Joint Communication Scheduling and Interconnect
Synthesis for FPGA-based Many-Core Systems

Alessandro Cilardo, Edoardo Fusella, Luca Gallo, Antonino Mazzeo

Department of Electrical Engineering and Information Technologies, University of Naples Federico 11
via Claudio 21, 80125 Napoli, Italy, Email: acilardo@Qunina.it

Abstract—This work proposes an automated methodology
for optimizing FPGA-based many-core interconnect architec-
tures. Based on the application communication requirements, the
methodology concurrently defines the structure of the intercon-
nect and the communication task scheduling, taking into account
possible dependencies between tasks under given area constraints.
The resulting architecture improves the level of communication
parallelism that can be exploited while keeping area costs low. The
paper thoroughly describes the proposed approach and discusses
a few case-studies showing the impact of the proposed technique.

I. INTRODUCTION AND RELATED WORK

Multi-processor systems on chip (MPSoCs), particularly
those based on reconfigurable hardware, can be designed to
fit the requirements of a specific application [1], [2]. This
possibility does not only involve the choice of the processing
units, but also the definition of the interconnect. Due to the
large spectrum of choices in terms of technologies, compo-
nents, and topologies, determining the interconnect solutions
that best suit given applications requirements is a non-trivial
task [3]. Because of the popularity it has been gaining during
the last years, crossbar-based interconnect design is addressed
by several works. [4] and [5] focus on the synthesis of
a single optimized crossbar. While this approach could be
useful for small- or medium-sized designs, especially on ASIC
technologies, a single crossbar interconnecting a large number
of components on an FPGA may have a prohibitive cost and
incur high latencies. In order to overcome the scalability issues
of single-crossbar solutions, several approaches based on cas-
caded crossbars have been proposed [6], leading to topologies
similar to those generated by our methodology, although they
only target ASIC design flows. However, constraining the
interconnect architecture to using only crossbars, as opposed to
shared buses, results in higher area costs [7], particularly for
FPGA-based implementations. [8] addresses this observation
by supporting the generation of heterogeneous interconnects
made of crossbars and shared buses. None of the previous
works takes into account dependency constraints between
communication tasks, which is essential to understanding
the actual communication timing and properly dimension the
interconnect avoiding underutilized interconnection resources,
i.e. wasted area on the chip. [9] and [10] address the concurrent
problem of scheduling and interconnection synthesis. They
both express the cost of a point in the design space as
the total number of links, which however may not correctly
represent the hardware cost of a heterogeneous communication

978-3-9815370-2-4/DATE14/(©2014 EDAA

infrastructure, particularly for crossbars. Furthermore, they do
not consider shared buses because they are only oriented to
point-to-point links. While simplifying the problem, this as-
sumption clearly lacks generality. Unlike most previous works
on the automated synthesis of interconnect topologies, the
proposed methodology, discussed in Section II, addresses the
scheduling problem based on communication task dependen-
cies, supporting joint communication scheduling/interconnect
synthesis optimization. Targeted at FPGA technologies, the
approach combines crossbars and shared buses, connected
through bridges, yielding a scalable structure and enabling
efficient communication patterns. In fact, the resulting archi-
tecture improves the level of communication parallelism that
can be exploited, possibly allowing multiple paths to be used
concurrently while keeping area costs low, as shown by a few
case-study applications presented in Section III.

II. PROPOSED METHODOLOGY

We assume that the communication traffic is made up
of communication tasks which are non-preemptive atomic
entities with an arbitrary load (amount of transmitted bytes)
transferred in a burst mode. Notice that two different tasks
can have the same master/slave pair. This allows modeling
any traffic pattern. The proposed methodology takes as in-
put a communication Task List (TL) containing, for each
task, the master and the slave involved and the amount of
bytes to be transferred, along with a Directed Acyclic Graph
(DAG) describing possible inter-task precedence relationships,
i.e. dependency constraints. Under a given area constraint,
the methodology finds a synthesizable topology specification
based on a heterogeneous bus/crossbar architecture minimizing
the target cost function, together with a compatible minimum-
latency communication task schedule. Note that the problem
of communication scheduling and synthesizable topology def-
inition are deeply interrelated. Scheduling affects the final
topology as it might require dedicated resources allowing
certain tasks to be performed concurrently. Our methodology
jointly considers the two aspects. The proposed topology
synthesis flow, shown in Figure 1, consists of three phases,
described in the following.

