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Abstract— One of the most important challenges in the field of 

Computer Vision is the implementation of low-power embedded 

systems that will execute very accurate, yet real-time, algorithms. In 

the visual tracking sector one of the most promising approaches is 

the recently introduced OpenTLD algorithm which uses a random 

forest classification method. While it is very robust, it cannot be 

efficiently parallelized in its native form as its memory access 

pattern has certain characteristics that make it hard to take 

advantage of the conventional memory hierarchies. In this paper, 

we present a novel embedded system implementing this algorithm. 

We accelerate the bottleneck of the algorithm by designing and 

implementing a high bandwidth distributed memory sub-system 

which is independent of the various software parameters. We 

demonstrate the applicability and efficiency of this novel approach 

by implementing our scheme in a modern FPGA. 
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I. INTRODUCTION 

The problem of long term visual tracking is very important 
in numerous application domains including surveillance, 
security, augmented reality and multimedia.“Long-term” object 
tracking refers to circumstances where there are large video 
sequences that contain frame-cuts and fast camera movements 
and thus the object may temporarily disappear from the scene. 
The OpenTLD [5] algorithm tries to address the two most 
critical points in all those applications which are the accuracy 
of the system as well as its real time performance at high 
resolutions.  

This paper presents a novel embedded memory subsystem 
allowing for the efficient implementation of the OpenTLD 
algorithm. Our approach is tailored to reconfigurable devices, 
as they provide an excellent way to customize the scale and the 
parameters of the scheme in order to adapt to different 
applications and cost demands. To support this case we show 
that our scheme significantly accelerates the underlying 
algorithm in a “transparent way” allowing the user to change 
any of the classification parameters seamlessly. The proposed 
architecture, when prototyped on a low-cost FPGA which 
incorporates a dual core ARM CPU, can execute this high-end 
tracking algorithm at a rate of more than 20 times higher than 
that triggered when a modern dual-core CPU executes the 
exact same detection scheme. 

II. RELATED WORK 

[8] presents the implementation of an object recognition 
system based on the Random Forest classifier and targeted to 
an FPGA platform. The specified approach utilizes a 

Logarithmic Number System while their architecture executes 
the algorithm in an optimized, yet sequential manner. The 
author assumes that everything is on on-chip memories and can 
be accessed in a single cycle whereas he does not present any 
performance (i.e. latency or bandwidth) results nor he tries to 
parallelize the classifier in any manner. In [2] the authors 
present a hardware architecture that implements the most 
compute-intensive part of the OpenTLD object tracking 
algorithm.  They exploit another approach for parallelization 
which is inherent in the random forest classifiers: they access 
the forest trees simultaneously. As all decision trees are 
processing the same input they use multiple copies of the same 
image data (within a sub-window) for each tree.  In comparison 
with the systems presented above, our approach is the only one 
which is application-independent whereas, to the best of our 
knowledge, this is the first embedded scheme that allows for 
the efficient parallelization of the Random Forest classification 
problem for computer vision applications, while being 
significantly faster and more energy efficient than the existing 
hardware approaches. 

III. THE OPENTLD ALGORITHM 

The authors of [5] investigate the problem of robust, long-

term visual tracking of unknown objects in unconstrained 

environments. In the object detection part of their tracker 

implementation, they use a sequential randomized forest 

classifier [1]. The forest consists of several trees, where each 

of them is built from a certain group of randomly sampled 

features.  When trying to efficiently implement the algorithm 

in hardware, although there is plenty of inherent parallelism, it 

is very hard to utilize a memory interleaving scheme without 

duplicating data, as they do in [2], due to the randomized 

access pattern in the Random Forest classifier.  As proven by 

various profiling tests we have performed in an Intel state-of-

the-art CPU, the main task of the algorithm, which is the one 

performing the actual feature detection and involves the 

Random Forest classifier, spends about 90% of its execution 

time in memory related sub-tasks (i.e. memory accesses and 

addressing); this proves that the OpenTLD scheme is very 

memory intensive. As a reference software implementation we 

used the one in [3] which has been the first published 

implementation of this scheme in C++.   

