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Abstract—The coarse-grained reconfigurable architecture
(CGRA) is a promising platform for mobile computing. In this pa-
per, how to prolong the lifetime of battery-powered reconfigurable
computing platform is addressed. Considering the nonlinear
characteristics of battery, a multi-objective optimization model
is built for extending the lifetime of battery. Based on this model,
a joint task-mapping and battery-scheduling method is proposed.
The experimental results show that the proposed method achieves
26.22% improvement of battery runtime on average comparing
to the state-of-the-art methods.

I. INTRODUCTION

The coarse-grained reconfigurable architecture (CGRA) is
characterized by the high parallel computation and flexibility
of reconfiguration, and exhibits high area efficiency and en-
ergy efficiency [1]. It is becoming a promising platform for
mobile computing [2]. As shown in Fig.1, a typical CGRA
is composed of a host controller and a 2-D PE (processing
element) array. Each PE can be configured to perform different
word-level operations. The PEs are power-gated so that the
unused PEs can be closed to reduce power consumption. For
a complex application, it is usually divided into several tasks.
Then these tasks are mapped onto the PE array consecutively.
Different task mapping schemes on PE array bring different
energy consumption.

In mobile computing, the platforms are usually powered
by the batteries and extending the battery runtime is a primary
concern. Reducing the energy consumption of the task execu-
tion will extend the battery runtime [3]. However, because of
the nonlinear discharging characteristics of battery, the battery
runtime is not only decided by the lower energy consumption
but also the battery state [4] that can be denoted as the
residual energy units of the battery. The nonlinear character-
istics include the recovery effect and the ratio capacity effect.
Based on the nonlinear characteristics, some battery-aware task
scheduling methods have been proposed to improve the battery
runtime, such as [5] [6]. However, in the mobile or embedded
application, the amount of concurrent tasks is relatively small.
And the tasks usually have strict dependencies. Therefore the
task scheduling space is limited, which constrains the battery
runtime to be fully extended.

This work is supported in part by the China Major S&T Project
(No.2013ZX01033001-001-003), the International S&T Cooperation Project
of China grant (No. 2012DFA11170), the Tsinghua Indigenous Research
Project (No.20111080997), the NNSF of China grant (No.61274131) and the
China 863 Program (No.2012AA012701).

Fig. 1. The typical architecture of CGRA

On the other hand, the multi-cell structure is adopted in
the practical battery for mobile devices. For example, there
are usually three parallel connecting cells in tablet PC’s (or
PAD’s) battery and each cell is capable to power the device
individually. Taking the nonlinear characteristics into account,
we are inspired that the battery-cell scheduling is a good
way to avoid the dependency constraint of the tasks. The
battery-cell scheduling means that we dynamically switch
battery-cell which powers the mobile device in runtime and
let the other cells stay in idle state. In literature, there are
some previous work about multi-battery scheduling algorithms,
such as [7] and [8], which can be also used in battery-
cell scheduling. These algorithms leverage recovery effect in
switching batteries so that the battery runtime can be extended.
However these methods are not efficient for the reconfigurable
computing platforms since the task mapping constrained by the
features of the reconfigurable architectures are not considered
well.

On the CGRA based mobile platforms, task mapping brings
a new searching space so that the problem of the battery-
cell scheduling should be redefined. Since the battery runtime
is related to the energy consumption and battery state (i.e.
residual battery capacity), we take these two factors as two
objectives, and explore the co-optimization methodology to
reduce the energy consumption and sustain the high battery
state. We propose a joint optimization method which combines
task mapping and battery-cell scheduling together. Comparing
to the state-of-the-art methods, the proposed algorithm can
extend 26.22% battery runtime averagely.

II. BATTERY MODEL

We adopt the Markov battery model [9] as the power source
for the CGRA. This model divides the whole discharging
time into equal time slots, and use the Markov state to
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Fig. 2. The Markov battery model

TABLE I. PARAMETERS DEFINITIONBn the number of batteries.Ct the theoretic energy units of battery.Ca the actual energy units the battery provide(Ca < Ct)(sij ; kij) the state of j battery cell is sij when kij energy units

have been consumed in the i time slot.sij represents the state of the j battery in the Markov

chain, sij 2 f0; 1; 2::::Cag.kij the energy units the j battery has provided

before the i time slot.u represents the discharging stage.um the total stages of discharging, u 2 f1; 2:::umg, u
begins when u energy units have been drained out

and ends when u+1 energy units have been drained

out. (1 = 0; um = Ca)Er represents the energy units recovered during one

time slot because of the recovery effect of battery.

