
978-3-9815370-2-4/DATE14/©2014 EDAA

A novel embedded system for vision tracking

Antonis Nikitakis, Theofilos Paganos

Technical University of Crete,

Department of Electronic and Computer Engineering

Kounoupidiana, Chania, Crete, GR73100, Greece

 anikita@mhl.tuc.gr; pagantheo@gmail.com

Ioannis Papaefstathiou

Synelixis Solutions Ltd,

Farmakidou 10,Chalkida, GR34100, Greece

ygp@synelixis.com

Abstract— One of the most important challenges in the field of

Computer Vision is the implementation of low-power embedded

systems that will execute very accurate, yet real-time, algorithms. In

the visual tracking sector one of the most promising approaches is

the recently introduced OpenTLD algorithm which uses a random

forest classification method. While it is very robust, it cannot be

efficiently parallelized in its native form as its memory access

pattern has certain characteristics that make it hard to take

advantage of the conventional memory hierarchies. In this paper,

we present a novel embedded system implementing this algorithm.

We accelerate the bottleneck of the algorithm by designing and

implementing a high bandwidth distributed memory sub-system

which is independent of the various software parameters. We

demonstrate the applicability and efficiency of this novel approach

by implementing our scheme in a modern FPGA.

Keywords— Embedded System, Object Tracking, Distributed

Memory, Random Forests, Classification, FPGA.

I. INTRODUCTION

The problem of long term visual tracking is very important
in numerous application domains including surveillance,
security, augmented reality and multimedia.“Long-term” object
tracking refers to circumstances where there are large video
sequences that contain frame-cuts and fast camera movements
and thus the object may temporarily disappear from the scene.
The OpenTLD [5] algorithm tries to address the two most
critical points in all those applications which are the accuracy
of the system as well as its real time performance at high
resolutions.

This paper presents a novel embedded memory subsystem
allowing for the efficient implementation of the OpenTLD
algorithm. Our approach is tailored to reconfigurable devices,
as they provide an excellent way to customize the scale and the
parameters of the scheme in order to adapt to different
applications and cost demands. To support this case we show
that our scheme significantly accelerates the underlying
algorithm in a “transparent way” allowing the user to change
any of the classification parameters seamlessly. The proposed
architecture, when prototyped on a low-cost FPGA which
incorporates a dual core ARM CPU, can execute this high-end
tracking algorithm at a rate of more than 20 times higher than
that triggered when a modern dual-core CPU executes the
exact same detection scheme.

II. RELATED WORK

[8] presents the implementation of an object recognition
system based on the Random Forest classifier and targeted to
an FPGA platform. The specified approach utilizes a

Logarithmic Number System while their architecture executes
the algorithm in an optimized, yet sequential manner. The
author assumes that everything is on on-chip memories and can
be accessed in a single cycle whereas he does not present any
performance (i.e. latency or bandwidth) results nor he tries to
parallelize the classifier in any manner. In [2] the authors
present a hardware architecture that implements the most
compute-intensive part of the OpenTLD object tracking
algorithm. They exploit another approach for parallelization
which is inherent in the random forest classifiers: they access
the forest trees simultaneously. As all decision trees are
processing the same input they use multiple copies of the same
image data (within a sub-window) for each tree. In comparison
with the systems presented above, our approach is the only one
which is application-independent whereas, to the best of our
knowledge, this is the first embedded scheme that allows for
the efficient parallelization of the Random Forest classification
problem for computer vision applications, while being
significantly faster and more energy efficient than the existing
hardware approaches.

III. THE OPENTLD ALGORITHM

The authors of [5] investigate the problem of robust, long-

term visual tracking of unknown objects in unconstrained

environments. In the object detection part of their tracker

implementation, they use a sequential randomized forest

classifier [1]. The forest consists of several trees, where each

of them is built from a certain group of randomly sampled

features. When trying to efficiently implement the algorithm

in hardware, although there is plenty of inherent parallelism, it

is very hard to utilize a memory interleaving scheme without

duplicating data, as they do in [2], due to the randomized

access pattern in the Random Forest classifier. As proven by

various profiling tests we have performed in an Intel state-of-

the-art CPU, the main task of the algorithm, which is the one

performing the actual feature detection and involves the

Random Forest classifier, spends about 90% of its execution

time in memory related sub-tasks (i.e. memory accesses and

addressing); this proves that the OpenTLD scheme is very

memory intensive. As a reference software implementation we

used the one in [3] which has been the first published

implementation of this scheme in C++.