IV. HARDWARE ARCHITECTURE   

Most of the hardware accelerators, for computer vision 
tasks, try to efficiently un-roll a big loop and then, by using a 
memory interleaving scheme, try to exploit the possible 



inherent parallelism. Our approach is to re-distribute the 
memory items so as to allow for numerous parallel memory 
accesses. Thus we applied a 1-1 scrambling process in the 
memory addressing that enabled us to reduce this collision rate 
drastically. Adaptive interleaving memory techniques have 
been already proposed in FPGA-devices such as in [6] and [7] 
but none of them is targeting the computer vision domain, 
whereas none of them can be applied to our system. 
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Figure 1. Random parallel queries referring on different block rams 

Figure 1 shows our scrambling scheme which is applied 
during the memory loading process: Our system scrambles the 
addresses in such a way that the concurrent memory accesses 
are allocated to different memory sub-blocks. During the query 
process the address scrambler is applied again in order to re-
map the actual addresses into our “scrambled” address space 
and retrieve the correct data. Furthermore, the scrambling 
process should be properly selected so as to maximize the 
parallel accesses.   
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Figure 2. High level architecture 

 

Moving to the high-level architecture of our system (shown 
in Figure 2), which utilizes our novel memory scheme, it 
comprises of three basic modules, the Loop Decoding module, 
the Memory module and the Computation module.  

A. Loop decoding module 

In this module we actually decode the main loop of the 
OpenTLD scheme, which at the lowest grain-level implements 
the Random Forest memory accesses. In particular, it 
implements the sliding window movement function as well as 
the randomized sampling method which uses predefined 
coefficient matrices. The loop decoding module produces 32 
memory accesses per cycle after decoding 8 continuous 
iterations of the inner loop of the original OpenTLD code.   

B. The Memory Module 

This is the main module of our system and as the memory 
accesses are random and should be performed in parallel, we 
have to match the query addresses to the available memory 
blocks in an optimal manner. In order to achieve that a 
collision detection module monitors whether there are any 
colliding memory accesses. The non-colliding accesses are 
routed to the corresponding memory block while the colliding 
ones are serialized appropriately. The serialization module 
comprises of a series of simple finite state machines (in a 
cascade interconnection) and can serialize a single memory 
access in every clock cycle. Obviously, the collisions in one 
block do not affect in any way the accesses in the other blocks; 
in other words we may end up with an out-of-order execution 
of the memory accesses but this does not affect, by nature, the 
correctness of the Random Forest classifier in any way.  
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Figure 3. Memory module microarchitecture 

 

Figure 3 demonstrates the dedicated collision resolving 
module which is attached to each block and which processes 
all the address queries simultaneously (we draw only 4 queries 
in this figure for simplicity reasons). The A0,B0,C0,D0 latches 
are referring to 4 address registers which hold the 4 different 
memory addresses until the query is completed.  As the input 
addresses, which are kept in the address registers, can refer to 
any of the available memory blocks we have to label them 
(shown with different colors in Figure 3) in order to track the 
corresponding data when those are sent from the Memory 
module to the Computation module (the one shown in green in 
Figure 3), since this can be performed out-of-order. 

Initially and in order to verify our novel memory approach 
we have utilized it in a real-world experiment. In particular, we 
have carefully studied on real-data how the sequential memory 
accesses are distributed to each memory block with and 
without our scrambling. We assumed 32 equally distributed 
memory blocks for a 640x480 frame. Each block contains 
about 10K addresses while the complete frame requires about 
300K. Reordering the address bits in hardware is a simple and 
zero latency function that redistributed the previously 
neighboring addresses into different blocks as proved by our 
experimental results.  We also used real-world memory access 
patterns for measuring the performance of our system. In Table 
1 we present a statistical analysis over the total memory 
accesses (6.81 * 10

6
) needed for the object detection on a 

single frame. The average collision metric shows how many 



queries per loop execution are referring to this same memory 
block.   