represent the battery state. As Fig.2 shown, s and k denote
the Markov state and energy consumption respectively, wheres 2 f0; 1:::::Ca � 1; Cag. If s increases, the battery state
becomes high. Otherwise, the battery state becomes low. Ifs equals to the zero, the battery has been fully discharged; if s
equals to the Ca, the battery has the full energy units. Let bx
be the probability of x energy units drained from the battery
in each time slot. Let p(s; k) be the recovery probability at
the s state when k energy units has been drained. When the
system is idle, the Markov process moves from low state to
high state because of the recovery effect; when the system is
busy, it moves from high state to low state as the energy units
are drained from the battery. We extend the battery model to
multi-cell battery model and present the parameters in Table
I. In this model, p(sij ; kij) is used as the recovery probability
in the time slot. The expression is shown in (1).p(sij ; kij ) = ( ASe�AN (Ca�sij)�g(kij ); 0 � kij � 1ASe�AN (Ca�sij)�ug(kij ); u � kji � u+1 (1)

In (1), AS is a constant; AN and g(�) denote the recovery
capability of battery. These parameters can be calculated
according to the statistical method [7]. A large value of AN
corresponds to a low recovery capability, while a small value
of AN denotes a high recovery capability. The battery state
is related to its nonlinear characteristics, and maximizing sij
is the objective. Besides, kij represents the energy units that
have been consumed. It drives the Markov states to transit and
is related to the energy consumption of the tasks execution.
Hence, minimizing kij is the other objective.

III. PROBLEM FORMULATION

In this section, we illustrate the task mapping on the CGRA
and build the task model according to the characteristics
of CGRA, then formulate the multi-objective optimization
problem of energy consumption and battery state.

Fig. 3. Task mapping and battey-cell scheduling on CGRA

A. Tasks mapping and battery-cell scheduling on CGRA

In a complex application written in high-level programming
language (e.g. C/C++), there are basically three categories of
structures: sequential structure, selective structure and looping
structure. In selective structure, each branch is composed of
sequential and looping structures. Therefore, without loss of
generality, we can divide a complex application into two kinds
of tasks: sequential logics and loops. For example, as shown
in Fig.3(1), D1 and D4 are sequential logics; D2 and D3
are loops. For simplification, we regard the sequential logic
as loop with only one iteration so that we can use the same
methodology to model the energy consumption of both types
of tasks. If the size of a task is less than the size of PE array
(e.g., D1, D2, D4), it can be mapped to the array without
partitioning. Otherwise, it needs to be partitioned into small
tasks. For instance, the loop D3 is partitioned to three small
loops, D31, D32 and D33. Let Siter(D) be the number of
operators in a task and Hiter(D) be the number of operators in
the critical path of the task. In task partitioning, the size of the
task should be smaller than the size of PE array, and the critical
path of the task should be smaller than the height of PE array.
Hence, we have the constraints in equation (2) and (3), where
the Wpe and Hpe denote the width and height of the array.
Both sequential logics and loops are then mapped onto the PE
array as the Fig.3(2) shown. Especially for loops, they can be
executed in a pipeline way to improve the efficiency. As shown
in Fig.3(3), II is the initiation interval between the iterations.
In each time slot, a different battery-cell is selected to power
the CGRA platform as shown in Fig.3(4). The alternative
scheduling of battery cells is beneficial since each cell gets
time to recover charge during idle periods.Siter(D) � Wpe �Hpe (2)Hiter(D) � Hpe (3)

B. Task model

The procedure of executing a task on CGRA includes four
stages: configuring PE array, loading input data from memory,
executing task and storing output data into memory.

1) Configuration: Let Ionf be the working current of
configuration that represents the current consumed when the
controller writes configuration words into PE’s registers. For a
given CGRA, Ionf is constant. Let Tonf be the configuration



time. It equals to the time of writing the configuration words
to all PEs. Like Ionf , it is also a constant.