IV. HARDWARE ARCHITECTURE

Most of the hardware accelerators, for computer vision
tasks, try to efficiently un-roll a big loop and then, by using a
memory interleaving scheme, try to exploit the possible

inherent parallelism. Our approach is to re-distribute the
memory items so as to allow for numerous parallel memory
accesses. Thus we applied a 1-1 scrambling process in the
memory addressing that enabled us to reduce this collision rate
drastically. Adaptive interleaving memory techniques have
been already proposed in FPGA-devices such as in [6] and [7]
but none of them is targeting the computer vision domain,
whereas none of them can be applied to our system.

Data
Bus

Loading Data

Block Ram

Parallel
queries

Mem
BLOCK1

Data

Mem
BLOCKn

Mem
BLOCK21-1

Address
scrambler

Address

1-1
Address

scrambler
Address

1-1
Address

scrambler

Address

... ...

Data

Data

collision
resolving

Loading Addr

Figure 1. Random parallel queries referring on different block rams

Figure 1 shows our scrambling scheme which is applied
during the memory loading process: Our system scrambles the
addresses in such a way that the concurrent memory accesses
are allocated to different memory sub-blocks. During the query
process the address scrambler is applied again in order to re-
map the actual addresses into our “scrambled” address space
and retrieve the correct data. Furthermore, the scrambling
process should be properly selected so as to maximize the
parallel accesses.

Memory module Computation moduleLoop decoding

Memory
Block

Loop
decoding

Mem
BLOCK1

Mem
BLOCKn

Mem
BLOCK2

Computation
Core 1

Computation
Core m

Collision
resolving

core 1

Collision
resolving

core 2

Collision
resolving

core n

Computation
Core 2 result

randomize

scramble

Figure 2. High level architecture

Moving to the high-level architecture of our system (shown
in Figure 2), which utilizes our novel memory scheme, it
comprises of three basic modules, the Loop Decoding module,
the Memory module and the Computation module.

A. Loop decoding module

In this module we actually decode the main loop of the
OpenTLD scheme, which at the lowest grain-level implements
the Random Forest memory accesses. In particular, it
implements the sliding window movement function as well as
the randomized sampling method which uses predefined
coefficient matrices. The loop decoding module produces 32
memory accesses per cycle after decoding 8 continuous
iterations of the inner loop of the original OpenTLD code.

B. The Memory Module

This is the main module of our system and as the memory
accesses are random and should be performed in parallel, we
have to match the query addresses to the available memory
blocks in an optimal manner. In order to achieve that a
collision detection module monitors whether there are any
colliding memory accesses. The non-colliding accesses are
routed to the corresponding memory block while the colliding
ones are serialized appropriately. The serialization module
comprises of a series of simple finite state machines (in a
cascade interconnection) and can serialize a single memory
access in every clock cycle. Obviously, the collisions in one
block do not affect in any way the accesses in the other blocks;
in other words we may end up with an out-of-order execution
of the memory accesses but this does not affect, by nature, the
correctness of the Random Forest classifier in any way.

A0

B0

C0

D0

+

Mem
BLOCK1

Block 1
Collision
Detect

FSM

Serialize
Collisions

Address
Latch

Mem
BLOCK2

Data_A0
latch

Mem
BLOCK3

Mem
BLOCK4

Block 2
Collision
Detect

Data_B0
latch

...
Data_C0

latch

Data_D0
latch

...
A1

...

