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Abstract—Real-time encoding of video streams is computationally in-
tensive and rarely carried out at high resolutions. In this paper, for the
first time, we propose a platform for H.264 encoder which is both flexible
(allows software upgrades) and scalable (supports multiple resolutions),
and supports high video quality (by using both intraprediction and inter-
prediction) and high throughput (by exploiting slice-level and pixel-level
parallelisms). Our platform uses multiple Application Specific Instruction
set Processors (ASIPs) with local and shared memories, and hardware
accelerators (in the form of custom instructions). Our platform can be
configured to use a particular number of ASIPs (slices per video frame)
for a specific video resolution at design-time. The MPSoC architecture is
automatically generated by our platform and the H.264 software does not
need any modification, which enables quick design space exploration. We
implemented the proposed platform in a commercial design environment,
and illustrated its utility by creating systems with up to 170 ASIPs
supporting resolutions up to HD1080. We further show how power gating
can be used in our platform to save energy consumption.

I. INTRODUCTION
Recent years have seen a radical increase in the use of multimedia

devices, especially video related devices such as high-end interactive
displays, gaming consoles, video conferencing, High Definition (HD)
TVs, etc. A major component of such video devices is a video encoding
and decoding (codec) engine. H.264/Advanced Video Coding (AVC) [1]
is one of the most commonly used codecs because it provides good
video quality at substantially lower bit rates compared to previous
standards such as H.263, MPEG-2 or MPEG-4, as well as flexibility
in trading-off computational complexity with video quality [2]. Users
of video devices expect better video quality at higher resolutions (such
as HD720 and HD1080) and support for multiple resolutions in just
a single device for ease of use and minimal cost. Additionally, they
expect to have quick software fixes and upgrades rather than buying a
new device every few months. Therefore, a flexible (support for software
upgrades), scalable (support for multiple resolutions) H.264 video codec
that can deliver high video quality and throughput in real-time even
at higher resolutions needs to be designed with short time-to-market,
which is a challenging task.

Motivational Example. An H.264 encoder consists of several sub-
kernels such as Intra Prediction (IP); Motion Estimation(ME) and
Motion Compensation (MC); (Inverse) Discrete Cosine Transform
((I)DCT); Quantization (QUANT); DeQuantization (DQUANT); De-
blocking Filter (DF); and, Entropy Coding (EC). The frames of the
incoming video are processed by these sub-kernels one after the other.
For each MacroBlock (MB) of the current frame, the H.264 encoder
starts with either MB prediction from current frame if intraprediction
is to be used or motion estimation from reference frame(s) if inter-
prediction is to be used [1]. Motion estimation is considered the most
computationally intensive sub-kernel [3] because it searches for the best
possible matching MB in reference frame(s) using Sum of Absolute
Differences (SAD). Motion estimation can either be performed using
the pixels of the reference MB (integer-pel) or using interpolated pixels
(such as half, quarter, etc.) of the reference MB (fractional-pel) [1].
Previous research has shown that fractional-pel motion estimation
results in better video quality and lower bit rates (up to 50% [4]).
However, such an improvement comes at the cost of extra computational
complexity.

Figure 1 reports the time taken to process a frame when intrapredic-
tion, integer-pel motion estimation and fractional-pel motion estimation
are performed on the same frame. Additionally, Figure 1 reports the
processing time of a frame for four different resolutions: CIF, 4CIF,
HD720 and HD1080. In these experiments, same search window is used

Fig. 1. Execution time of different prediction modes for different resolutions
in H.264 kernel.

across intraprediction and motion estimation, and across all resolutions.
Additionally, the H.264 encoder is implemented on a 16 processor
MultiProcessor System-on-Chip (MPSoC; details can be found in
Section III-B). It is evident that use of fractional-pel motion estimation
increases the computational complexity manifold (up to 1.8 times).
Furthermore, the increase in computational complexity is more severe
at higher resolutions. This example shows that a naive implementation
of H.264 encoder will not suffice the goals of high video quality and
throughput in real-time as well as flexibility and scalability.

