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Abstract—Real-time identification of connected regions of pix-
els in large (e.g. FullHD) frames is a mandatory and expensive
step in many computer vision applications that are becoming
increasingly popular in embedded mobile devices such as smart-
phones, tablets and head mounted devices. Standard off-the-
shelf embedded processors are not yet able to cope with the
performance/flexibility trade-offs required by such applications.
Therefore, in this work we present an Application Specific
Instruction Set Processor (ASIP) tailored to concurrently execute
thresholding, connected components labeling and basic feature
extraction of image frames. The proposed architecture is capable
to cope with frame complexities ranging from QCIF to FullHD
frames with 1 to 4 bytes-per-pixel formats, while achieving an
average frame rate of 30 frames-per-second (fps). Synthesis was
performed for a standard 65nm CMOS library, obtaining an
operating frequency of 350MHz and 2.1mm2 area. Moreover, eval-
uations were conducted both on typical and synthetic data sets, in
order to thoroughly assess the achievable performance. Finally,
an entire planar-marker based augmented reality application was
developed and simulated for the ASIP.

I. INTRODUCTION

Computer vision applications are becoming increasingly
popular in embedded devices such as tablets, smartphones and
head mounted devices [1]. However, the processing elements
integrated in these devices cannot yet provide the adequate
efficiency/performance trade-off for the algorithms inherent
to such applications [2]. Connected Components Labeling
(CCL) [3]–[6] is one of the first steps in many computer vi-
sion applications such as marker-based augmented reality [1],
video-based driver assistance [7], automated security systems
[8] and geographical information services [9]. The algorithm
consists on the detection of regions of connected pixels in an
image, with the objective of producing a symbolic matrix that
identifies each region with an individual label. Each individual
region within the symbolic matrix is a potential object of
interest. Therefore, the matrix is always post-processed and
the features of each region are usually extracted for further
use within the specific application [6].

Significant research efforts have been put into reducing
the computational complexity of CCL, to enable real time
execution (i.e. over 25fps) of the applications that use it as a
first step. Most efforts have focused on algorithmic optimiza-
tions, targeting execution either on General Purpose Processors

(GPPs) or on Graphic Processing Units (GPUs) [3]–[6], [9].
However, with a few exceptions [6], [7], these algorithms
are not optimally designed for architectures typically used in
embedded systems.

Several Application Specific Integrated Circuit (ASIC) im-
plementations of CCL have been proposed to increase the
throughput/efficiency ratio [8], [10], [11]. These implemen-
tations are able to achieve processing rates from 70 Mega
pixels-per-second to 4.5 Giga pixels-per-second, guaranteeing
real time execution for most image formats [10]. Nevertheless,
such architecture implementations lack the flexibility to adapt
to algorithmic changes, require a dedicated frame memory
communication infrastructure, and cannot be reused to perform
other applications.

Application Specific Instruction Set Processors (ASIPs),
are processors tailored for a specific application domain.
They have proven to provide the adequate trade-off between
customization, flexibility and efficiency, and are widely used
in embedded systems [12]. Surprisingly, the approach has not
been extensively used for CCL; Schewior et al. [7] being
to our knowledge the only work on the subject. Here, a
Tensillica LX2 extensible core was augmented with CCL-
targeted Custom Instructions for pixel thresholding, image
labeling and region feature extraction. They claim to achieve
an operating frequency of 373MHz and an average of 16.4
cycles-per-pixel (cpp) performance (i.e. 10.9fps for FullHD
frames), when performing synthesis for a 90nm standard
library. Nevertheless this work limits the maximum number of
detected regions per frame (i.e. potencial identified objects),
thus sacrificing flexibility.

In this work we propose a tailored ASIP architecture based
on the division of the input frame into several slices, which
are then labeled independently [11], [13]. Our ASIP achieves
real-time pixel thresholding, frame labeling and region feature
extraction of a wide range of image resolutions and pixel
formats, going from QCIF up to FullHD. In order to constrain
the size of the ASIP, the maximum number of label regions
per slice is restricted to an upper bound. To cope with this

978-3-9815370-2-4/DATE14/ c© 2014 EDAA



limitation we exploit the Software (SW) programmability of
the ASIP, highlighting the scalability and flexibility of an ASIP
based connected components labeling solution.