FSM

Serialize
Collisions

Data

Label

Data

Label

Control

1-1
Address

scrambler

B1

Data
Latch

Figure 3. Memory module microarchitecture

Figure 3 demonstrates the dedicated collision resolving
module which is attached to each block and which processes
all the address queries simultaneously (we draw only 4 queries
in this figure for simplicity reasons). The A0,B0,C0,D0 latches
are referring to 4 address registers which hold the 4 different
memory addresses until the query is completed. As the input
addresses, which are kept in the address registers, can refer to
any of the available memory blocks we have to label them
(shown with different colors in Figure 3) in order to track the
corresponding data when those are sent from the Memory
module to the Computation module (the one shown in green in
Figure 3), since this can be performed out-of-order.

Initially and in order to verify our novel memory approach
we have utilized it in a real-world experiment. In particular, we
have carefully studied on real-data how the sequential memory
accesses are distributed to each memory block with and
without our scrambling. We assumed 32 equally distributed
memory blocks for a 640x480 frame. Each block contains
about 10K addresses while the complete frame requires about
300K. Reordering the address bits in hardware is a simple and
zero latency function that redistributed the previously
neighboring addresses into different blocks as proved by our
experimental results. We also used real-world memory access
patterns for measuring the performance of our system. In Table
1 we present a statistical analysis over the total memory
accesses (6.81 * 10

6
) needed for the object detection on a

single frame. The average collision metric shows how many

queries per loop execution are referring to this same memory
block.

Table 1. Collision rate statistical analysis

Memory

Distribution

in blocks

Average

collisions without

scrambling

Average

collisions

1-1 scrambling

Memory access

per cycle

(dual port)

8 6.99 2.65 6.06

16 14.98 3.15 10.16

32 24.5 3.6 17.78

Those results clearly demonstrate that, if a conventional
memory distribution scheme is used, increasing the number of
blocks does not result in any significant increase in the
performance since many of the memory accesses target the
same block. In other words the classification scheme cannot be
parallelized efficiently. After applying our scrambling function
we reduced the average collision rate to 3.6 collisions per 2x32
memory accesses while the standard deviation is very small
(we have up to 4 collisions in the worst case). As a result by
using our very simple scrambling scheme and a distributed
memory we are able to perform 17.78 memory accesses per
cycle (in average) using 32 dual-port on-chip memory blocks.

C. The Computation module

The Computation module is taking the data output of the
Memory module and performs the feature computation
function; in our case it is a simple sum (i.e. A-B-C+D). It also
takes as input the labels corresponding to each data item as the
operand’s data can be transferred on any of the 32 memory
output ports (shown in Figure 3 with green). After the
application specific computation is executed the necessary, in
every Random Forest classifier, a likelihood table (i.e Leaf
Posterior) memory lookup is performed in order to determine if
the examined object is part of the trained dataset or not. The
update of the Leaf Posterior likelihood table is a relative easy
task since only a small number of entries are updated at the
frame-processing stage.

V. EVALUATION AND PERFORMANCE RESULTS

A. Performance Results

In order to evaluate the performance of the proposed
scheme we have executed the same application in a state-of-
the-art 2.4GHz dual core CPU and on our targeted FPGA
which was clocked at a moderate 200MHz clock. The Intel
CPU executed the detection process in 80.4 msec in average
(the variation is very small), when only one core has been
utilized. Moving to our hardware system and starting from a
single memory block and gradually increasing the number of
them (i.e. created a distributed memory) while utilizing our
novel memory scrambling scheme, we ended up with a
considerable speedup over the Intel CPU. Table 3 clearly
highlights that our performance grows linearly with the number
of blocks and this is due to our very simple, yet very efficient
memory scrambling module. Based on our measurements our
system performs the detection task in 1.92msec, in average, for
each frame while the variation is negligible. This number does
not include any I/O overhead between the FPGA and a CPU
which will perform the pre-processing tasks as well as the
visualization of the results. In the next subsection we describe

the complete autonomous embedded system and in this case
the I/O is also taken into account.

