuLB

where c(u)h and c(u)v respectively denote the total capacities of
the horizontal and vertical g-edges connecting to u. For example,
if a g-cell u is connected by two horizontal g-edges and two
vertical g-edges, c(u)h and c(u)v will be th×2 and tv×2, respectively.
Note that c(u)h and c(u)v would vary when u is located on the
boundaries or corners of G(V, E). In order to make the lower
bound tighter, the one with the maximum LB(u)h+LB(u)v among
all g-cells is selected to be (LBh, LBv).

After LBh and LBv are obtained, we respectively initialize the
capacities of the horizontal and vertical g-edges in G(V, E) to
th×LBh and tv×LBv, and then invoke the initial routing stage to get
an initial routing result. In the initial routing stage, each global
segment is routed by L-shaped pattern routing first. If a global
segment has overflows, the segment will be rerouted by
monotonic routing. After that, to identify the upper-bound layer
configuration of the layer range, VGR analyzes the initial routing
result to get a layer configuration (UBh, UBv) as tight as possible
and under which the initial routing result can be overflow-free.
For example, if a horizontal g-edge ei has the maximum demand
d(ei) among all horizontal g-edges, UBh is set to be ڿd(ei)/thۀ to
ensure that no horizontal g-edge has overflows; similarly, UBv is
set to be ڿd(ej)/tvۀ where g-edge ej has the maximum demand
among all vertical g-edges. If |UBh–UBv|>1, we increase the
smaller one of UBh and UBv to make |UBh–UBv|=1 and obey the
alternate stacking constraint. Since a larger maximum demand of
grid edges would result in larger UBh or UBv, the initial routing
stage attempts to reduce the maximum demand on grid edges to
make the upper bound tighter.
3.2 Layer Configuration Selection

After the layer range is obtained, we have tried three different
methods to find the best layer configuration in the range. The first
method explores the layer configurations from the lower-bound
one to the upper-bound one in the range to find a routable layer
configuration with the minimum layer number. It initially
performs rip-up and reroute (R&R) for the initial routing result
under layer configuration (LBh, LBv). Then, if an overflow-free
result cannot be obtained, the first method repeatedly adds one
more metal layer and then performs R&R again until a routable
layer configuration is found. However, to recognize that a layer
configuration is unroutable, one has to perform R&R under the
configuration with very long runtime until overflow reduction is
stuck. Thus, the first method may explore several unroutable
configurations and be time-consuming. Due to the same reason,
the second method, binary search, may also be time-consuming if
it explores several unroutable configurations before finding the
routable one. Accordingly, this work adopts the third method to

find the best layer configuration, which explores the layer
configurations from the upper to lower bounds in the layer range.
The third method is much faster than the other two methods since
it explores at most one unroutable configuration.

At the beginning of the layer configuration selection phase in
Fig. 3, we set Lh=UBh and Lv=UBv. Then, VGR reduces either Lh

or Lv by 1 in the metal layer reduction stage, which may induce
overflows in the initial overflow-free routing result since the
capacities of one half of g-edges in G(V, E) decrease. After that,
the R&R stage iteratively reroutes the global segments in the
initial routing result to intend obtaining an overflow-free routing
result again. In the R&R stage, the efficient routing algorithms
presented in [11] are used to quickly reduce overflows. For more
details of the R&R stage, please refer to [11]. If an overflow-free
result is obtained, the cost of the current routing result is
calculated via Eq. (1) and the current result is treated as a feasible
solution to save into a solution pool. The R&R stage and metal
layer reduction stage are alternately performed until either an
overflow-free result cannot be obtained or (Lh, Lv) already reaches
the lower bound of the layer range. Finally, VGR decides the
values of Lh and Lv by choosing a feasible solution with the
minimum cost from the solution pool.

The primary issue in this phase is how to get a good reduction
order for Lh and Lv in the metal layer reduction stage because
different reduction orders would impact the solution quality. For
example, our experiments reveal that (Lh=3, Lv=3) is a routable
layer configuration for test case Sb1 (more detailed experimental
results will be shown in Section 4). If a metal layer is removed, an
overflow-free routing result can be obtained again for (Lh=3, Lv=2)
but not for (Lh=2, Lv=3). This implies that (Lh=2, Lv=3) is a dead
end. If VGR falls into this dead end, VGR would treat (Lh=3, Lv=3)
as the best layer configuration. However, (Lh=3, Lv=2) is better.