2) Data loading and storing: We denote the current of
data loading and storing as Idl and Ids, denote the time of
data loading and data storing as Tdl and Tds, and Vin(D) andVout(D) as the input data volume and output data volume
respectively. The Tdl and Tds are in direct proportion toVin(D) and Vout(D) respectively. The equations (4) and (5)
show the relations where tdl and tds denote the time of loading
and storing one data respectively.Tdl = tdl � Vin(D) (4)Tds = tds � Vout(D) (5)

3) Execution: In this stage, the working current is in
direct proportion to the number of activated PEs (Npe). LetIexe be the working current of the PE array. Since different
operations need different currents, let ipe(op) be the current
of implementing a corresponding operation op. The current of
executing task D is shown in (6). Let Texe be the executing
time of task D. If D is a sequential logic, Texe equals to
the critical path length of D. If D is a loop, considering the
pipeline execution, Texe is shown in (7) where Hiter(D)� tpe
is the time of executing one iteration, � denotes the number
of iterations and tpe denotes the PE executing time.Iexe = XNpe ipe(op) (6)Texe = Hiter(D)� tpe + II � (� � 1) (7)

Based on the above discussion, the total execution timeT (D) and the average working current I(D) are shown in (8)
and (9). If � = 1, I(D) is the average working current of a
sequential logic. Otherwise, it is the current of a loop.T (D) = Tonf + Tdl + Texe + Tds (8)I(D) = Tonf � Ionf + Texe � IexeT (D)+ Tdl � idl + Tds � idsT (D) � � (9)

C. Optimization Problem

Let Q be the number of tasks derived from the applicationAp, and let D(q) denote the task q, where q 2 f1; 2; 3:::::::Qg,
and D(q) = (Iq ; tq; tbq). Iq , tq, and tbq denote the execution
current, execution time and starting time of the task q respec-
tively. The Iq equals to the I(D) and the tq equals to the T (D).
Let T be the maximum execution time for these Q tasks. The
time constraint is shown in (10).QXq=1 tq � T or tbQ + tQ � T (10)

Let oijq be the factor of battery-cell scheduling and task
execution. It means that the j battery-cell is picked to power
the task q in the i time slot, where i 2 f1; 2; 3; ::::::Tg, oijq 2f0; 1g. If

PQq=1 oijq = 0, it means the j battery is idle in the i
time slot, and it will recover energy with the specific recovery
probability. Let E be the intrinsic energy consumption of the
circuits, and let E(Di) be the amount of energy units needed
to execute the task in the i time slot. In order to extend the

battery runtime, we first minimize the energy consumption.
Given Q and T , the first objective is shown in (11).Minimize max(kTj � k1j ); j 2 1::::BnS:t: 8>><>>: k(i+1)j = kij + QXq=1 oijq [E(Di) + E℄oijq 2 f1; 0g; Di 2 fD(1);D(2); ::::::D(Q)g (11)

In (11), (kTj � k1j) denotes the energy consumption of
the j battery during time T . We use min(max(�)) function
to ensure that the total energy consumption of all the battery-
cells is minimal. Let k(i+1)j be the energy units that have
been consumed before the (i + 1) time slot. It equals to the
sum of kij and the energy consumption in the i time slot.
The energy consumption in the i slot includes the energy
units E(Di) and the intrinsic circuit energy consumption E,
where the Di denotes the task number in the time slot i.
These two items are depended by the operation oijq . Be-
sides, we present the second objective in (12) to keep the

battery in high state, where !1 = PQq=1Oijq [E(Di) +E℄,!2 = min((sij +Er); Ca) with p(sij ; kij ).Maximize min(s(T+1)j); j 2 1::::BnS:t: s(i+1)j = 8>>>>><>>>>>: sij � !1; if

QXq=1 oijq = 1!2; if

QXq=1 oijq = 0 (12)

In (12), s(T+1)j denotes the final state of the j battery
after T . We use the max(min(�)) function to ensure that all
the battery-cells sustain the high state after all the Q tasks are

executed. If
PQq=1 oijq = 1, the j battery is selected to power

the tasks, and the battery state s(i+1)j in the (i+ 1) time slot
equals that the current state subtract the energy consumption in

the i time slot. If
PQq=1 oijq = 0, the j battery is idle, and theEr is added to the current state with the recovery probability.

Since Ca is the actual maximum energy units the battery can
provide, we use the function min(�) to ensure that the total
energy units are no more than Ca.