Table 3. Performance evaluation on a Virtex-6 VLX130T at 200Mhz

Memory

partitioning in

blocks

(dual port)

Average

collisions

(with

scrambling)

Speedup @

200 Mhz vs

Single Core

CPU

Effective

Memory

BW

(GB/sec)

1 32 0.96 0.29

8 2.65 14.64 3.54

16 3.15 23.27 5.95

32 3.6 41.98 10.42

 The measured speedup, against a dual-core
implementation, triggered by our FPGA approach when 32
dual ported block memories were utilized, is 26x; as a result
we demonstrate that even the dual channel memory system of a
state-of-the-art CPU featuring 3MB of L3 cache cannot
outperform our approach which relies on the 10GB/sec average
measured bandwidth that our distributed memory system is
providing.

B. Embedded design and communication cost

For the implementation of the complete embedded system
(the Virtex-6 implementation of the last subsection covers only
the actual core of the OpenTLD which is the detection task and
not the pre-processing and the visualization of the results) we
utilized the very low-cost Avnet’s Zedboard [9] which is
powered by a Xilinx Zynq-7000 SoC (XC7Z020).

OpenTLD
Distributed

Memory
System

Integral memory

640x480x27 bits

AXI
Bus

result

Write back time

I/O time Computation time

Data

Data

2xARM
A9 CPU

OpenTLD SW
functions

X
illyb

u
s IP

 co
re

Data

Figure 4. Xilinx Zynq-7000 verification scheme

Since we could not fit a complete 640x480 integral image
in the memory blocks of this low-cost device, we have used a
smaller image size (480x360) in order to measure the real
world performance and then we projected the measurements to
the 640x480 frame size initially used. Our test platform was set
around a standard Linux distribution for ARM, loaded with the
latest OpenCV library. The connection between the dual-core
ARM and the reconfigurable resources has been realized
through the Xillybus IP core [10]. For our experiments we set
the bus clock at 100MHz while our hardware scheme works at
200MHz. In our proposed embedded architecture,
demonstrated in Figure 4, and in order to minimize the inter-
communication overhead we chose to suppress the amount of
data we had to move to the hardware side. This was possible by
generating the integral image on-chip during loading and thus
instead of moving 640 x 480x27 bits (i.e. size of integral
image) from the CPU to the FPGA fabric we had to move only
640x480x8 bits (i.e. size of the original image); this triggers an
almost 4 times reduction. When our system handled a 480x360

image we measured the bus bandwidth to be 200Mb/sec. This
is much lower than the 370Mb/sec official bandwidth reported
by Xillybus, when working at 100MHz, and it was due to a
certain limitation of the DMA controller of the specific device
used. Based on those measurements we need 1.46msec for the
loading of a 640x480 image on the current configuration which
will be lowered to 0.79msec when the problem with the DMA
controller is addressed. The hardware processing time is
1.92msec in average as mentioned in subsection B, so if we use
a double buffering scheme (i.e. using smaller images or
utilizing a larger device) we can hide the communication
latency completely. Even if no such scheme is utilized and we
have to add the intercommunication overhead to the hardware
processing overhead our system will still be more than 12x
faster than a dual core Intel CPU.

C. Comparison with a GPU implementation

In order to further prove the efficiency of our approach we
have implemented the OpenTLD algorithm in a highly parallel
GPU platform. In this experiment we also have a Host CPU
which executes the complete algorithm except for the detect()
function which is executed on the GPU device. The GPU
utilized is the NVidia GTX 285 device and it is programmed
using the well established CUDA API [11]. In Table 4 we
summurize the performance of the reference single core CPU,
the GPU and our embedded system.

Table 4: Performance Evaluation in terms of speedup

Accelerated

Entity

Software

single-core

(msec)

CUDA

(msec)

CUDA vs

single-core

Embedded

(msec)

Embedded

vs single-

core

Detect() with I/O 80.4 7.5 10.6x 3.38 23.78x

Detect() no I/O 80.4 3.05 26.36x 1.92 41x

The above results clearly demonstrate that our embedded
system outperforms the GPU by at least a 2x factor when the
I/O overhead is also taken into account. This speedup will be
much higher when the DMA controller problem with the
FPGA device used is addressed (3x speedup) or a double
buffering scheme is utilized (4x speedup). Even without taking
the I/O improvement into account our embedded device can
perform the actual processing at a higher rate than a modern
GPU. Moving to the energy consumption the Intel CPU has a
nominal power consumption of 14W when one core is utilized
and the GPU consumes more than 85W, while our system
consumes at most 4W. Given the speedup triggered by our
approach, our novel embedded device consumes at least 40x
less energy than either the CPU or the GPU when executing the
openTLD complete applications.