1) Communication element clustering: The first phase gen-
erates local domains, or clusters, i.e. subsets of nodes in the
interconnect that can directly communicate with each other.
Domains are defined so as to maximize the local, i.e. intra-
cluster, traffic matching the traffic patterns induced by a given
application. The phase is in turn structured in two steps:
1) hierarchical slave clustering, and 2) master assignment to

0 Phase 1

° Slave clustering

DAG

Communication element clustering

ID [Master| Slave |Traffic M1 S1
0 [0 [0][50 5] u s
110 1][10 2 2
5] 7 70 Mo & So
3] 1]2]10 Phase 2
422720
.
Task List

Bridge address ranges configuration

Inter-cluster topology definition

Fig. 1. Proposed interconnect synthesis flow

the slave clusters. The first step performs an agglomerative
hierarchical clustering in order to fix the number of local
domains and determine the partitioning of the slave nodes. To
cope with this problem, slaves are represented in a Euclidean
n-space. For each slave h, we build an array containing N,,
elements, where each element i represents the fraction of
the total traffic from/to slave h involving master ¢ and N,,
is the total number of masters. Then, in order to decide
which clusters should be combined, the Euclidean distance
is used as a measure of dissimilarity between slaves. The
clustering algorithm proceeds by merging clusters until it
meets a stop condition depending on the worst-case area
occupation (computed assuming all possible bridges between
clusters and full matrices for intra-cluster communication).
Notice that, with no area constraints, the clustering iterations
would lead to a single crossbar. This is consistent with our
goals because a single large crossbar guarantees the lowest
possible communication overhead. With increasingly stringent
area constraints, on the other hand, we will have a growing
number of smaller clusters. The second step in the clustering
phase assigns the masters to the clusters with which they
exchange most data in order to keep as much communication
as possible within single clusters (intra-cluster communication)
and minimize the communication through bridges. Following
this phase, masters and slaves are divided in local domains
whose internal and external topologies are still to be defined.

2) Inter-cluster topology definition: The second phase de-
termines the global inter-cluster architecture by connecting
the clusters through bridges in order to make all inter-cluster
communications feasible. By properly mapping the address
spaces in each bridge, furthermore, multiple physical paths
between different domains can be realized. Multiple paths
introduce flexibility in the topology as they create a further
opportunity for balancing the load across the interconnect.
The phase is structured in two steps. First, we define the
number and the position of the bridges by solving an optimum
branching problem. We rely on a well-known technique, i.e.
Edmonds’ algorithm, setting the weights on the arcs to the
inverse of the communication requirements between clusters,
thereby prioritizing the arcs having higher requirements. Then,
the bridge address ranges are defined by solving a path
balancing problem [11], enabling an effective exploitation of
the parallel communication paths available in the topology.

Scheduling and Intra-cluster topology definition

Phase 3
. N Slave2
M s Slavet
M1 V72 [Slave0

Optimum or finished?

Best solution

M| V74

8320 | 24860 41600
16640 33280 49920

Schedule

M1+ —S1

X

Communication Architecture

3) Scheduling and intra-cluster topology definition: The
last phase defines the internal implementation of each cluster,
along with the communication task scheduling. It is based on
an iterative procedure, made of several steps, and outputs an
optimal communication task schedule (in terms of latency)
along with a global topology containing enough resources to
perform the schedule found. As the first step, the DAG is
transformed in order to take into account and preemptively
solve any potential structural conflict due to slave and bridge
accesses. The resulting DAG will comply with the following
rule: all tasks using the same slave or bridge must be connected
by a single path. This means that there will be a partial order
relation for slave and bridge accesses. This is achieved by
prioritizing tasks that, in an ASAP schedule, start first. Once
the DAG has been transformed, the second step computes
the ASAP and ALAP schedule and the mobility values. An
iterative subphase takes then place, starting from the third
step, which fixes a temporal bound, subsequently relaxed at
each iteration of the outer loop. Since we are optimizing the
global execution time, we start with the minimum temporal
bound, i.e. the latency of the ASAP schedule. In fact, ASAP
scheduling finds the minimum latency schedule in an uncon-
strained problem [12]. At each iteration of the inner loop,
we calculate the best schedule, in terms of area, under that
temporal bound (fourth, fifth, and sixth steps). This process
relies on an algorithm to find the synthesizable architecture
with the minimum degree of parallelism allowing a certain
schedule to be run (fifth step). Then, the cost of the whole
architecture is quantified by using a suitable area model. The
last step checks if the area of the architecture found meets
the given constraints. If this is not the case, we go back to the
third step where the temporal bound is relaxed and the mobility
values are recomputed. In the following, a few essential aspects
of the above flow are described in more detail.