IV. JOINT TASK-MAPPING AND BATTERY-SCHEDULING

METHOD

A. System model transformation

We transform the stochastic problem into the determin-
istic problem to seek the high efficient solution. And letEaver (s0ij ; kij) �= Erp(sij ; kij) be the average recovery energy

units of the j battery cell in the i time slot. s0ij is a new
description of the battery state, and is presented in (13),

where !3(i) = min((sij + (1 �PQq=1 oijq)Eaver (s0ij ; kij) �PQq=1 oijq [E(Di) +E℄); Ca). By means of Eaver (s0ij ; kij),
we equivalently transform the system model.s0ij = � sij ; i = 1!3(i); i = 2; 3::::T (13)

Proposition 1: For the j battery in the i time slot, given the

initial battery state (s1j ; k1j) and Oijq , the s0ij gives a low

bound of the average of sij , namely s0ij � avefsijg, 1 � i �T + 1, avef�g is a function of average.



Proof: In the i time slot, if
PQq=1 oijq = 1, we haveavefs(i+1)jg�avefsijg=s0(i+1)j�s0ij , if the

PQq=1 oijl = 0,

we have the relation as (14) shownavefs(i+1)jg � avefsijg = ErP sijpre(sij ; kij)p(sij ; kij) (14)

where pre(sij ; kij) denotes the probability of battery state(sij ; kij) in the i time slot. Due to the Jensen’ inequality, we
have (15) below.avefs(i+1)jg = avefsijg+ ErX sijpre(sij ; kij)p(sij ; kij)� avefsijg+ Erp(avefsijg; kij) (15)

Besides, we haves0(i+1)j = s0ij + Eaver (s0ij ; kij )= s0ij + Erp(s0ij ; kij)) (16)

Since the initial battery state (s1j ; k1j) is given, we haves02j = avefs2jg , and according to (15) and (16), we haves0ij � avefsijg when i � 3. �
According to Proposition 1, the stochastic optimization

problem in (12) is approximately transformed as a determin-
istic optimization problem in (17).Maximize min(s0(T+1)j ); j 2 1::::BnS:t: s0ij = � sij ; i = 1!3(i); i = 2; 3::T (17)

B. Heuristic algorithm

This heuristic algorithm includes Algorithm 1 and Al-
gorithm 2. We first rank the equation (11) as the primary
objective and equation (17) as the secondary objective, and
denote Æq(= Iq) as the energy efficient factor of task q. Here Æq
is an indicator for tasks assignment and is used to generates the
energy efficient array Ef (m). Ef (m) is an index array of the
descending sort of Æq. Since the battery has the ratio capacity
effect, the large discharging current and short time duration
results in low discharging efficiency. Hence, we define a cost

function, � = PQq=1 (I(Dq) � T (Dq))=(PQq=1 T (Dq))2, to
evaluate the partitioning performance. The smaller � means
that the task partitioning is more energy-efficient.

Algorithm 1 targets partitioning a large task into some
small ones. The Fig.4 illustrates the procedure of task par-
titioning. It first computes the initial connection array (Ar)
whose size is num(Ap) � num(Ap). The num(Ap) denotes
the number of nodes in a task. The array element denotes the
connection between the node r1 (depicted by the row number)
and node r2 (depicted by the column number). If Ar(r1; r2) =1, it means r1 is the start point. If Ar(r1; r2) = �1, it meansr1 is the end point. If Ar(r1; r2) = 0, it means there is no
connection between r1 and r2. Then it implement the IBFS
(Improved Breadth First Search) method on the Ar to search
the optimal cut. If the edge of (r1, r2) is cut, the Ar(r1; r2) is
set to 0. For example, as shown in Fig.4, Ar(1; 3) is set to 0
when the edge of (1, 3) is cut. According to the cuts, the tasks
are generated by merging the nodes that are interconnected.
When these tasks meet size and time constraints in (2)-(3) and
(10) (denoted by Cons(S; T ) == 1), the � is computed. If

� is smaller than that in the previous search (� 0 ), the IBFS
is continued until the nodes are all searched. Otherwise, it
backtracks to the last change and the IBFS is continued until
all the nodes are searched. Finally, we will get the task groups�A!G which is most energy-efficient.