Previous research has used several adhoc methodologies to cope with
(a subset of) the challenges of a flexible, scalable, high video quality and
throughput H.264 encoder. For example, the authors of [5] implemented
an H.264 encoder for QCIF resolution only, while the authors of [2]
implemented H.264 encoder for HD1080 resolution at 30 fps without
the support for intraprediction and interprediction. [6] implemented
H.264 encoder on a 64 processor MPSoC for HD1080 resolution at
30 fps with intraprediction only. The work in [7] also implemented an
H.264 encoder with intraprediction only, but for multiple resolutions
from QCIF to HD1080. Iwata et al. [8] implemented an H.264 encoder
with fractional-pel motion estimation for HD1080 resolution at 30 fps.
Both [7], [8] proposed Application Specific Integrated Circuits (ASICs),
which are inflexible and require high redesign effort. The above works
either lack one or more of the aforementioned goals of flexibility
(support for software upgrades) and scalability (support for multiple
resolutions) without little or no redesign effort, and high video quality
(fractional-pel motion estimation) and throughput in real-time.

To address the above challenges, in this paper, we propose a
hardware-software codesign platform where slice-level and pixel-
level parallelisms at the application-level are uniquely combined with
multiple Application Specific Instruction set Processors (ASIPs) and
hardware accelerators (in the form of custom instructions) at the
architecture-level. Our key contributions are:

• We combine slice-level and pixel-level parallelisms in a unique
manner to seamlessly scale across multiple resolutions.

• At architecture-level, we use an MPSoC consisting of multiple
ASIPs with hardware accelerators (in the form of custom instruc-
tions). The ASIPs process slices in parallel using their hardware
accelerators, simultaneously benefiting from both slice-level and
pixel-level parallelisms for high throughput. The flexibility comes
from the use of ASIPs which are programmable.

• To maximally reduce redesign effort, our platform automatically
generates the MPSoC architecture while the H.264 kernel code
does not need any modification when the number of ASIPs (slices)
and video resolution is changed. This enables quick design space
exploration for optimization.978-3-9815370-2-4/DATE14/ c⃝2014 EDAA



II. RELATED WORK
There is a large body of work on implementation of complete or

a part of H.264 encoder. The following paragraphs report the most
relevant complete implementations, focusing on slice-level parallelism
(for high throughput and scalability), pixel-level parallelism (for high
throughput), intraprediction and interprediction (for video quality), and
ASIC or MPSoC implementation (for flexibility and scalability).

Iwata et al. [8] proposed an ASIC with a dual MB pipeline to process
two rows of a frame at the same time, exploiting a form of slice-level
parallelism. They also implemented fractional-pel motion estimation
for better video quality and targeted HD1080 resolution at 30 fps,
without the support for multiple resolutions. Li et al. [7] proposed
an ASIC for HD1080 resolution, 30 fps and multiple resolutions but
without interprediction, and thus compromising on video quality. The
authors of [9] proposed an ASIC to support multiple resolutions with
both intraprediction and interprediction, but without any form of slice-
level parallelism. In general, ASICs guarantee real-time throughput with
low power consumption; however, they are inflexible, and require high
(re)design efforts.

Unlike ASICs, MPSoCs provide a flexible (programable) imple-
mentation platform and have been used in [2], [6], [10], [11] for
implementation of H.264 encoder. The authors of [12] did not use any
prediction, while the authors of [6] used only intraprediction, and thus
compromising on video quality. The authors of [10], [11] exploited
task-level parallelism (where sub-kernels of H.264 encoder are executed
on separate processors) rather than slice-level parallelism as in our
work. Since slices are processed independently of each other, slice-
level parallelism inherently enables scalability in the MPSoC as the
number of processors can be changed without major redesign effort
(see Section III-B).