Table 1. Collision rate statistical analysis 

Memory 

Distribution 

in blocks 

Average 

collisions without 

scrambling 

Average 

collisions 

1-1 scrambling 

Memory access 

per cycle  

(dual port) 

8 6.99 2.65 6.06 

16 14.98 3.15 10.16 

32 24.5 3.6 17.78 

Those results clearly demonstrate that, if a conventional 
memory distribution scheme is used, increasing the number of 
blocks does not result in any significant increase in the 
performance since many of the memory accesses target the 
same block. In other words the classification scheme cannot be 
parallelized efficiently. After applying our scrambling function 
we reduced the average collision rate to 3.6 collisions per 2x32 
memory accesses while the standard deviation is very small 
(we have up to 4 collisions in the worst case). As a result by 
using our very simple scrambling scheme and a distributed 
memory we are able to perform 17.78 memory accesses per 
cycle (in average) using 32 dual-port on-chip memory blocks.  

C. The Computation module 

The Computation module is taking the data output of the 
Memory module and performs the feature computation 
function; in our case it is a simple sum (i.e. A-B-C+D). It also 
takes as input the labels corresponding to each data item as the 
operand’s data can be transferred on any of the 32 memory 
output ports (shown in Figure 3 with green). After the 
application specific computation is executed the necessary, in 
every Random Forest classifier, a likelihood table (i.e Leaf 
Posterior) memory lookup is performed in order to determine if 
the examined object is part of the trained dataset or not.  The 
update of the Leaf Posterior likelihood table is a relative easy 
task since only a small number of entries are updated at the 
frame-processing stage. 

V. EVALUATION AND PERFORMANCE RESULTS 

A. Performance Results 

In order to evaluate the performance of the proposed 
scheme we have executed the same application in a state-of-
the-art 2.4GHz dual core CPU and on our targeted FPGA 
which was clocked at a moderate 200MHz clock. The Intel 
CPU executed the detection process in 80.4 msec in average 
(the variation is very small), when only one core has been 
utilized.  Moving to our hardware system and starting from a 
single memory block and gradually increasing the number of 
them (i.e. created a distributed memory) while utilizing our 
novel memory scrambling scheme, we ended up with a 
considerable speedup over the Intel CPU. Table 3 clearly 
highlights that our performance grows linearly with the number 
of blocks and this is due to our very simple, yet very efficient 
memory scrambling module. Based on our measurements our 
system performs the detection task in 1.92msec, in average, for 
each frame while the variation is negligible. This number does 
not include any I/O overhead between the FPGA and a CPU 
which will perform the pre-processing tasks as well as the 
visualization of the results. In the next subsection we describe 

the complete autonomous embedded system and in this case 
the I/O is also taken into account.  

Table 3. Performance evaluation on a Virtex-6 VLX130T at 200Mhz 

Memory 

partitioning in 

blocks  

(dual port) 

Average 

collisions 

(with 

scrambling) 

Speedup @ 

200 Mhz vs 

Single Core 

CPU 

Effective 

Memory 

BW 

(GB/sec) 

1 32 0.96 0.29 

8 2.65 14.64 3.54 

16 3.15 23.27 5.95 

32 3.6 41.98 10.42 

   The measured speedup, against a dual-core 
implementation, triggered by our FPGA approach when 32 
dual ported block memories were utilized, is 26x; as a result 
we demonstrate that even the dual channel memory system of a 
state-of-the-art CPU featuring 3MB of L3 cache cannot 
outperform our approach which relies on the 10GB/sec average 
measured bandwidth that our distributed memory system is 
providing. 