We compute the Iq of each generated task and then we get
the efficient array, Ef (m), by sorting the Iqs. According to the
efficient array, the Algorithm 2 first implements the battery-
cell scheduling. We traverse the tasks according to the order inEf (m). And in each time slot, we select the battery-cell which
has been drained the least energy units to power the current
task. When m = Q, the initial scheduling scheme of oijq is
obtained. The initial scheme of oijq determines the order of

battery-cells to be used. Considering the slack of T�PQq=1 tq,
we can move the idle time to improve charge recovery further.
Then we transform the objective (17) into (18).min(max( TPi=1 QPq=1 oijqE(Di)� TPi=1 (1� QPq=1 ijq )Eaver (s0ij ; kij))) (18)

Algorithm 1 Task partitioning

Input:Ap, Wpe, Hpe , T , �0 = 0, Ar(r1; r2)(pre-computed);
Output: optimal partition of Ap: �A!G

1: for r1 = 1; r1 <= num(Ap); r1 ++ do

2: for r2 = 1; r2 <= num(Ap); r2 ++ do

3: if Ar(r1; r2)!=0 then

4: tmp = Ar(r1; r2), l1 = 0; l2 = 0;= 0;

5: Ar(r1; r2)=0, A0r =refresh(Ar), flag = 1;
6: while l1 <= num(Ap) do

7: while l2 <= num(Ap) do

8: if A0 (l1; l2)= 0&&A0(l1; l2) \ �A!G = null then

9: Node(l1; l2) �! �A!G(q ++);
10: else

11: if A0 (l1; l2)= 0 then
12: Node(l1; l2) �! �A!G;
13: end if

14: end if

15: end while
16: end while

17: if Cons(S; T ) 6= 1 in �A!G then

18: flag = 0.
19: end if

20: if flag == 1 then

21: compute the � .

22: if � > �0 then
23: Ar(r1; r2) = tmp.
24: else

25: �0 = � , Ar = A0r .
26: end if
27: else

28: Ar(r1; r2) = tmp.
29: end if
30: end if

31: end for

32: end for

33: return �A!G .

Since
PTi=1PQq=1 oijqE(Di) is determined by the initial

scheme of oijq , the problem in (18) is equivalent to maximize

the
PTi=1 (1�PQq=1 oijq)Eaver (s0ij ; kij). As shown in the

steps between 17 and 24 in the Algorithm 2, the idle time

slots that satisfy
PQq=1 oijq = 0 are distributed. According to

the equation (1), the Eaver (s0ij ; kij) increases with s0ij . Hence,
we allocate the idle time slots at the beginning of tasks where



Algorithm 2 Battery cell scheduling

Input:�A!G , Q, i = 1, m = 1, l = 1;
energy efficient array: Ef (m); m 2 f1; 2:::Qg;

Output: the final scheduling scheme of oijq ;
1: sample the battery status: kj , j 2 1:::Bn;
2: sort the kj in an ascending order to generate battery index Bs(j);
3: for j = 1; j <= Bn; j ++ do

4: if battery Bs(j) is idle then
5: choose the battery Bs(j); break;
6: end if

7: end for

8: if m > Q then
9: go to step 17;

10: else

11: if i < tEf (m) then

12: q = m; oijq = 1; i++; go to step 1;
13: else

14: m++; go to step 1;
15: end if

16: end if

17: acquire the initial scheduling scheme of oijq ;
18: insert one idle time slot at the beginning of task interval; refresh all oijq ;
19: if all the idle time slots are inserted then

20: go to step 27;
21: end if
22: if Eaver (s0ij ; kij) + s0ij < Ca then

23: go to step 18;
24: else
25: move to next task interval, goto step 18;
26: end if

27: return The final scheduling scheme of oijq ;
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Fig. 4. Task partition illustration (assume Wpe = Hpe = 2)s0ij is high. Since Ca is the actual energy units the battery can

provide, if Eaver (s0ij ; kij) + s0ij > Ca, no energy unit can be
recovered. When we distribute the idle time slots, the conditionEaver (s0ij ; kij) + s0ij < Ca needs to be met.

V. EXPERIMENT

A. Experimental setup

We use a low power reconfigurable processor (REINDEER
[10]) as the experimental platform. It contains 4 reconfigurable
architectures (RCAs). Each RCA is a 8�8 PE array. Fig.5(a)
shows the die photograph. The clock frequency is 100MHz;Ionf is 20 mA; Tonf is 4 cycles; Idl and Ids are 12mA;tdl and tds are 2 cycles; tpe is 1 cycle. Besides, we build

(a) Die photograph (b) Multi-cell battery platform

Fig. 5. The experimental platform
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(a) AN effect (Bn = 2)
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(b) Time complexity

Fig. 6. AN effect and time complexity

an improved multi-cell battery which supports the battery-
cell scheduling. As shown in the Fig.5(b), the multiple li-
ion cells are organized in a parallel way and can power
the REINDEER platform individually. The capacity of each
battery-cell is 1200mA-h. The battery-cell switching circuits
are made up of the low power CMOS transistors. According
to the scheduling algorithm, the processor sends commands to
the IO ports (GPIO [3:0]) to select the proper battery-cell.