In this phase, the R&R stage is iteratively launched to detect
whether the explored layer configurations are routable. Each
launch of the R&R stage only partially updates the routing result
generated by the previous launch, so each launch of the R&R
stage can be done in short time except for the last launch. The last
launch has to spend long time to recognize that a layer
configuration is unroutable, so the runtime of the last launched
R&R stage almost dominates the total runtime of VGR. Thus, if
we can detect a configuration that is unroutable earlier, we can
avoid the last launch of the R&R stage to save runtime.

Section 3.2.1 presents a routability evaluation method to guide
the metal layer reduction and Section 3.2.2 presents an early
termination scheme to skip the last launch of the R&R stage.
3.2.1 Metal Layer Reduction

When Lh is not equal to Lv, we always reduce the larger one of
Lh and Lv in order to obey the alternate stacking constraint.
However, when Lh is equal to Lv, reducing which one of Lh and Lv

becomes a problem. To handle the case where only one of (Lh–1,
Lv) and (Lh, Lv–1) is routable, this work presents a metal layer
reduction strategy to avoid VGR falling into the unroutable one.

Given an overflow-free result S under layer configuration (Lh,
Lv), this stage would judge which one of (Lh–1, Lv) and (Lh, Lv–1)
offers better routability first, and then moves to the one with
better routability. A configuration with better routability means
that feeding S into the R&R stage under the configuration can get
a routing result with fewer overflows and shorter wirelength.

At the beginning of this stage, we tentatively reduce Lh by 1
from (Lh, Lv) and get a congestion map Ch from S under the layer
configuration (Lh–1, Lv), and also tentatively reduce Lv by 1 from
(Lh, Lv) and get a congestion map Cv from S under the layer
configuration (Lh, Lv–1). Figs. 4(a) and 4(b) respectively show

examples of the overflow distribution in Ch and Cv, in which the
numbers next to g-edges denote the overflows induced by the
corresponding layer reduction. By evaluating the routability of Ch

and Cv, we can know between (Lh–1, Lv) and (Lh, Lv–1) which
offers better routability. However, the problem here is how to
accurately evaluate the routability of Ch and Cv. We have tried to
use the well-known congestion evaluation metrics such as total
overflow [5], ACE [14] and WCI [15] metrics to evaluate the
routability of Ch and Cv, but these metrics sometimes mislead
VGR to choose the wrong layer configuration. Based on our
observation, we found that the major reason for the misleading is
that these metrics do not consider the congestion distribution. For
instance, although Fig. 4(b) has higher total overflow and
maximum overflow than those in Fig. 4(a), the overflows in Fig.
4(a) are more concentrated such that they may worsen routability.
In addition, the paper in [11] indicates that the congestions in real
designs often range horizontally or vertically as a wall, and the
routing is difficult as the congestion wall is long and thick. Thus,
we present a panel-based routability evaluation method to
consider the congestion distribution. Notably, a panel is ether a
column or a row in the grid graph, in which a column comprises a
set of horizontal g-edges and a row comprises a set of vertical g-
edges. The dotted boxes in Fig. 4(a) and 4(b) highlight the most
congested column in Ch, and most congested row in Cv,
respectively.

We found that a layer configuration is routable or not usually
depends on the most congested row or column in its congestion
map. Thus, the panel-based routability evaluation method is
designed based on this finding. The panel-based evaluation
method first calculates a routing difficulty score for each column
and each row of the evaluated congestion map, and then adds up
the maximum score of rows and the maximum score of columns
to get the routing difficulty score for the congestion map. A layer
configuration with a higher routing difficulty score for its
congestion map means that obtaining an overflow-free result
under this configuration is more difficult.

Without loss of generality, we use an example in Fig. 5 to
illustrate how the proposed evaluation method calculates the
routing difficulty score for a row. Fig. 5(a) shows the value of
d(e)–c(e) for each vertical g-edge e in the row, in which the g-
edges with a positive value are called overflowed edges while the
g-edges with a negative value are called slack edges. The panel-
based routability evaluation method for a row iteratively visits
each vertical g-edge from right to left, and moves overflows from
overflowed edges to the nearest slack edges to remove overflow.
After each move, the value of d(e)–c(e) of the overflowed edge
decreases by 1 and the value of the slack edge increases by 1. Fig.
5(b) shows the updated graph after moving a unit of overflow
from e3 to e2. If the moving distance from an overflowed edge to
its nearest left slack edge is the same as that to its nearest right
slack edge, the overflow is moved to the right one as shown in Fig.
5(c). The routing difficulty score for a row consists of the total
moving cost and the surplus penalty. The cost of moving a unit of