The contributions of this paper are threefold. First, we
propose a highly specialized processor architecture that is
able to execute thresholding, labeling and feature extraction
of FullHD frames. Second, we exploit the programability of
the ASIP to create a CCL variation that is able to adapt to
the complexity of the input frame, without the need of any
architectural modification. Third, we perform a comprehensive
evaluation of the achievable performance of the ASIP, using
publicly available image data sets specifically designed to test
the CCL algorithm.

The organization of the paper is as follows. In Section II,
the connected components labeling algorithm and its parallel
variation are briefly introduced. Section III describes in detail
the proposed ASIP. In Section IV a comprehensive study of
the performance of the architecture is conducted using publicly
available data sets. Finally, section V concludes the paper and
presents a brief outlook.

II. CONNECTED COMPONENTS LABELING (CCL)

A. Algorithm Background

CCL deals with the identification of disjoint blocks of
connected pixels within a 2-dimensional m × k image I =
[p(0,0), p(0,1), . . . , p(m−1,k−1)] ∈ Mm×k(Pv ⊂ Nv), where
p(c,r) ∈ Pv , c ∈ [0,m − 1], r ∈ [0, k − 1] and v ∈ [1, 4]
depends on the color space. The input image I is first
separated into foreground and background pixels via binary
thresholding (TH), whose output is the matrix B = TH(I) =
[b(0,0), . . . , b(m−1,k−1)] ∈ Mm×k([0, 1]). After thresholding,
each pixel in every block of connected pixels is identified
with a unique value or label l(c,r) ≤ Nlbl ∈ N, where Nlbl

is the number of different CCs in an input image. Generated
labels are stored within a symbolic m×k matrix (label matrix)
L = [l(0,0), l(0,1), . . . , l(m−1,k−1)]. Classical CCL algorithms
[3]–[6] perform a raster scan of the input image I and
generate the binary matrix B (Fig. 1 (a)) on the fly. Label
l(c,r) = CCL(p(c,r)) is assigned according to the thresholded
value of the current pixel, and to a 8-connected neighbour
mask (Eq. 1), used to access already calculated predecessor
labels, as shown in Fig. 1 (c).

NB8−mask(c, r) = [l(c−1,r−1), l(c,r−1), l(c+1,r+1),

l(c−1,r)] ∈ L
(1)

Due to the local neighborhood, components may coalesce in
the process (Fig. 1(b)), making two labels equal. Note, that this
aspect leads to complications in implementation and architec-
ture design. Therefore, classical algorithms utilize temporary
data structures or tables to record equivalences between labels
(EQimage = [eq0, eq1, . . . , eqNlbl

]), which are later resolved
(Eq. 2) to produce a consistent label matrix, as seen in Fig.
1 (d). During CCL, a vector F = [f0, f1, . . . , fNlbl

] (see Sec.
III-A) of properties for each connected region (e.g. clipping
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box, area and centroid) is calculated. This facilitates sub-
sequent processing steps in the application domain (Fig. 1 (d)).
More detailed descriptions of the CCL algorithm can be found
in [3]–[6], [9].

li(ci, ri) ≡ lj(cj , rj)↔ EQimage(li) ≡ EQimage(lj) (2)

B. Parallel Image Slicing Algorithm

Originally, CCL algorithm design focused on achieving
maximum performance on existing hardware devices such as
GPPs and GPUs. To facilitate image processing on mobile
devices, both algorithmic performance and energy efficiency
are of concern. Therefore parallel algorithms, intended to be
implemented in dedicated architectures [10], [11], [13], have
been created. Of these, a popular approach is the divide-and-
conquer slicing algorithm [13] shown in Fig. 2 (a).

This algorithm horizontally partitions B into a set of
Q slices S = {Sl0, Sl1, . . . , SlQ−1}, where Sli =
[b(0,i∗k/Q), . . . , b(m−1,((i+1)∗k/Q)−1)] is a submatrix of B. Af-
ter division, CCL is used to independently label each slice. For
every slice Sli, a Label-Matrix/Equivalence-Table (LM/EQ)
pair is generated by CCL, (LMi, EQi)

CCL←−−− Sli. After
independent labeling, a merging operation is executed between
the first two adjacent pairs (LMi and LMi+1) of neigbouring
slices (Sli and Sli+1) to restore any possible label region
connections lost due to slicing. The shaded circles of Fig. 2 (a)
show the labels of the intermediate LMs used during merging.
During merging an offset is added to the Sli+1 equivalence
table (EQi+1) to avoid label collisions. EQi+1 is also updated
with newly discovered equivalences, and EQi and EQi+1 are
added to the final equivalence table (EQimage). Merging is
repeated Q-1 times, until EQimage is complete.