ASIPs have recently emerged as a viable implementation platform for
video applications due to their programmable nature and capability of
adding hardware accelerators (in the form of custom instructions) [13].
The works in [14], [5], [15] used a single ASIP, while the work in [16]
used multiple ASIPs to implement just the motion estimation sub-kernel
rather than the complete H.264 encoder. To the best of our knowledge,
we are the first to propose an MPSoC architecture with multiple ASIPs
and hardware accelerators, augmented with slice-level and pixel-level
parallelisms as a flexible, scalable implementation platform for H.264
with support for multiple resolutions.

III. HARDWARE-SOFTWARE CODESIGN
PLATFORM FOR H.264 ENCODER

There are several factors that need to be considered for flexible and
scalable implementation of an H.264 encoder with minimal redesign
effort. For example, one should use the kind of parallelism that will
require little or no software modifications when resolution increases
from CIF to HD1080. Likewise, if the number of processors are changed
to support higher resolutions or better motion estimation (fractional-
pel), then the changes in the architecture should be minimal. We propose
a hardware-software codesign platform where slice-level and pixel-level
parallelisms at the application-level are combined with multiple ASIPs
and hardware accelerators (in the form of custom instructions) at the
architecture-level.

A. H.264 Encoder
Figure 2(a) shows the typical structure of an H.264 encoder, where

the incoming stream is encoded by its sub-kernels. The first sub-kernel
is either IP or ME and MC depending upon whether intraprediction or
interprediction is used for the current frame. Afterwards, the residual
data is computed and forwarded to DCT and QUANT sub-kernels for
transformation and quantization, followed by entropy coding. From
DCT sub-kernel, another path is used to reconstruct the reference
frames. The reconstruction path consists of inverse quantization and
transformation which are performed at the DQUANT and IDCT sub-
kernels respectively. Finally, the DF sub-kernel smooths the MBs of
the reference frame. The traditional parallelization approaches execute
the sub-kernels of the H.264 encoder on different processors to exploit
task- and pipeline-level parallelism [10], [11]. Unlike those approaches,
as shown in Figure 2(b), we arrange the H.264 encoder in three stages
where the H.264 encoder is considered a single kernel (rather than

multiple sub-kernels) in the second stage. The first stage is responsible
for providing input video stream to the second stage, while the third
stage reads the output of the second stage to produce the final bit stream.

Our proposed arrangement of H.264 encoder benefits from the
following: (1) The MBs of the current frame can be processed in parallel
inside the H.264 kernel except for the EC sub-kernel. Therefore, the
current frame can be partitioned into several slices where each slice
contains a consecutive number of MBs in raster scan order which is
beneficial for MB prediction [1]. These slices can then be processed
in parallel by multiple instances of the H.264 kernel, exploiting slice-
level parallelism. For example, the IN stage in Figure 2(b) reads a
frame, partitions it into N slices and allocates those slices to N H.264
kernels (executed on N separate ASIPs, details in Section III-B) in the
second stage. Each H.264 encoder processes the MBs in its allocated
slice in a sequential manner and outputs the (partial) bit stream of the
encoded slice. Finally, the OUT stage reads the (partial) bit streams of
all the N slices and combines them to generate the final bit stream for
the current frame. The scalability of our approach comes from the fact
that the whole frame or each MB itself could be considered a slice,
with no theoretical limits on the granularity of the slice. Additionally,
the number of slices and hence the number of times H.264 kernel is to
be duplicated (N ) can be selected by the designer depending on his/her
resolution and throughput goal such as HD1080 at 30 fps. (2) The
redesign and verification efforts are very high for an H.264 kernel whose
sub-kernels are executed on separate processor, and multiple resolutions,
execution modes and algorithmic updates have to be supported. Since
we treat H.264 kernel as a single kernel and duplicate it, it can be
independently modified and tested which will reduce the redesign and
verification efforts leading to better flexibility and scalability of our
approach.