overflow to a slack edge is the square of its moving distance
(explained later). If a row has not enough slack edges to eliminate
all overflows, the remaining overflows are defined to be surplus
overflows. The surplus penalty is obtained by multiplying the
amount of surplus overflows by a very large constant. Figs. 5(d)-
5(f) show the subsequent steps to calculate the routing difficulty
score for the row, and the final score is shown in Fig. 5(f). The
reason why we set the moving cost to the square of the moving
distance is to emphasize that moving a unit of overflow further is
more difficult. For example, a net crossing a congestion wall
induces an overflow. If the overflow is in the middle of the
congestion wall, the net may need to detour a lot to bypass the
congestion wall. To capture this routing behavior, when overflow
is in the middle of the congestion wall, our square cost function
can give this situation a higher cost. Moreover, based on this
scoring method, a panel with a long congestion wall will have a
high routing difficulty score.

As mentioned above, when Lh is not equal to Lv, we can
directly reduce the larger one of Lh and Lv by 1 because of the
alternate stacking constraint. However, in this case, we still use
the proposed method to evaluate the routability of (Lh–1, Lv) when
Lh>Lv or (Lh, Lv–1) when Lv>Lh since the evaluation result can
help us to decide whether the layer configuration selection phase
can be early terminated for time saving. The reason will be
detailed later.
3.2.2 Early Termination Scheme

Let layer configurations (Lh–1, Lv) and (Lh, Lv–1) are treated as
the children of (Lh, Lv). During the layer configuration selection
phase, if the children of (Lh, Lv) are both unroutable, we can claim
that reducing a layer from (Lh, Lv) is meaningless since overflow-
free results cannot be found in its children. In this work, we
predict that a layer configuration is unroutable if the configuration
has surplus overflows. Typically, a panel with surplus overflows
means that the panel has not enough routing resource for nets to
pass through. When a design has panels with surplus overflows,
the design is mostly unroutable as indicated in [16]. Therefore, if
the panel-based routability evaluation method reports that the
children of (Lh, Lv) both have surplus overflows, the layer
configuration selection phase can be early terminated for time
saving.

Please note that the early termination scheme is a heuristic
method based on our observation, so we cannot guarantee its
prediction is always correct. However, our experiment shows that
if the termination condition is triggered but we let VGR continue
the R&R stage under the next layer configuration, VGR always
cannot identify an overflow-free routing result.
3.3 Layer Stacking Arrangement

The stacking order of horizontal and vertical layers would
impact the via count in the routing result. Due to the alternate
stacking constraint, once the routing direction of the bottom metal

Fig. 5. Example of using the proposed panel-based routability
evaluation method to score a row.

(a)

(b)

(c)

(d)

(e)

(f)Fig. 4. Congestion maps of (a) (Lh–1, Lv) (b) (Lh, Lv–1).
(a) (b)

layer is determined, the stacking order of all horizontal and
vertical layers is also determined. Thus, the goal of this stage is to
decide the routing direction of the bottom layer.

Assume S is the 2D global routing result and (Lh, Lv) is the
best layer configuration obtained by the previous phase such that
|Lh–Lv|≤1. When Lh–Lv=1, the bottom layer has to be the
horizontal layer to satisfy the alternate stacking constraint;
similarly, when Lv–Lh=1, the bottom layer has to be the vertical
layer. However, when Lh=Lv, this phase needs to determine how to
stack layers for minimizing via count. At first, this phase builds
two possible layer stacking structures for layer configuration (Lh,
Lv), i.e., their bottom layers are horizontal and vertical,
respectively. Next, two 3D grid graphs are built according to these
two layer stacking structures, and then the fast greedy layer
assignment algorithm presented in [12] is invoked to map the 2D
result S to these two 3D grid graphs to get two 3D routing results.
Finally, we choose the stacking order that offers fewer via count
in its 3D result to be our final solution.

4 Experimental Results
The proposed router VGR is implemented in C/C++ and

tested on a quad-core 2.4 GHz Intel Xeon-based Linux server with
16GB memory. Because no existing work has addressed our
problem and no test case is available, we modified the placement
solutions of Ripple [17] released by ISPD11 placement contest to
be our global routing test cases. The statistics like the numbers of
nets and pins for these test cases are available in [18].