III. ARCHITECTURAL DESIGN

Our main design goal was to create a customized ASIP
based on the slicing approach, while supporting an average
performance of 30fps for FullHD frame sizes. However, as
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our design is targeted for integration into a Multi-Processor
embedded vision platform, we considered the following addi-
tional design constraints:
• Perform CCL over frames stored in system memory.
• Support several image pixel formats and memory align-

ments.
• Be adaptable to the operating conditions of more than

one application [1], [4], [7]–[9].
• Communicate via standard interfaces (e.g. 32bit buses)

with the rest of the platform.
• Provide flexibility to support full applications, or to be

reused by the platform as an extra-processing resource.
The ASIP is therefore constrained to execute all read and

write operations to system memory sequentially. This means
that a slicing implementation [10], [11], with Q pixels being
labeled in parallel, is not easily attainable. To overcome this,
a three step strategy was followed. First, system memory
accesses are serialized via dedicated address generation logic.
Second, thresholding, labeling and feature extraction are per-
formed concurrently by custom logic for Q pixels (p(c,r) ∈ I,
c = 0, . . . ,m − 1, r = i ∗ k/Q, . . . , (i + 1) ∗ k/Q − 1) of
each slice (Sli, i = 0, 1, . . . , Q). Finally, intermediate CCL
results for each slice (region features and equivalence tables)
are stored in dedicated local scratchpads until slice labeling is
completed, to avoid accesses to system memory. The merging
process described in Section II-B is implemented by sequential
software.

A. Processor Architecture

Our customized architecture is a collection of parameter-
izable CCL Functional Units (CCL-FUs) integrated within
the Synopsys Processor Designer RISC (PD RISC) [14].
The PD RISC is a load-store 6-stage pipeline architecture
described using the Language for Instruction Set Architectures
(LISA) [12], and provided as an example with Synopsys
tools. A total of Q = 8 CCL-FUs were instantiated into
the PD RISC, enabling us to speedup the labeling of up to
8 slices (S = {Sl0, . . . , Sl7}). The main parameters of a

CCL-FU are related to the maximum amount of supported
labels per slice (maxlbl) and to the input image size (m× k),
which dictate both the size for local memories and datapath.
Through application profiling for our target input data (video
streams from a smartphone camera), we fixed maxlbl = 512
(lblbit = 9), and a maximum frame size of 2048×2048 pixels.
Fig. 3 shows a generalized block diagram of the customized
logic of the ASIP.
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The operation of the CCL-FUs is distributed among the
execute (EX) and memory access (MEM) stages of the pipeline
(Figs. 3 and 4). Two local scratchpad memories are used within
each CCL-FU:
• Row Buffer Scratchpad (RBS): Logically banked

memory that stores the history of the generated labels
for one row of its corresponding slice (Sli). In a single
clock cycle, the labels for both the previous and current
rows must be read and written concurrently. Therefore,
the RBS is implemented as a double ported memory
with separated read and write interfaces (both data and
addressing). Each memory word stores the labels for
four different pixels, with the memory size calculated as
sizerbs = lblbit ∗ k. Its indexing is handled by the label
row addressing logic unit shown in Fig. 4.

• Features Scratchpad (FS): Each word of
this memory stores a vector with the area,
clipping box, and accumulated row and column
indexes for each discovered label region
(fi = [Ai, startrowi, endrowi, startcoli, endcoli,

∑
rowi

,
∑

coli] ∈ F , i = 1, . . . , Nlbl). The contents of this
memory are modified automatically by the features
update logic (Fig. 4) of the CCL-FU during the EX
and MEM stages of the pipeline, in a read-modify-write
fashion. It has a single read/write port. Furthermore, its
size is related to the image dimensions (m and k) and
the number of supported labels per slice (maxlbl), and
can be calculated using Eq. (3).