B. MPSoC Architecture

To achieve high throughput in real-time along with flexibility and
scalability, we use an MPSoC architecture with ASIPs, local caches and
memories, and shared memory as shown in Figure 3. The MPSoC has
one ASIP each for IN and OUT stages, and N ASIPs for N instances
of H.264 kernel. Each ASIP is equipped with hardware accelerators
in the form of custom instructions (explained in Section III-D), and
has private L1 instruction and data caches (IC and DC), connected to
a local memory. In addition, all the ASIPs are connected to a shared
memory which bypasses their local memory hierarchy. The instructions
and local data are kept in the local memory of an ASIP, while the
shared data is kept in shared memory. The shared memory is partitioned
into three predefined regions: (1) for current frame, (2) for reference,
reconstructed and sub-pixel (half, quarter, etc.) interpolated frames,
marked as “Reference Frames”, and (3) for (partial) bit streams of the
slices of current frame marked as “STREAM”. The IN stage writes the
current frame to shared memory, while the OUT stages reads (partial)
bit streams of the slices of the current frame from the shared memory.

Fig. 2. Our proposed arrangement of H.264 encoder.



Fig. 3. Our MPSoC architecture for H.264 encoder.

During processing of one frame, each H.264 ASIP reads an MB from
the slice of the current frame allocated to it into its local memory. If
intraprediction is used, then the MB is processed locally by storing
residual MB and quantized MB in its local memory to avoid relatively
higher latency of shared memory. Additionally, the local memory
hierarchy benefits from hits in private L1 data cache. If interprediction
is used, then the reference MBs within the search window are read
from shared memory without storing them locally. This is because the
amount of data in reference MBs grows significantly when larger search
windows and fractional-pel motion estimation is used. Additionally,
search windows of different MBs overlap [16] and storage of reference
MBs in local memories means that the overlapping parts are redundantly
stored at multiple locations, increasing the size of local memories.
Therefore, during interprediction, reference MBs are directly read from
shared memory, while residual MB and quantized MB are stored locally.
In both intraprediction and interprediction, the reconstructed MB is
directly stored in shared memory for deblocking filter to produce and
store sub-pixel interpolated frame in shared memory. Each ASIP also
encodes all the residual MBs of its slice, creates a packet of the (partial)
bit stream of the slice and writes it to the shared memory. Note that this
distribution of data among local and shared memories does not affect
scalability of our approach as the ASIPs can automatically calculate the
addresses of the shared memory regions that belong to them (explained
in Section III-C).

C. Software Details

Algorithm 1 demonstrates the pseudo code of our H.264 kernel
which is executed on each of the H.264 ASIPs. While conforming
to the H.264 standard, we modified and optimized the structure of
the kernel for seamless scalability across multiple resolutions. The
input arguments include a configuration file and index of the H.264
ASIP. The configuration file provides the video resolution and the total
number of H.264 ASIPs, in addition to H.264 encoding parameters.
An example of the configuration file for HD1080 resolution and 36
H.264 ASIPs is shown in Table I. This information is used in line 1
to automatically allocate the slice of the current frame and (partial)
bit stream region in shared memory to the ASIP on which the H.264
kernel is executing (explained later in Algorithm 2), and to compute
the encoding parameters.

The main loop (lines 2 – 16) of the H.264 kernel processes one frame
at a time. At the start, the H.264 kernel waits for the ready signal (line
3) which is set after writing of the current frame by the IN stage. Once
the current frame is available, the H.264 kernel processes the MBs in
its slice one by one until entropy coding is needed (lines 4 – 12). Once
the whole slice has been encoded, it is copied to the corresponding
location in the “STREAM” region of shared memory (line 13). This
marks the end of the slice processing, and thus the H.264 ASIP signals
OUT stage about the availability of its (partial) bit stream and waits
for a response (line 14). The OUT stage waits for all the H.264 ASIPs
to finish processing of their slices, and then signals those ASIPs to
continue their execution. This two way signaling mechanism acts as
a synchronization barrier between the H.264 ASIPs to ensure that all

Algorithm 1: Pseudo code of our H.264 kernel
Input: configuration file

ip: index of the H.264 ASIP
1 Read configuration file;

Allocate slice based upon ip and resolution;
Compute encoding parameters;