B. Embedded design and communication cost 

For the implementation of the complete embedded system 
(the Virtex-6 implementation of the last subsection covers only 
the actual core of the OpenTLD which is the detection task and 
not the pre-processing and the visualization of the results) we 
utilized the very low-cost Avnet’s Zedboard [9] which is 
powered by a Xilinx  Zynq-7000 SoC (XC7Z020).   
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Figure 4. Xilinx  Zynq-7000 verification scheme  

Since we could not fit a complete 640x480 integral image 
in the memory blocks of this low-cost device, we have used a 
smaller image size (480x360) in order to measure the real 
world performance and then we projected the measurements to 
the 640x480 frame size initially used. Our test platform was set 
around a standard Linux distribution for ARM, loaded with the 
latest OpenCV library. The connection between the dual-core 
ARM and the reconfigurable resources has been realized 
through the Xillybus IP core [10]. For our experiments we set 
the bus clock at 100MHz while our hardware scheme works at 
200MHz. In our proposed embedded architecture, 
demonstrated in Figure 4,   and in order to minimize the inter-
communication overhead we chose to suppress the amount of 
data we had to move to the hardware side. This was possible by 
generating the integral image on-chip during loading and thus 
instead of moving  640 x 480x27 bits (i.e. size of integral 
image) from the CPU to the FPGA fabric we had to move only 
640x480x8 bits (i.e. size of the original image); this triggers an 
almost 4 times reduction. When our system handled a 480x360 



image we measured the bus bandwidth to be 200Mb/sec. This 
is much lower than the 370Mb/sec official bandwidth reported 
by Xillybus, when working at 100MHz, and it was due to a 
certain limitation of the DMA controller of the specific device 
used. Based on those measurements we need 1.46msec for the 
loading of a 640x480 image on the current configuration which 
will be lowered to 0.79msec when the problem with the DMA 
controller is addressed. The hardware processing time is 
1.92msec in average as mentioned in subsection B, so if we use 
a double buffering scheme (i.e. using smaller images or 
utilizing a larger device) we can hide the communication 
latency completely. Even if no such scheme is utilized and we 
have to add the intercommunication overhead to the hardware 
processing overhead our system will still be more than 12x 
faster than a dual core Intel CPU.   

C. Comparison with a GPU implementation 

In order to further prove the efficiency of our approach we 
have implemented the OpenTLD algorithm in a highly parallel 
GPU platform. In this experiment we also have a Host CPU 
which executes the complete algorithm except for the detect() 
function which is executed on the GPU device. The GPU 
utilized is the NVidia GTX 285 device and it is programmed 
using the well established CUDA API [11]. In Table 4 we 
summurize the performance of the reference single core CPU, 
the GPU and our embedded system.   

Table 4: Performance Evaluation in terms of speedup 

Accelerated 

Entity 

Software  

single-core 

(msec) 

CUDA  

(msec) 

CUDA vs 

single-core 

Embedded  

(msec) 

Embedded  

vs single-

core 

Detect() with I/O 80.4 7.5 10.6x 3.38 23.78x 

Detect() no I/O 80.4 3.05 26.36x 1.92 41x 

The above results clearly demonstrate that our embedded 
system outperforms the GPU by at least a 2x factor when the 
I/O overhead is also taken into account. This speedup will be 
much higher when the DMA controller problem with the 
FPGA device used is addressed (3x speedup) or a double 
buffering scheme is utilized (4x speedup). Even without taking 
the I/O improvement into account our embedded device can 
perform the actual processing at a higher rate than a modern 
GPU. Moving to the energy consumption the Intel CPU has a 
nominal power consumption of 14W when one core is utilized 
and the GPU consumes more than 85W, while our system 
consumes at most 4W. Given the speedup triggered by our 
approach, our novel embedded device consumes at least 40x 
less energy than either the CPU or the GPU when executing the 
openTLD complete applications. 