sizefs = (dlog2 (m ∗ k)e+ 2 ∗ dlog2 (m)e+ 2 ∗ dlog2 (k/Q)e+⌈
log2

(
m ∗

k/Q∑
j=0

j

)⌉
+

⌈
log2

(
k/Q ∗

m∑
j=0

j

)⌉
) ∗maxlbl

(3)
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The Pixel-Load Finite-State Machine (FSM) in Fig. 3 rep-
resents the aforementioned serialization of the pixel loading
from system memory. This process is triggered via a Custom
Instruction (CI) and is in charge of loading 8 pixels from data
memory and writing them into the pregn state register. The
unit receives as parameters the base address for pixel p(c,r0)
in slice (SL0), and a memory access stride pixelstride =
k ∗m/Q ∗ b ,where b = sizebytes(p(c,r)) is the pixel format
size in bytes (1-4). Using the stride, the unit is able to address
system memory to load pixels (p(c,ri), i = 0, . . . , 7) for each
slice (SLi). Read accesses to row buffer scratch memories are
also initiated by this stage, hiding their latency.

After loading, a subsequent CI has to be called in order
to activate the CCL-FU logic shown in Fig. 4. The EX stage
of CCL-FU for Sli thresholds its corresponding pixel register
(pregi = p(c,ri)), to get its binary value. A temporary value
for the pixel label is generated by the assignment logic using
the binary pixel (b(c,ri))), previous label values loaded from
RBS and the previously calculated label for p(c−1,ri), which
is stored in the lft state register (Fig. 4). The storage and
consistency of the equivalence table (EQi) are handled by
its maintenance block, which generates the final label (l(c,ri))
for the current pixel. In this stage, the read operation for the
FS memory is also triggered using l(c,ri) as the address.

During the MEM stage of the CCL-FU, the word coming
from its feature memory is split into its fields (A,

∑
row,∑

col, startrow, endrow, startcol, and endcol). Then, the
update logic calculates their new values and triggers the
corresponding FS memory write operation. During this stage,
the labels for each slice are serially written back to system
memory by the write FSM (Fig. 3). To do so, the CCL-FU
receives as input parameters the base address for label (l(c,r0))
of slice Sl0 and a label access stride labelstride = k∗m/Q∗q,
where q = sizebytes(l(c,r)). The CIs must be called for every
pixel in one slice (m ∗ k/Q times), which effectively labels
the whole image.

At this point, the equivalence tables (EQi) and the region
features (fi) for each slice are stored either inside the equiv-
alence maintenance logic or in the feature scratchpad for Sli.
These tables are first read from the custom HW blocks of the
processor via CIs, and then the merging steps described in
Section II-B are performed in SW.

(a) (b) (c) (d)

Fig. 5. (a,b) Synthetic images; (c,d) Natural images

B. Exploiting the ASIP Inherent Flexibility

ASIPs are customized according to the input data charac-
teristics of the specific application domain in mind (e.g. driver
assistance) [7]. In such a constrained architecture, it is possible
that the capacities of the customized hardware are over-
whelmed by highly unusual input data, or that the support of
a second application domain with different characteristics (i.e.
bigger frame size, more complex data, lower/higher required
frame rate) is required. For such a case, we exploit the flexibil-
ity of the ASIP approach by extending the slicing concept [13].
In our implementation, we divide the input frame into a set
of N super slices SSL = {SSL0, SSL1, . . . , SSLN−1}, each
of size size(SSLi) = m/N , and composed by 8 sub-slices
(sub(i,j), i = 0, 1, . . . , N , j = 0, 1, . . . , 7). The labeling of
each individual sub-slice is handled by customized hardware,
and a subsequent merging with Q ∗N − 1 steps is performed
in software. In the case that super slicing is needed, such
flexibility comes with an associated performance penalty due
to the extra merging steps, which will be analyzed in section
IV-C. Fig. 2 (b) illustrates the concept of super slicing.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

Regardless of the specific algorithm, CCL is strongly data
dependent, and its algorithmic performance is usually eval-
uated using extensive sets of input frames. Among these,
two main categories exist. Synthetic data sets are artificially
generated frames targeted to stress the algorithm. Natural data
sets on the other hand, are images taken with an electronic
sensor, and represent more realistic input scenarios [3]–[6].
Fig. 5 shows several examples of both types of input data.

State of the art works concerning ASIP accelerated CCL
lack a comprehensive evaluation of the achieved performance
regarding varying input data [7], [8], [10], [11]. Therefore, for
our evaluation we chose publicly available data sets that have
both synthetic (6000) images [6], and natural (5398) images
[15]–[18]. The synthetic image set consists of:

• Homothety: Set of 6 images (1024 × 1024) having a
variable number (16, 64, 256, 1024, 4096, 16384) of
square shaped foreground regions.