2 for all frames do
3 Wait for signal from IN stage;
4 for all MBs in the slice do
5 Initialize MB;
6 if Intra MB then
7 Perform Luma (Y) intraprediction;

Compute residual MB of Y;
Perform DCT, QUANT, DQUANT and IDCT;
Compute reconstructed MB of Y;

8 Perform Chroma (U, V) intraprediction;
Compute residual MB of U and V;
Perform DCT, QUANT, DQUANT and IDCT;
Compute reconstructed MB of U and V;

9 else
10 Perform Y integer-pel ME and fractional-pel ME;

Compute residual MB of Y using motion vector;
Perform DCT, QUANT, DQUANT and IDCT;
Compute reconstructed MB of Y;

11 Compute residual MB of U and V using motion vector;
Perform DCT, QUANT, DQUANT and IDCT;
Compute reconstructed MB of U and V;

12 Perform entropy encoding of residual MB;

13 Copy encoded slice from local memory to shared memory;

14 Signal OUT stage to read (partial) bit stream of slice AND
wait for signal from OUT stage;
Signal IN stage;

15 for all MBs in the slice do
16 Perform Y sub-pixel interpolation on reconstructed MB;

the slices of the current frame are processed before the ASIPs continue
further. Therefore, after receiving response from the OUT stage, the
H.264 ASIP signals IN stage to write the next frame from the input
video. While IN stage writes the new frame, all H.264 ASIPs perform
sub-pixel (half, quarter, etc.) interpolation on the reconstructed frame for
fractional-pel motion estimation. This marks the end of the processing
of the current frame, and the H.264 kernel is repeated. The signaling
mechanism between the ASIPs is implemented using status flags in
shared memory.

In order to correctly read the slice from and write the (partial) bit
stream to the shared memory, an H.264 ASIP needs to determine the
number of MBs in its slice (sliceSize) and the offset of its slice
(sliceStart in terms of number of MBs) in the current frame. This
depends on the index of the H.264 ASIP, the total number of H.264
ASIPs and the video resolution. Algorithm 2 computes such information
automatically. At first (lines 1 – 2), the average number of MBs per slice
and the number of trailing MBs are calculated. If there are no trailing
MBs, then the slices are of equal size (lines 3 – 5). Otherwise, each
H.264 ASIP is allocated a trailing MB starting from ASIP 0 until the
trailing MBs are exhausted (lines 7 – 12). Since the number of trailing
MBs cannot exceed the number of H.264 ASIPs (due to the remainder
operation at line 2), such a distribution ensures a maximum difference
of 1 MB across all the slices, keeping the workload of H.264 ASIPs
relatively balanced in the number of MBs. Once each ASIP calculates
its sliceSize and sliceStart, it can access the corresponding regions of
the shared memory using the start address of the current frame (which is



Fig. 4. Hardware accelerators (custom instructions) used in our experiments.

Algorithm 2: Slice Allocation
Input: N : total number of H.264 ASIPs

NMB : total number of MBs in a frame
streamSize: the maximum size of slice bit stream
ip: index of the H.264 ASIP

1 q = ⌊NMB
N

⌋;
2 r = NMB%N ;
3 if r == 0 then
4 sliceSize = q;
5 sliceStart = ip× q;
6 else
7 if ip < r then
8 sliceSize = q + 1;
9 sliceStart = ip× q;

10 else
11 sliceSize = q;
12 sliceStart = (q + 1)× r + (ip− r)× q;
13 streamStart = ip× streamSize

known a priori). The offset of slice bit stream in the “STREAM” region
of the shared memory is calculated in line 13 where the maximum size
of slice bit stream (streamSize) is provided in the configuration file.
For reference frame(s), reconstructed frame and sub-pixel interpolated
frame, a method similar to allocation of slice from current frame is
adopted.

Frame Width (W) 1,920
Frame Height (H) 1,080
Number of IN ASIPs 1
Number of H.264 ASIPs 36
Number of OUT ASIPs 1

TABLE I
AN EXAMPLE OF A CONFIGURATION FILE.