a) Relaxing the temporal bound: The granularity of the
temporal bound, relaxed at each repetition of the third step
of Phase 3, must guarantee a comprehensive exploration of
the available design choices. Of course, relaxing the bound
by a single clock cycle at each step would be infeasible. We
chose to relax the bound by the minimum time allowing a
task to move enough to eliminate an overlap in the schedule.
In fact, less overlapping leads to less concurrency, and hence
an architecture taking less area.

b) Scheduling algorithms: The scheduling algorithm
determines the schedule corresponding to the synthesizable
topology with the lowest area under a given temporal bound
satisfying all the constraints expressed by the modified DAG
(including slave and bridge conflicts). We evaluated six differ-
ent scheduling algorithms that, due to the lack of space, cannot
be described thoroughly here: random search, two different
exhaustive search approaches, a genetic algorithm, a Priority-
based List Scheduling, and a randomized Priority-based List
Scheduling. The random search did not give satisfying results,
while the two exhaustive approaches are too expensive and
can be used only for small-sized problems. The priority-based
list approach tries, at each step, to make the best move as
possible within a list of permitted moves, i.e. those satisfying
the dependency constraints. The list is ordered according to
the area cost incurred by the topologies associated with each
potential move. The procedure to derive a topology, given a
schedule, is explained in Section II-4. The Priority-based List
Scheduling approach is likely to yield the optimal solution
only if we start from an initial schedule already reasonably
close to the optimum; otherwise, it gets stuck at a local
minimum (a point not having better neighboring solutions).
The genetic optimization performs good on average, but cannot
discover local minima with the same speed as the randomized
Priority-based List Scheduling, which turned out to be the
best choice. This algorithm is essentially an optimized version
of the Priority-based List Scheduling approach. Unlike its
basic version, it avoids getting stuck at a local minimum by
recording the solution and generating another random starting
point, possibly falling in a different region of attraction.

4) Schedule evaluation: All the used scheduling algorithms
rely on a procedure to evaluate the task schedule. In that re-
spect, we need to find the lowest cost architecture that exhibits
enough parallelism to accommodate the identified scheduling.
Concerning the derivation of valid intra-cluster topologies, we
rely on compatibility graphs [12] to determine the number of
master and slave ports needed by local interconnects.

Definition 1: Given a Communication Scheduling, two
tasks ¢, and ty are compatible if and only if they do not overlap
in time.

Definition 2: Two masters (slaves), including bridge mas-
ter (slave) ports, are compatible if and only if all the tasks
involving them are compatible and they belong to the same
cluster.

a) ek ngsﬁ(ib“ity compa’\?igﬁ:;rgraph compaz:jxtey graph b)M Ry Slave2
NG 2| N 2 Slavel
Q'G\ @ , @ M+ 77 Y [Slave0
e e e]‘; M| T/
doo 66 66 =N
16640 33280 49920
C) task masterr . slave d) Mo So
©-® @O © O N
CANA N S il

S i) NG —

e@ : .. M1 M2

Fig. 2. Deriving a topology from given a schedule. (a) Compatibility graphs
for the schedule in Figure 1. (b) An enhanced schedule, with less concurrency,
for the same application. (c) Its compatibility graphs. (d) The derived topology.

From the above definitions, the construction of compatibil-
ity graphs for communication tasks and then for masters
and slaves is straightforward. Starting from the compatibility
graphs, for each connected component, we solve a clique-
partitioning problem [12] to identify the minimum number of
cliques. Then, we assign a master (slave) port to each clique
in its cluster. If for a cluster a single clique is identified,
both in the master and the slave compatibility graphs, then
a single shared bus is enough because all tasks are compat-
ible, hence sequential. Otherwise a crossbar is necessary. If
there are no compatible masters (slaves) in a cluster, then
a full crossbar will be used. Figure 2 shows the differences
between the compatibility graphs for two different schedules.
In Figure 2.a, masters M; and M5 and slaves S; and Sy are
incompatible with each other. The derived topology, consisting
of a crossbar for cluster C; and a shared bus for Cj, is shown
on the right part of Figure 1. Notice that masters M, and
By, are compatible and, hence, they share the same crossbar
port. Figure 2.b shows a different schedule that removes the
above incompatibility (Figure 2.c). The solution of the clique-
partitioning problem is highlighted by the dotted lines. This
leads to a less expensive architecture, shown in Figure 2.d.