• Random Percolation: 1000 randomly generated images
(1024× 1024) with foreground pixel densities from 0 to
1.0.

• Morphology: 4000 images (1024 × 1024) generated
based on the previous set, with a determined 3x3 mor-



phological operator applied (opening, closing, erosion,
dilation).

• Closing 1920: Extra image set composed with 1000
random percolation images (1920 × 1080) after the 3x3
closing operator has been applied.

All the images have been input to a Cycle Accurate (CA)
simulator of our processor, and the performance in terms of
spent processor cycles-per-pixel (cpp) has been obtained. It
should be noted that all our simulation results include the time
spent within the computation of label region features, and that
the obtained cpp would decrease if they are neither read from
FS memories nor subjected to merging. Furthermore, based
on simulation results we have chosen a subset of the images
that exhibit the worst/average/best behavior. This set has been
input to a pure SW implementation of the algorithm both
running on the base PD RISC [14] and on a Texas Instruments
TMS320C64x+ DSP, and a performance comparison has been
made.

B. Implementation Results

All CCL-oriented architectural customizations were im-
plemented using LISA [12], and were added to the base
Instruction Set Architecture (ISA) for the PD RISC processor.
As a result we added 8 new instructions to the base ISA,
together with the custom logic depicted in Figs. 3 and 4.
HDL code for the architecture was generated using Synop-
sys Processor Designer. Moreover, post-synthesis models for
all local scratchpad memories were generated for a 65nm
CMOS standard library. According to our design parameters
(9 bits/slice, 2048 × 2048 bits/frame, 8 slices), the total
size for RBS memories is 18kB and for FS memories is
62kB. Synthesis was performed using worst case conditions
for the chosen 65nm CMOS library, and area results are
shown in Tab. I. Our ASIP is able to achieve a maximum
clock frequency of 350MHz@65nm, with an overall area of
2.1mm2. As shown in Tab. I, only 2.7% of the total area is
used by the original PD RISC, 50.5% by the local memories
and the remaining 40.9% by the custom CCL logic. Although
a complete energy consumption evaluation is relevant, only an
initial estimate of the power consumption for the synthesized
VHDL description of our ASIP has been obtained. Through
it we obtained an estimated power consumption of 228mW,
which gives us a clear idea of the achievable energy benefits
when using the proposed implementation.

C. Performance Evaluation

We chose cycles-per-pixel (cpp) as the performance mea-
surement metric given that it represents the suitability of an
architecture (GPP, GPU, ASIC or ASIP) for a certain CCL
implementation, while being independent of the architecture
clock frequency. Given the cpp achieved by an architecture
with frequency archf , its achievable frames-per-second (fps)
rate for a determined frame size (m × k) can be calculated
as fpsarch = archf/(m ∗ k ∗ cpp). Tab. II shows the
obtained simulation results. In the table we show the achieved
minimum, average and maximum cpp for each test set. We also

TABLE I
SYNTHESIS RESULTS @ 65nm CMOS

Logic Component Pipeline
Stage

Instance
Qty

Area
(µm2)

Total
(µm2) %

PD RISC Base ISA All 1 50,364 50,364 2.7
Pixel load FSM EX 1 1,653 1,653 0.09

Label write FSM MEM 1 490 490 0.03
Threshold & Labeling EX 8 9,464 75,711 4.0

Equivalence table
maintenance EX 8 96,236 769,890 40.9

FS update MEM 8 2,135 17,080 0.9
RBS addressing EX/MEM 8 1,765 14,120 0.8
FS addressing MEM 8 115 920 0.05
RBS Memory NA 8 58,000 464,000 24.6
FS Memory NA 8 61,000 488,000 25.9

Total Area (µm2) 1,882,228
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calculated the standard deviation, which shows how sensitive
the architecture is to changes in image complexity. We can see
from the table that for all test sets we achieved the target fps
in the best and average cases. In the worst case, we get from
26fps to 5fps, depending on the input image.

The aforementioned reduction in performance particularly
appears in images that must be heavily super sliced (32 SSLs)
due to a high appearance rate of label regions, or in images
in which many regions have to be merged. The overhead
of performing merging in a pure SW implementation can
be seen in Fig. 6, which shows the obtained cpp for two
of the synthetic data sets. The discontinuties shown in each
plot correspond to the increase or decrease of the number
of super slices. By examining Fig. 6, it becomes clear that
the architecture benefits from wide input images, as data
parallelism was exploited column-wise.