D. Comparison with existing hardware schemes 

Moving to the comparisons with the existing hardware 
approaches, to the best of our knowledge, there is none that has 
implemented the Random Forest trees structures in hardware in 
such a generic, not application-specific, way.  In particular, the 
scheme proposed in [2] is likely to induce serious issues as the 
number of cores scales since: a) each local cache applied to a 
single core is fed from the same on-chip image memory or the 
same fully shared local bus, and b) local caches are increasing 
the on-chip memory usage in a linear way to the number of 
cores even in the case that the image is stored off-chip. The 

authors assume that they can easily supply data to the 20 
different classifiers that can fit on an FPGA from a single on-
chip integral memory (no further details about it are given); 
however, since the problem is memory bound further studies 
are needed in order to investigate whether the specified 
memory bandwidth can indeed be supplied by a single on-chip 
memory module. More importantly, our approach has certain 
advantages when compared with the one in [2]: a) our system 
can support any combination of forest trees and classification 
features without changing a single wire in our hardware 
scheme as the statistical characteristics of memory accesses 
have not been affected, b) our system architecture is not setting 
any restriction in the sub-window size such as in [2] and c) in 
our case the number of processing cores can be increased 
without any need to increase the number of memory blocks. 
We just split the existing memory in more slices and get a sub-
linear bandwidth increase as shown in Table 3. 

VI. CONCLUSIONS 

In this paper we present a simple, yet effective, distributed 
memory sub-system, upon which we efficiently parallelize and 
implement, as an autonomous embedded system, the popular 
OpenTLD tracking scheme. Our real-world measurements 
demonstrate that the speedup achieved by our embedded 
system over a modern multi-core CPU is more than 23x while 
our device is even faster than a highly parallel GPU. Moreover, 
our system consumes more than 40x less energy than the CPU 
and the GPU. Since our approach is also very flexible, modular 
and low-cost, it can be efficiently utilized in numerous 
multimedia applications which involve the Random Forest 
approach. 

ACKNOWLEDGMENT 

This work was supported by the Greek General Secretariat 
of Research and Technology's grant Aristia-2427 (AFORMI). 

REFERENCES 

[1] BREIMAN LEO. 2001. Random Forests. In International Journal of 
Machine Learning ,Volume 45 Issue 1. 

[2] BECKER T., LIU Q., LUK W., NEBEHAY G., AND PFLUGFELDER 
R.. 2011. Hardware-accelerated object tracking.  In Proc. Int. Conf. on 
Field Programmable Logic and Applications (FPL), Sept. 2011. 

[3] BPTLD.2011. https://github.com/Ninjakannon/BPTLD.git  

[4] VIOLA PAUL, JONES MICHAEL. 2001. Rapid Object Detection using 
a Boosted Cascade of Simple Features. Int. Conf. on Computer Vision 
and Pattern Recognition. 

[5] KALAL ZDENEK, MATAS JIRI, MIKOLAJCZYK KRYSTIAN. 
2009. Online learning of robust object detectors during unstable 
tracking. In 3rd On-line Learning for Computer Vision Workshop, 
Kyoto, Japan, IEEE CS. 

[6] TOM VANCOURT AND MARTIN C. HERBORDT.2006. 
Application-Specific Memory Interleaving Enables High Performance in 
FPGA-based Grid Computations. In FCCM '06 Proc. of the 14th Annual 
IEEE Symposium on Field-Programmable Custom Computing 
Machines, Pages 305-306. 

[7] M. B. GOKHALE AND J. M. STONE. 1999. “Automatic Allocation of 
Arrays to Memories in FPGA Processors With Multiple Memory 
Banks.” Proc. FCCM 1999 

[8] OSMAN, H.E. 2009. Random forest-LNS architecture and vision. In 
Industrial Informatics (INDIN 2009). 7th IEEE Int. Conf. 

[9] http://www.zedboard.org 

[10] http://www.xillybus.com 

[11] http://www.nvidia.com/object/cuda_home_new.htm

 