The allocation of slices and bit stream regions is simple and easy
to implement. More importantly, it is scalable because the algorithm is
parameterized to use values of parameters from the configuration file.
Thus, our H.264 encoder is scalable across different video resolutions,
MB size, search window, number of H.264 ASIPs, etc. For example,
scaling an implementation with 32 H.264 ASIPs to 64 H.264 ASIPs
does not require any modifications to software – only the configuration
file needs to be updated. Moreover, we automatically generate the MP-
SoC architecture described in Section III-B from the configuration file,
which further minimizes the redesign effort and makes our approach
more scalable.

D. Hardware Accelerators

In addition to slice-level parallelism, a huge amount of pixel-level
parallelism is available in an H.264 kernel. Many fundamental oper-
ations such as Sum of Absolute Differences (SAD), Discrete Cosine
Transform (DCT), etc. allow parallel processing of all (or a subset)
of the pixels in an MB. Since these operations are frequently executed,
their accelerated implementations can significantly improve throughput.
Figure 5 reports the distribution of time spent in different sub-kernels of
an H.264 kernel when an MB is either intrapredicted or interpredicted.
It is evident that EC, IP and DCT are the most computationally intensive
sub-kernels for an intrapredicted MB, while ME, EC, IDCT and DCT
are the most intensive sub-kernels for interpredicted MB. Based on this
observation, we opted to implement hardware accelerators (in the form
of custom instructions for H.264 ASIPs) for SAD operation (used in
both IP and ME), residual MB operation (used in DCT), DCT operation,
and IDCT operation. We did not consider hardware accelerator for EC
because the encoding process has a lot of data dependencies with little
pixel-level parallelism. Note that this does not limit the scalability of
our approach as a designer can implement any hardware accelerator or
choose from a set of different hardware accelerators based upon the
available hardware budget. The following is an example of hardware
accelerators used in our experiments.

SAD accelerator. The accelerator for SAD operation is shown in
Figures 4(a) where the inputs are current MB and reference MB. The
reference pixels, R0 to Rn−1, are subtracted from the corresponding
current pixels, C0 to Cn−1. After that, an absolute operation is applied
on all the differences, followed by their addition to compute SAD. The
number of pixels to be processed in parallel, n, can be either 8 or 64
(for U and V) and 16 or 256 (for Y). We used n = 8 for U and V, and
n = 16 for Y, which corresponds to processing of one MB row in the
accelerator.

Residual data accelerator. Figure 4(b) shows the hardware acceler-
ator to compute the residual MB. In this operation, each pixel of the
predicted MB, P0 to Pn−1, is subtracted from the corresponding pixel
of the current MB, C0 to Cn−1, to compute the residual values, D0

to Dn−1. Like SAD accelerator, we implemented n = 8 for U and V,
n = 16 for Y.

Fig. 5. Distribution of workload among H.264 sub-kernels.



Fig. 6. Throughput and energy consumption vs. number of ASIPs for different resolutions.

DCT accelerator. The fundamental DCT operation is performed on
a 4×4 block where DCT is first computed horizontally (on rows) and
then vertically (on columns). Figure 4(c) illustrates typical butterfly
structure of a DCT where the input is marked D00 to D33 while the
output is marked OUT00 to OUT33. t0 to t3 are intermediate values
and H00 to H33 is the result of the horizontal transform. The parameter
m equals 2 and 1 when DCT on Alternative Current (AC) and Direct
Current (DC) is computed, respectively.

IDCT accelerator. Figure 4(d) illustrates the operation of IDCT on
4×4 block for DC coefficients. The input data is similar to the DCT
operation; however, the butterfly structure is different.

