
Unified, Ultra Compact, Quadratic Power Proxies
for Multi-Core Processors

Muhammad Yasin, Anas Shahrour, Ibrahim (Abe) M. Elfadel
Institute Center for Microsystems (iMicro)

Masdar Institute of Science and Technology
Abu Dhabi, UAE

Abstract—Per-core power proxies for multi-core processors are
known to use several dozens of hardware activity monitors to
achieve a 2% accuracy on core power estimation. These activity
monitors are typically not accessible to the user, and even if they
were accessible, there would be a significant overhead in using
them at the kernel or OS level for power monitoring or control.
Furthermore, when scaled up to hundreds of cores per chip,
such power proxies become a computational bottleneck for power
management operations such as chip power capping. In this
paper, we show that a 4% accuracy or better for per-core power
estimation can be achieved using an ultra compact power proxy
based on a hybrid set of only four user-accessible parameters,
namely core frequency, core temperature, instruction-per-cycle
and active-state residency. Our proxy is nonlinear, valid across
all P and C states, and is based on a randomized power data
collection strategy that aims at exercising all the P and C levels of
each core. We illustrate the accuracy of the model using the full
suite of the SPEC CPU 2006 benchmarks on a 12-core processor.

I. INTRODUCTION

An intuitive and logical way to implement power man-
agement and control policies in multicore systems is at the
granularity of a core. Unfortunately, direct measurement of
per-core power using hardware power meters is not scalable
for large number of cores [1] as it creates demand for
sampling/ aggregating large amounts of data and coordination
among multiple power metering devices. Even in cases where
some support for per-core power metering exists, no such
information is accessible at the OS or application level. A case
in point is the power proxy used in IBM’s eight-core Power7
processor [2] where more than 40 hardware activity monitors
per core are used as input to a core power proxy that is linear
in the values of the monitors and within 2% accuracy. These
activity monitors are not user-accessible. Our work is focused
on developing and validating ultra compact, per-core power
proxies for multi-core processors using a very small set of
PCM’s that are all user-accessible. Our ultimate goal is to use
such models for developing scalable, control-theoretic policies
[3], [4] for power management of mega core processors

In a recent paper [5], we used Intel’s Running Average
Power Limit (RAPL) interface to develop linear and quadratic
models for per-core dynamic power consumption based on
performance monitoring counters. We validated the models on
an industrial platform, namely Dell’s PowerEdge T620 server
equipped with two 6-core Intel Xeon E5-2630 processors. The

power models we developed are of two different categories:
a linear model for the case when sleep states (also called
C-states) are disabled and a quadratic model for the case
when sleep states are enabled. We have found that a linear
model with frequency and IPC alone can estimate power to
high accuracy when the sleep states are disabled. However,
when the cores are allowed to enter power-saving sleep states,
we have used active-state residency in the power proxy as
a modulator on other PCM’s. This has resulted in a novel
quadratic power proxy in the PCM’s, which is accurate to
within 4% and having an order of magnitude less parameters
than a state-of-the-art per-core power proxy [2].

In this follow-up paper, we combine the linear and quadratic
models to develop a single unified model for per-core power
consumption representing both usage scenarios for the sleep
states. The unified model is nonlinear, and the C0RES parame-
ter (active-state residency) is used to modulate all other PMC
values. The unified nonlinear model uses only four PMC’s
and is accurate to within 3.30%. A distinguishing feature of
our model is its ability to accurately predict per-core power
across all P (performance) and C (sleep) states. This is to be
contrasted with [1] where a separate power model is needed for
each DVFS level and where sleep states were not considered.
In order to broaden the validity domain across all P and
C states, we have used a novel randomized data collection
strategy that has insured the exercising of all DVFS and sleep
levels for each core in the processor.

The rest of this paper is organized as follows. Section
II reviews power modeling using performance monitoring
counters. Section III describes the modeling and evaluation
methodology, especially as it relates to the sleep states of
each core. In section IV, we describe our novel data collection
strategy and present the experiments performed as well as the
validation results. Finally, conclusions and future work are
given in section V.