These test cases are originally for 2D ICs, but they can capture
the characteristics of interposers after our slight modification.
Each of these test cases originally has a specified number of metal
layers; we have removed this information to treat the number of
metal layers as an undecided variable. Since interposers under our
study do not contain any active transistors, we have removed the
big macros from these test cases. Moreover, because pins of nets
in interposers are mostly located on the top metal layer and some
are located on the bottom layer, we randomly assign 90% pins to
the top layer and 10% pins to the bottom layer. Finally, we
assume that the wire width and wire spacing on each metal layer
are uniform, and set th=15 and tv=15.
4.1 Behavior of VGR

To better understand the behavior of VGR, Table 1 shows the
global routing result after each iteration of the layer configuration
selection phase for test case Sb1, in which the “iterations” column
shows the iteration count, the “(Lh, Lv)” column shows the
explored layer configuration in each iteration, the “TOFinit” and
“TOFend” columns respectively show the total overflow before and
after the R&R stage in each iteration, the “TWL” and “Acc. CPU”
columns respectively show the total wirelength of the routing
result and the accumulated runtime after each iteration. Note that,
the runtime unit is second in every table of this paper, and TWL
does not include via count.

For the results shown in Table 1, the early termination
scheme is not invoked, and each R&R stage stops when either an
overflow-free routing result is obtained or overflow reduction is
stuck. Because the routing result in the 8th iteration for Sb1 has
overflows, the layer configuration selection phase terminates and
then reports that the configuration (Lh=3, Lv=2) identified by
iteration 7 is the best solution. To compare different routability
evaluation metrics, we have tried to use total overflow metric [5],
ACE metric [14] and WCI metric [15] to guide metal layer
reduction. However, when these metrics are used in the metal
layer reduction stage, VGR falls into layer configuration (Lh=2,
Lv=3) and then fails to identify an overflow-free result. As a result,
(Lh=3, Lv=3) is treated to be the best layer configuration which in
fact is inferior to (Lh=3, Lv=2) reported by VGR.

Table 1 also indicates that the runtime of the last iteration
dominates the total runtime of VGR. The reason is that the last
launch of the R&R stage would struggle for the insufficient
routing resources until overflow reduction is stuck and then
finally give up. Table 2 shows the solutions identified by VGR for
every test case and the effectiveness of the proposed early
termination scheme, in which the “(LBh, LBv)” and “(UBh, UBv)”
columns show the lower bound and the upper bound of the layer
range, respectively; the “(Lh, Lv)” column shows the best layer
configuration identified by the layer configuration selection phase;
the “BD” column shows the routing direction of the bottom layer
identified by the layer stacking arrangement phase; the “CPU1”
and “CPU2” columns respectively show the total runtime of VGR
without and with early termination scheme. Table 2 reveals that
the early termination scheme can reduce the runtime of VGR by
avoiding the last launched R&R stage for 6 out of 8 test cases. For
Sb2 and Sb5, since the layer configurations (Lh=3, Lv=2) and
(Lh=2, Lv=3) are unroutable to VGR but their congestion levels are
not worse enough to trigger the termination condition, VGR
cannot be early terminated. Averagely, VGR with the early
termination scheme can achieve 10.8X speedup compared to that
without the scheme.
4.2 Evaluation by NCTU-GR 2.0

To see how effective and efficient VGR is, we adopt a state-
of-the-art global router NCTU-GR 2.0 [7] to route our test cases.
Because NCTU-GR 2.0 needs a fixed amount of routing layers as
the input, we manually set different layer configurations to run it.
NCTU-GR 2.0 is a public global router that is selected to be the
evaluation tool in DAC12 and ICCAD12 placement contests, and
it can be download from [18]. In our experiments, NCTU-GR 2.0
is run with the default parameter values and terminates when an
overflow-free routing result is identified or overflows cannot be
reduced anymore.

For each test case, we first perform NCTU-GR 2.0 under the
layer configuration identified by VGR. Then, we perform NCTU-
GR 2.0 under the configurations with fewer layers or different
stacking orders to see whether a better overflow-free result can be
obtained. In Table 3, the configurations identified by VGR are
highlighted to be boldface. Table 3 shows that VGR found the