D. Comparison with existing hardware schemes

Moving to the comparisons with the existing hardware
approaches, to the best of our knowledge, there is none that has
implemented the Random Forest trees structures in hardware in
such a generic, not application-specific, way. In particular, the
scheme proposed in [2] is likely to induce serious issues as the
number of cores scales since: a) each local cache applied to a
single core is fed from the same on-chip image memory or the
same fully shared local bus, and b) local caches are increasing
the on-chip memory usage in a linear way to the number of
cores even in the case that the image is stored off-chip. The

authors assume that they can easily supply data to the 20
different classifiers that can fit on an FPGA from a single on-
chip integral memory (no further details about it are given);
however, since the problem is memory bound further studies
are needed in order to investigate whether the specified
memory bandwidth can indeed be supplied by a single on-chip
memory module. More importantly, our approach has certain
advantages when compared with the one in [2]: a) our system
can support any combination of forest trees and classification
features without changing a single wire in our hardware
scheme as the statistical characteristics of memory accesses
have not been affected, b) our system architecture is not setting
any restriction in the sub-window size such as in [2] and c) in
our case the number of processing cores can be increased
without any need to increase the number of memory blocks.
We just split the existing memory in more slices and get a sub-
linear bandwidth increase as shown in Table 3.

VI. CONCLUSIONS

In this paper we present a simple, yet effective, distributed
memory sub-system, upon which we efficiently parallelize and
implement, as an autonomous embedded system, the popular
OpenTLD tracking scheme. Our real-world measurements
demonstrate that the speedup achieved by our embedded
system over a modern multi-core CPU is more than 23x while
our device is even faster than a highly parallel GPU. Moreover,
our system consumes more than 40x less energy than the CPU
and the GPU. Since our approach is also very flexible, modular
and low-cost, it can be efficiently utilized in numerous
multimedia applications which involve the Random Forest
approach.

ACKNOWLEDGMENT

This work was supported by the Greek General Secretariat
of Research and Technology's grant Aristia-2427 (AFORMI).

REFERENCES

[1] BREIMAN LEO. 2001. Random Forests. In International Journal of
Machine Learning ,Volume 45 Issue 1.

[2] BECKER T., LIU Q., LUK W., NEBEHAY G., AND PFLUGFELDER
R.. 2011. Hardware-accelerated object tracking. In Proc. Int. Conf. on
Field Programmable Logic and Applications (FPL), Sept. 2011.

[3] BPTLD.2011. https://github.com/Ninjakannon/BPTLD.git

[4] VIOLA PAUL, JONES MICHAEL. 2001. Rapid Object Detection using
a Boosted Cascade of Simple Features. Int. Conf. on Computer Vision
and Pattern Recognition.

[5] KALAL ZDENEK, MATAS JIRI, MIKOLAJCZYK KRYSTIAN.
2009. Online learning of robust object detectors during unstable
tracking. In 3rd On-line Learning for Computer Vision Workshop,
Kyoto, Japan, IEEE CS.

[6] TOM VANCOURT AND MARTIN C. HERBORDT.2006.
Application-Specific Memory Interleaving Enables High Performance in
FPGA-based Grid Computations. In FCCM '06 Proc. of the 14th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines, Pages 305-306.

[7] M. B. GOKHALE AND J. M. STONE. 1999. “Automatic Allocation of
Arrays to Memories in FPGA Processors With Multiple Memory
Banks.” Proc. FCCM 1999

[8] OSMAN, H.E. 2009. Random forest-LNS architecture and vision. In
Industrial Informatics (INDIN 2009). 7th IEEE Int. Conf.

[9] http://www.zedboard.org

[10] http://www.xillybus.com

[11] http://www.nvidia.com/object/cuda_home_new.htm