IV. EXPERIMENTS AND RESULTS

Experimental Setup. We implemented the proposed hardware-
software codesign platform for H.264 encoder in a commercial design
environment from Tensilica [17]. We used Xtensa LX4.0 family of
processors along with the RD-2012.5 tool suite which contains XTensa
Modeling Protocol (XTMP), Instruction Set Simulator (ISS), Xtensa
energy estimator (Xenergy), Xtensa C and C++ compiler (XCC) and
Tensilica Instruction Extension (TIE) compiler. XTMP is an API and
run-time environment for rapid creation of multiprocessor systems with
local and shared memories. XTMP uses ISS and Xenergy to cycle-
accurately simulate a multiprocessor system to provide its performance
and energy consumption. XCC is used to compile C and C++ programs
for Xtensa processors, which can also recognize custom instructions (for
hardware accelerators) written in TIE language. The custom instructions
are compiled through TIE compiler and then XCC automatically uses
those instructions without the need for modifying the C/C++ code.

The ASIP used in our implementation was configured for a 5-
stage pipeline, 128-bit Processor Interface (PIF), 128-KB 4-way set
associative instruction and data caches, and 16 MegaBytes of local
memory. The area of the ASIP including the hardware accelerators
(described in Section III-D) is 205K gates. Additionally, 96 MegaBytes
of shared memory was used in the MPSoC. Our MPSoC was executed
at a frequency of 1 GHz and configured for a 45nm technology for
computation of energy consumption. We used the following video se-
quences and resolutions: CIF foreman, 4CIF harbour, HD720p parkrun,
and HD1080p bluesky, pedestrian, riverbed and sunflower for rigorous
evaluation of our proposed platform.

We used the H.264 reference software [18] as the H.264 kernel in
our platform. The H.264 reference software was modified to exploit
slice-level parallelism and pixel-level parallelism (through the use of
custom instructions). UMHexagon [3] is used as the motion estimation
algorithm.

Design Space Exploration. It took 6 man-months to design and
implement the proposed hardware-software codesign platform. After-
wards, the configuration file is set with different parameter values to
realize different systems within a few minutes without the need for a
major redesign effort. Therefore, our platform inherently allows quick
design space exploration for its optimization. Here, we illustrate design
exploration for two modes of H.264 (intraprediction and iterprediction
of frames), number of H.264 ASIPs and four different resolutions (CIF,
4CIF, HD720 and HD1080). Note that a designer can also explore other
parameters such as motion estimation algorithms, cache configurations,
hardware accelerators, etc. with our platform.

Figure 6(a)(b) plots the throughput on y-axis (in fps) against the
number of H.264 ASIPs (from 16 to 170) for different video sequences
and resolutions. The left and right graphs report the throughput for

intraprediction and interprediction respectively. The throughput gener-
ally increases with an increase in the number of H.264 ASIPs. More
importantly, a designer can select the number of H.264 ASIPs based
upon his/her requirement. For example, if an H.264 encoder supporting
30 fps up to HD720 resolution with only intraprediction is required,
then 70 ASIP MPSOC should be deployed in the MPSoC. Likewise, if
an H.264 encoder supporting 30 fps up to HD1080 resolution with both
intraprediction and interprediction is required, then 170 ASIPs should
be used. A similar procedure can be adopted for energy consumption
which is reported in Figure 6(c)(d) where the energy consumption is
reported on y-axis in Joules and the number of H.264 ASIPs on x-axis.
For the aforementioned parameters, we also explored throughput against
energy consumption and area footprint, but omitted those results due
to limited space.

The scalability of our platform comes from the exploitation of slice-
level parallelism which scales well with an increase in the resolution.
However, encoding slices of a frame independently results in higher bit
rates compared to encoding of the whole frame (that is, one slice) [1].
Therefore, we performed exploration on the size of final bit stream
against the number of slices per frame. Figure 7 plots the bit stream
size on the y-axis normalized to the bit stream size from the 16 H.264
ASIP MPSoC against the number of slices per frame on the x-axis.
The size of the bit stream increases by a maximum of 23% from 16 to
170 slices per frame, which is the cost of scalability of our platform.
A designer can select the MPSoC which conforms to his/her budget of
increase in bit rate.