 (LBh, LBv) (ULh, ULv) (Lh, Lv) BD CPU1 CPU2

Sb1 (2, 1) (6, 6) (3, 2) H 705.90 56.20
Sb2 (2, 1) (6, 5) (3, 3) V 599.61 -
Sb4 (2, 2) (6, 7) (3, 2) H 635.27 49.68
Sb5 (1, 2) (7, 8) (3, 3) V 137.44 -
Sb10 (2, 2) (8, 9) (2, 3) V 2430.94 225.06
Sb12 (1, 2) (6, 7) (3, 4) V 985.10 63.56
Sb15 (2, 1) (8, 7) (3, 3) V 726.02 46.33
Sb18 (2, 1) (7, 8) (3, 3) V 988.01 54.17

TABLE 2 SOLUTIONS IDENTIFIED BY VGR TABLE 1 THE LAYER CONFIGURATION SELECTION PHASE

iterations
Sb1

(Lh, Lv) TOFinit TOFend TWL Acc. CPU
1 (5, 6) 114 0 9769354 14.97
2 (5, 5) 240 0 9769510 15.62
3 (4, 5) 635 0 9769734 16.27
4 (4, 4) 3949 0 9770573 17.01
5 (3, 4) 6371 0 9774261 18.45
6 (3, 3) 49316 0 9811629 21.13
7 (3, 2) 367773 0 10558189 56.90
8 (2, 2) 605434 212949 11920380 705.90

routable configuration with the minimum number of metal layers
as NCTU-GR 2.0 did for all test cases but Sb2. Notably, even if a
test case has an unroutable and a routable layer configurations
with the same layer number, VGR still can hit the routable one
(see the routing results of Sb1, Sb4, Sb10, and Sb12 in Table 3).
This implies that the proposed penal-based routability evaluation
scheme well guide VGR to choose the layer configuration with
better routability. In addition, the routing results of Sb5, Sb15 and
Sb18 reveal that a configuration with different layer stacking
orders would have 6% via count difference on average, and VGR
can identify the stacking order with fewer via count.

Table 3 also shows that using NCTU-GR 2.0 to solve the
metal layer planning problem is time-consuming. For example,
VGR can examine several layer configurations to see whether
they are routable and then identify an overflow-free result for Sb1
in 56 seconds, while NCTU-GR 2.0 costs 555 seconds for Sb1 to
test only the layer configuration (Lh=3, Lv=2). Moreover, if we use
NCTU-GR 2.0 to find the best layer configuration for Sb1, we
also need to run NCTU-GR 2.0 under the layer configuration
(Lh=2, Lv=2) to make sure that it cannot get an overflow-free
result, before we can claim the layer configuration (Lh=3, Lv=2) is
the best one. For this approach, NCTU-GR 2.0 additionally
spends more than 5 hours on the layer configuration (Lh=2, Lv=2);
the overall runtime of this approach is clearly much longer than
VGR. Thus, due to its fast runtime, VGR is suitable for guiding
the floorplanning of dies on an interposer to select a floorplan that
offers good routability and low manufacturing cost to the
interposer.

NCTU-GR 2.0 can identify an overflow-free result for Sb2
under layer configurations (Lh=3, Lv=2) and (Lh=2, Lv=3),
explaining why VGR does not trigger the early termination for
Sb2 in Table 2. The proposed early termination scheme believes
that Sb2 can be further reduced by one more metal layer from
(Lh=3, Lv=3). However, VGR cannot find the overflow-free results
under (Lh=3, Lv=2) and (Lh=2, Lv=3) for Sb2. This implies that
VGR is fast but still has room for improving its ability on solving
overflows. Similarly, the early termination is not triggered for Sb5
in Table 2, because the layer configuration (Lh=3, Lv=2) seems
potentially routable. Table 3 shows that the overflow value of Sb5
under layer configuration (Lh=3, Lv=2) is relatively small, only 72.
If a router more powerful than NCTU-GR 2.0 is used, an
overflow-free result may be achievable.

5 Conclusions
This work studies a metal layer planning problem for silicon

interposers and presents a variable-layer global router called VGR
to solve the problem. Extensive experiments are also conducted to
show the effectiveness and efficiency of VGR.

REFERENCES

[1] D. H. Kim et al., “A study of through-silicon-via impact on the 3D
stacked IC layout,” in Proc. ICCAD, pp. 674-680, 2009.

[2] K. Saban, “Xilinx stacked silicon interconnect technology delivers
breakthrough FPGA capacity, bandwidth, and power efficiency,” Xilinx
white paper: Virtex-7 FPGAs, 2012.

[3] S. K. Goel, “Test challenges in designing complex 3D chips: what is on
the horizon for EDA industry,” in Proc. ICCAD, designer track, 2012.