III. EXPERIMENTS AND CASE STUDIES

We carried out our experiments on a ZedBoard FPGA
board by Avnet Design Services, equipped with a device of the
Xilinx ZyanM-7000 family, embedding reconfigurable hard-
ware and a hard-core ARM processor. The custom interconnect
and the communicating elements are mapped onto the recon-
figurable fabric. In particular, salve nodes might be memory
modules or any other memory-mapped hardware peripheral,
possibly generated by means of high-level synthesis [13], [14],
or manually optimized for application-specific purposes [15],
[16]. The ARM processor, on the other hand, runs a software
routine monitoring task execution and enforcing the previously
determined schedule by controlling the communicating ele-
ments. The communication architecture synthesis flow uses
the Xilinx AXI components compliant with the AMBA®
AXI version 4 specification from ARM. We built accurate
analytical models for the evaluation of the area cost and the
latency, obtained by interpolation of extensive RTL synthesis
results. We tested our method for five benchmark applications,
whose DAGs were generated using the TGFF package [17],
removing possible concurrent tasks with the same master. The
characteristics of the benchmarks are summarized in Table I,
where N;, N,,, and N, are the number of tasks, masters, and
slaves, respectively. Table I also gives the number of clusters
N, found after the Communication Element Clustering phase.
To appreciate the overall impact of our method, we compared

TABLE 1. CHARACTERISTICS OF THE BENCHMARKS
N, Ny, N Ne
APP 11 13 5 5 2
APP 111 25 7 8 3
APP IV 31 8 10 4
APP V 43 11 14 5
APP VI 62 12 16 6

it with a previous similar approach [8]. It is important to
point out that [8] does not perform the scheduling step but
only relies on aggregated parameters (i.e. the total amount

of traffic exchanged between master/slave pairs) to automate
the interconnection design. Figure 3 summarizes the results
obtained by applying the two methodologies to all the test
applications. We compared them also with a full crossbar
implementation. Each point in the plot is derived by applying
the methodology to a specific benchmark under a fixed area
constraint ranging between 30% and 70% of the area of a
full crossbar implementation. For each experiment, the points
related to the crossbar implementation are the solution of the
corresponding unconstrained problem, exhibiting the minimum
possible latency at the price of a highly oversized area, while
the other points are Pareto-optimal points. Nevertheless, our
approach is still able to obtain a latency that is roughly the
same as the full crossbar: on average the latency is only 13%
larger compared to the latency obtained with a full crossbar
implementation, while the area is 48% smaller. Using the
approach in [8] we have a performance degradation instead:
on average the latency is 40% larger than our approach,
while the area is roughly the same. In fact, not considering
dependency relationships, [8] may infer a crossbar even when
it is not strictly necessary as well as buses in cases where
some communication tasks can be parallelized. In other words,
it may cause the serialization of tasks on the critical path,
increasing the execution time. The points corresponding to full
crossbars, as expected, are associated with the largest area.

1011 O mm A Full
o Crossbar
3 09 [8]
5]
E 08 Proposed
e} .
@ m Constraint
N o7 o
g A M Appll
= I Applll
§ 0.6 o I ApplV
Il AppV
05 @) AppVI
04
08 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized area

Fig. 3. A plot showing different solutions for various benchmarks and
scheduling algorithms

To better explain these results, we provide Table II. Ele-
ment (4, 7) in the table represents the average fraction of time
in which the communication links are used by application %
using approach j. A low value means wasted area due to
low channel usage. A value equal to 1 would mean a perfect
interconnection for the application. Notice that the approach
in [8] (as well as the use of a single crossbar architecture) may
lead to an underutilized network because it does not consider
dependency relationships, which of course are very likely to
be found in any real application.