As expected, our ASIP outperforms the base PD RISC by a
factor that ranges between 5 and 359. Furthermore, we are be-
tween 6x and 38x more time efficient than the TMS320C64x+
DSP when executing CCL. Note that for images close to
those we intend to process with the ASIP (Flickr data set),
we get an average speedup of 33x for the PD RISC and
of 11x for the TI DSP. Tab. III shows the obtained cpp for
each one of the evaluated architectures. Finally, to prove the
flexibility of the processor, we developed a complete Planar-



TABLE II
OBTAINED cycles-per-pixel (cpp) FOR THE CHOSEN INPUT DATA SETS

Data Set Size # Images min avg max std. deviation(cpp)
lbl cpp lbl cpp lbl cpp

Homothety (paving) [6] 1024x1024 6 16 3.14 3,640 4.10 16,384 7.5 1.72
Random Percolation [6] 1024x1024 1,000 1 3.32 23,231 16.39 78,609 28.95 10.36
Percolation Closing 3 [6] 1024x1024 1,000 1 3.11 3,234 4.99 11,963 9.37 2.19
Percolation Closing 3 (1920) 1920x1080 1,000 1 3.09 3,460 4.53 12,710 8.42 1.71
Percolation Opening 3 [6] 1024x1024 1,000 1 3.31 3,381 5.04 30,363 13.47 2.8
Percolation Dilation 3 [6] 1024x1024 1,000 1 3.11 6,591 5.58 22,385 13.41 2.84
Percolation Erosion 3 [6] 1024x1024 1,000 1 3.31 877 4.38 14,156 9.81 1.79
Finger [17] 448x478 80 52 3.61 549 4.68 1,855 6.49 0.61
Medical [18] 2048x2048 248 387 3.21 1,007 3.52 2,976 4.58 0.27
Textures [15] 1024x1024 64 2 3.12 2,578 5.41 14,336 15.59 2.08
Flickr [16] 512x512 5,000 1 3.30 299.92 4.32 4,019 12.29 0.66

Marker detection augmented reality application using the
OpenCV and ARToolKitPlus C++ image processing libraries.
The CCL routines inside ARToolKitPlus were modified to use
our custom instructions, the SW libraries were compiled using
an LLVM-based C++ compiler provided by Synopsys and the
generated binary was simulated. For the application, we were
able to achieve an average of 54fps for 320x240 frames and
up to 24fps for 640x480 frames.

TABLE III
COMPARISON OF THE OBTAINED cpp FOR THE PD RISC-BASE, THE

TMS320C64X+ AND THE PROPOSED ASIP

Ours
PD RISC

Base
(cpp)

Gain TMS320C64x
(cpp) Gain

Homothety
min 3.14 22.0 7.01 39.76 12.66
avg 4.11 26.28 6.39 42.70 10.38
max 7.54 40.88 5.42 50.60 6.71

Random
Percolation

min 3.31 17.16 5.18 25.59 7.73
avg 16.39 3,524 215 394.42 24.06
max 28.9 10,384 359 1,107.53 38.32

Finger
min 3.61 21.8 6.04 35.81 9.2
avg 5.03 84.07 16.71 53.79 10.69
max 6.49 167.48 25.8 64.87 10.0

Textures
min 3.12 19.75 6.33 30.86 9.89
avg 7.5 493.69 65.82 106.12 14.15
max 15.59 2,219.36 142.35 303.20 19.45

Flickr
min 3.3 22.38 6.78 33.71 10.21
avg 6.49 215.3 33.17 75.25 11.60
max 12.29 1,080.14 87.88 158.56 12.9

V. CONCLUSIONS

In this work we applied the ASIP paradigm to the design of
an architecture tailored for the efficient labeling of connected
components, widely used in computer vision applications. The
proposed architecture/algorithm pair is able to achieve up
to 45/30/5 frames-per-second in the best/average/worst case,
when labeling FullHD images. The ASIP was synthesized for
a 65nm standard CMOS library, occupying an area of 2.1mm2

with a frequency of up to 350MHz. The flexibility of the ASIP
enabled us to efficiently support complex images within a
constrained processor architecture, and to implement an entire
augmented reality application within the ASIP. For our future
work we will focus on further optimization of the processor
architecture to achieve higher performance and on the power
consumption evaluation of the architecture, to fully determine
its suitability for integration into consumer devices.
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