[4] L. Madden, “Heterogeneous 3-D stacking, can we have the best of both
(technology) worlds,” in Proc. ISPD, pp. 1-2, 2013.

[5] http://archive.sigda.org/ispd2008/contests/ispd08rc.html
[6] Y.-J. Chang et al., “NTHU-Route 2.0: a fast and stable global router,” in

Proc. ICCAD, pp. 338-343, 2008.
[7] W.-H. Liu et al., “NCTU-GR 2.0: multithreaded collision-aware global

routing with bounded-length maze routing,” IEEE TCAD, 32(5), pp. 709-
722, 2013.

[8] J. Hu et al., “Completing high-quality global routes,” in Proc. ISPD, pp.
35-41, 2010.

[9] Y. Xu and C. Chu, “MGR: Multi-level global router,” in Proc. ICCAD,
pp.250-255, 2011.

[10] H. Shojaei et al., “Congestion analysis for global routing via integer
programming,” in Proc. ICCAD, pp. 256-262, 2011.

[11] W.-H. Liu et al., “A fast maze-free routing congestion estimator with
hybrid unilateral monotonic routing,” in Proc. ICCAD, 2012.

[12] K.-R. Dai et al., “NCTU-GR: efficient simulated evolution-based
rerouting and congestion-relaxed layer assignment on 3-D global
routing,” IEEE TVLSI, 20(3), pp. 459-472, 2012.

[13] T.-H. Lee and T.-C. Wang, “Congestion-constrained layer assignment
for via minimization in global routing,” IEEE TCAD, 27(9), 1643 – 1656,
2008.

[14] Y. Wei et al., “GLARE: global and local wiring aware routability
evaluation,” in Proc. DAC, pp. 768-773, 2012.

[15] Z. Li et al., “Guiding a physical design closure system to produce easier-
to-route designs with more predictable timing,” in Proc. DAC, pp.465-
470, 2012.

[16] F.-Y. Chang et al., “Cut-demand based routing resource allocation and
consolidation for routability enhancement,” in Proc. ASPDAC, pp. 533–
538, 2011.

[17] X. He et al., “Ripple: an effective routability-driven placer by iterative
cell movement”, in Proc. ICCAD, pp. 74–79, 2011.

[18] N. Viswanathan et al., “The ISPD-2011 routability-driven placement
contest and benchmark suite,” in Proc. ISPD, pp. 141-146, 2011.

[19] http://cs.nctu.edu.tw/~whliu/NCTU-GR.htm

TABLE 3 EVALUATION BY NCTU-GR 2.0 WITH MANUALLY SETTING LAYER CONFIGURATIONS
(Lh, Lv) BD TOF TWL Via CPU (sec) (Lh, Lv) BD TOF TWL Via CPU (sec)

Sb1
(3, 2) H 0 10307170 2762358 554.76

Sb10
(2, 3) V 0 21232438 4250411 2533.06

(2, 3) V 88 10683774 3053022 4494.53 (3, 2) H 174092 25270391 5550146 56993.40
(2, 2) H 235788 12110388 3487853 18767.40 (2, 2) V 751160 26238917 6393232 76964.40

Sb2

(3, 3) V 0 23866253 3702285 300.97

Sb12

(3, 4) V 0 14265111 6358440 288.35
(3, 3) H 0 23866253 3998310 302.48 (4, 3) H 127438 16037032 7736763 19196.20
(2, 3) V 0 25440297 4307114 6160.31 (3, 3) V 644250 16762196 7720731 25096.30
(3, 2) H 0 28081643 4708266 17584.30
(2, 2) V 783388 31189623 6209005 108835.00

Sb4

(3, 2) H 0 7607579 1867402 272.06

Sb15

(3, 3) V 0 11436621 3958450 105.31
(2, 3) V 266 8542881 2204187 2648.39 (3, 3) H 0 11436621 4171147 105.30
(2, 2) H 133736 9276576 2874626 12256.20 (2, 3) V 391636 13327950 5557724 16025.30

 (3, 2) H 448410 13841743 5596124 15234.4

Sb5

(3, 3) V 0 12273345 2651563 98.01

Sb18

(3, 3) V 0 8324746 2579202 231.95
(3, 3) H 0 12273345 2839029 98.01 (3, 3) H 0 8324746 2725576 230.02
(2, 3) V 4514 13538815 2890550 2483.04 (2, 3) V 116738 9953287 3596022 14801.8
(3, 2) H 72 13047867 2628774 1324.11 (3, 2) H 395336 9910307 3646525 15615.40