TABLE II. COMMUNICATION CHANNEL USAGE
Full [8] Our
Crossbar Approach
APP 11 0.55 0.5771 0.7877
APP 111 0.4383 0.4484 0.5546
APP IV 0.5053 0.4760 0.5496
APP V 0.3912 0.3214 0.4872
APP VI 0.4013 0.3075 0.4782

IV. CONCLUSION

We presented an automated methodology for the synthe-
sis of complex heterogeneous on-chip interconnects made of
crossbars, buses, and bridges. Our solution is based on a
method for balancing the load across the bridges, as well as
a novel approach to combined communication scheduling and
interconnect generation. Experimental results show that our
approach can synthesize designs made of dozens of IP cores
with low communication overheads and area costs, exhibiting
encouraging improvements over alternative proposals.

REFERENCES

[1] A. Cilardo, L. Gallo, and N. Mazzocca, “Design space exploration for
high-level synthesis of multi-threaded applications,” Journal of Systems
Architecture, vol. 59, no. 10, pp. 1171-1183, 2013.

[2] A. Cilardo, D. Socci, and N. Mazzocca, “ASP-based optimized mapping
in a Simulink-to-MPSoC design flow,” Journal of Systems Architecture,
2014.

[3] K. Lahiri, A. Raghunathan, and S. Dey, “Design space exploration
for optimizing on-chip communication architectures,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 23,
no. 6, pp. 952-961, 2004.

[4] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Constraint-driven bus
matrix synthesis for MPSoC,” in Procs. of the 2006 Asia and South
Pacific Design Automation Conference. 1EEE Press, 2006, pp. 30-35.

[5S] S. Murali, L. Benini, and G. De Micheli, “An application-specific
design methodology for on-chip crossbar generation,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 26,
no. 7, pp. 1283-1296, 2007.

[6] M. Jun, D. Woo, and E.-Y. Chung, “Partial connection-aware topology
synthesis for on-chip cascaded crossbar network,” IEEE Trans. on
Computers, vol. 61, no. 1, pp. 73-86, 2012.

[7]1 V. Lahtinen, E. Salminen, K. Kuusilinna, and T. Hamalainen, “Com-
parison of synthesized bus and crossbar interconnection architectures,”
in Procs. of the 2003 Int. Symposium on Circuits and Systems, 2003.
ISCAS’03, vol. 5. IEEE, 2003, pp. V-433.

[8] A. Cilardo, E. Fusella, L. Gallo, and A. Mazzeo, “Automated synthesis
of FPGA-based heterogeneous interconnect topologies,” in Procs. of the
23rd Int. Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2013, pp. 1-8.

[9] N. K. Bambha and S. S. Bhattacharyya, “Interconnect synthesis for
systems on chip,” in Procs. of the 4th IEEE Int. Workshop on System-
on-Chip for Real-Time Applications. 1EEE, 2004, pp. 263-268.

[10] N. K. Bambha and S. S. Bhattacharyya, “Joint application map-
ping/interconnect synthesis techniques for embedded chip-scale multi-
processors,” IEEE Trans. on Parallel and Distributed Systems, vol. 16,
no. 2, pp. 99-112, 2005.

[11] N. R. Devanur and U. Feige, “An o(nlogn) algorithm for a load
balancing problem on paths,” in Algorithms and Data Structures.
Springer, 2011, pp. 326-337.

[12] G. D. Micheli, Synthesis and Optimization of Digital Circuits, 1st ed.
McGraw-Hill Higher Education, 1994.

[13] A. Cilardo, P. Durante, C. Lofiego, and A. Mazzeo, “Early prediction
of hardware complexity in HLL-to-HDL translation,” in Procs. of the
Int. Conference on Field Programmable Logic and Applications (FPL),
2010, pp. 483-488.

[14] A. Cilardo, L. Gallo, A. Mazzeo, and N. Mazzocca, “Efficient and
scalable OpenMP-based system-level design,” in Procs. of Design,
Automation Test in Europe Conference (DATE), 2013, pp. 988-991.

[15] A. Cilardo, “Fast parallel GF'(2™) polynomial multiplication for all
degrees,” IEEE Trans. on Computers, vol. 62, no. 5, pp. 929-943, 2013.

[16] A. Cilardo, N. Mazzocca, and A. Mazzeo, “Representation of elements
in Fom enabling unified field arithmetic for elliptic curve cryptography,”
IET Electronics Letters, vol. 41, no. 14, pp. 798-800, Jul. 2005.

[17] R.P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,” in
Procs. of the 6th Int. Workshop on Hardware/software codesign. 1EEE
Computer Society, 1998, pp. 97-101.