We adopt a set of benchmarks collected from multimedia
(e.g. H.264 decoding) and computer vision (e.g. SIFT: Scale-
Invariant Feature Transform) applications for both simulation
and physical verification. In previous works, there is no joint
optimization method considering task-mapping and battery-
cell scheduling simultaneously. For example, Jawad’s method
[6] only considers battery-aware task scheduling on FPGAs.
Peng [7] and Mandal [8] focus on the multi-cell battery
scheduling without considering application partition. Jonghee
[3] focuses on the task mapping without considering the
characteristics of multi-cell battery. Hence, we combine these
works to construct two methods (Peng [7]+Jonghee [3] and
Mandal [8]+Jonghee [3]) for comparison. These combined
methods include both application partition and battery-cell
scheduling. In simulation, we examine the time complexity
of the proposed method and test the effects of different AN
that implies the variation of nonlinear effect. Fig.6 shows the
simulation results. In the physical verification, we evaluate the
performance under different benchmarks and different number
of battery-cells. Fig.7 and Fig.8 show the results of physical
verification.
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Fig. 7. Battery runtime for different benchmark examples (Bn = 2)
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B. Results Comparison

As shown in the Fig.6(a), with AN ranges from the 0.02 to
0.8, the final battery state (i.e. the residual energy) decreases.
This is because the recovery effect is more significant when theAN tends to 0. These results show that the proposed method is
effective no matter the battery types (with different AN ) are.
Especially for the battery with low AN , the improvement of
battery runtime is more obvious. The Fig.6(b) shows the time
complexity of proposed heuristic algorithm. In Algorithm 1,
the IBFS method costs the most time. Since the IBFS focuses
on the connection point pairs, the time complexity is O(N2),
where N is the number of nodes in DFG need to be partitioned.
The core part of Algorithm 2 is the traversing of battery-cells.
Therefore the time complexity is O(M2=2) where M is the
number of battery-cells. Since the number of battery-cells is
usually small, the total time increases steadily as shown in
Fig.6(b) which fully proves this heuristic solution is efficient.

In the Fig.7, for all benchmark examples, the proposed
method achieves the average 26.6%, 30.1%, 21.97% improve-
ment on the battery runtime over the method Peng [7]+Jonghee
[3], Jawad [6] and Mandal [8]+Jonghee [3] respectively. The
average improvement is 26.2%. These results strongly show
that the joint task-mapping and battery-scheduling method
is better than either single optimization method. The im-
provement is in three aspects. First, the task model of our
method considers CGRA’s special operation model including
configuration, data loading/storing and execution which is
more precise than other methods. Second, task partitioning
in our method is energy-aware which uses time averaging

working current as partitioning metric. Third, the battery-cell
scheduling leverages the recovery effect greatly resulting in
high residual battery capacity.

In the Fig.8, with the number of battery-cells varies from
two to six, the battery runtime increases largely. The extension
of battery runtime is mainly benefited from the increasing of
battery capacity and the contribution of our method. With the
increase of the number of battery-cells, the battery achieves
more performance improvement since the battery-cell schedul-
ing provides more idle time for each cell to recover the energy
units. As shown in the Fig.8, the average performance curve
increases quickly when the battery-cell number increases from
two to four, and the curve tends to increase slowly when
the number of battery-cells increases from four to six. This
is because the impact of recovery effect decays with time.
Although each cell has more idle time when the number of
battery-cells increases, the energy cannot be recovered with
the same ratio as the idle time increases.

VI. CONCLUSIONS

In this work, considering the energy consumption and
battery state as a whole, we propose an efficient way of
extending the battery runtime on the multi-cell battery pow-
ered CGRA. We propose a joint task-mapping and battery-
scheduling method based on energy consumption and battery
state model. The experimental results show that the proposed
method outperforms the state-of-the-art methods in terms of
improving battery runtime.
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