Finally, we present the power consumption of our platform in
Figure 8. As expected, the power consumption increases with an
increase in the number of H.264 ASIPs, up to 24 Watts for 170
ASIPs. Note that we tradeoff power consumption with flexibility and
scalability unlike ASICs where flexibility is compromised for low power
consumption. Furthermore, high quality and throughput (fractional-pel

Fig. 7. Size of bit stream vs. number of ASIPs for different resolutions.

Fig. 8. Power consumption vs. number of ASIPs for different resolutions.



motion estimation, HD1080, 30 fps) is required in high-end devices
such as JVC or SONY professional media camcorders which are
fueled by power supplies rather than batteries. Also, other non-ASIC
implementations of H.264 encoder for high-end devices [19] report
similar power consumption.

It is evident from the above results that our proposed hardware-
software codesign platform serves as a flexible, scalable implementation
platform for H.264 encoder where high video quality and throughput
in real-time is possible. Additionally, it allows quick design space
exploration for several optimizations.

Energy Optimization. In this subsection, we illustrate how our
platform can be extended to use power-gating for energy minimization.
An H.264 ASIP waits for other ASIPs to finish their corresponding
slices before continuing to the next frame, as illustrated in line 14 of
Algorithm 1. This idleness of the ASIP can be exploited to reduce
energy consumption. We implement a simple power gating mechanism
where the OUT stage deactivates an H.264 ASIP once it finishes writing
of its (partial) bit stream, and reactivates it when all the ASIPs have
processed the slices of the current frame. Figure 9 reports the reduction
in energy consumption of the MPSoC, where an energy overhead of
250 nJ for power gating is used [20]. For a given resolution, the
energy saving improves with an increase in ASIPs because more ASIPs
will remain idle in the MPSoC. However, the improvement is small
especially for higher resolutions which means that the idle periods are
short and the ASIPs are almost fully utilized. For example, the energy
saving improves from 1.3% to 3.8% only for riverbed HD1080 video
sequence when ASIPs increase from 16 to 170, signifying the fact that
the idle periods are very short. This case study shows that our platform
is flexible enough to allow further research and development.

Discussion. The experiments above illustrate that our platform is
flexible and scalable, and can serve as a development and exploration
platform. Theoretically, it can be extended to even higher resolutions
such as Ultra High Definition (UHD), and Scalable Video Coding
(SVC). However, in our experiments, we observed a limit on the
scalability of our platform. In Figure 6(a)(b), the improvement in
throughput from 128 to 170 H.264 ASIPs reduces especially when
interprediction is used. Figure 10 reports the improvement in throughput
when the MPSoC’s shared memory latency is changed from 25 clock
cycles to 1 clock cycle, essentially treating the shared memory as
a shared cache. In general, the improvement in throughput reduces
with an increase in the number of ASIPs. This means that if the
number of ASIPs is small, then the bottleneck is in actual read/write
operation of the shared memory. However, as the number of ASIPs
increases, the bottleneck shifts to the contention in gaining access to

Fig. 9. Energy savings from application of power-gating.

Fig. 10. Throughput improvement when shared memory access latency is
reduced from 25 clock cycles to 1 clock cycle.

the shared memory rather than the actual read/write operation. From this
observation, we conclude that multi-banked cache and shared memory
should be used with clever arrangement of data to support further
scalability of our platform. We aim to explore this in future.

V. CONCLUSION
In this paper, we proposed a platform for H.264 encoder which

exploits slice-level parallelism with multiple ASIPs and pixel-level
parallelism with hardware accelerators. We uniquely combine these
parallelisms with multiple ASIPs and hardware accelerators to offer a
platform that is flexible (allows software upgrades) as well as scalable
(supports multiple resolutions). Our platform generates the MPSoC
architecture without manual intervention and the H.264 kernel software
does not need any modification when the number of ASIPs and/or
video resolution changes. Finally, we illustrated that our platform could
contain up to 170 ASIPs for real-time encoding of an HD1080 video
stream at 30 fps (with intraprediction, integer-pel and fractional-pel
motion estimation).
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