II. RELATED WORK

Bellosa et al. [6] presented the idea of treating power as
a resource and used hardware performance monitoring coun-
ters to estimate power consumption at particular frequencies.
Bircher et al. [7] identified the correlations of certain PMCs
with power and determined under what conditions PMCs like
IPC could effectively represent power consumption. In the
context of per-core modeling in multicore systems, Goel et978-3-9815370-2-4/DATE14/ c©2014 EDAA

al.[1] have developed piecewise linear per-core power models
for systems with up to 8 cores. A correlation-based scheme
is used for selecting appropriate performance counters. The
resulting power model is specific to a particular frequency.
Takouna et al. [8] have found a strong linear relationship
between the number of active cores and power consumption.
Their power consumption model for a multi-core processor
uses the average operating frequency and the number of active
cores. None of the reported power models accounts for the
effect of sleep states on power consumption.

III. METHODOLOGY

This section describes PMCs and power monitoring, the
criteria for PMC selection, and the evaluation methodology.

A. Monitoring Power and PMCs

All modern processors, especially the mobile platforms
come with some sort of power management support at lev-
els varying from hardware to OS-level. For example, Intel
Sandy Bridge processors come with digital energy metering
and power limiting capabilities through the Running Average
Power Limit (RAPL) interface [9]. The focus of our work is
to utilize the per-socket energy consumption provided by the
RAPL interface and estimate power consumption on a per-core
basis.

In order to access RAPL energy values, we make use of
the Intel Performance Counter Monitor (PCM) [10]. Intel
PCM is a tool that supports monitoring of hardware perfor-
mance counters on Intel processors. The per-core performance
counters monitored include: EXEC, IPC, AFREQ, L2MISS,
L3MISS, L2HIT, L3HIT, residencies for C-states, and TEMP.
EXEC corresponds to instructions per nominal CPU cycle
whereas IPC refers to Instructions per CPU cycles where only
the cycles during which CPU is active are counted. TEMP
represents core temeprature.

B. Effect of Sleep States

Modern processors support ACPI-compliant sleep states.
Depending upon the perceived duration of idleness, a proces-
sor may turn off its components resulting in significant power
savings. Sleep states are also referred to as C-states. State C0 is
the active or un-halted state. Deeper sleep states are indicated
by higher C indices. The higher the index the more processor
components are turned off in the corresponding sleep state.
In a multicore processor, some cores can be put to partial or
complete sleep based on the workload.

C. Per-core Power Model

Let us denote by PN the total power of N active cores.
Then we have:

PN =

N∑
n=1

Pc(n) with Pc(n) =

Kn∑
i=1

αniCni (1)

where Pc(n) represents the power consumed in the n-th core
and is assumed to be a linear combination of Kn performance
counters, Cni, 1 ≤ i ≤ Kn, and the αni are the weighting
coefficients.

D. Evaluation Methodology

We develop and validate per-core power models across 30
programs from the SPEC CPU2006 benchmark suite. The
benchmark suite comprises both integer and floating point
programs. SPEC CPU2006 benchmarks are inherently single-
threaded. We execute multiple copies of a benchmark program
in parallel to make multiple core execute some tasks. We use
least-squares regression to find the model’s coefficients, and
4-fold cross validation scheme for model validation. The data
collected is repeatedly divided into training and test datasets.
In each iteration, the model coefficients are computed based on
training data and validated on the test data using mean absolute
error (MAE). The final model coefficients and modeling error
are the average of values over the 4 iterations.

IV. EXPERIMENTS AND RESULTS

A. Platform Specifications

We conducted all of our experiments on Dell PowerEd-
geT620 server running Red Hat Enterprise Linux Server 6.1
with Linux kernel 2.6.32. The server has two Intel Xeon E5-
2630 processors, each with 6 cores, for a total of 12 cores.

Intel R© PCM gives us two power measurements, one for each
socket or processor. Data is collected from PCM in csv format
and Matlab is used for statistical analysis and regression. Xeon
E5-2630 processors support 12 discrete DVFS set points or P-
states raning from 1.2GHz to 2.3GHz. To set the frequency of
a core, we use the CPUfreq kernel infrastructure and userspace
governor.

B. Data Collection

In contrast with [1] where a separate model is needed for
each available DVFS, one of our main objectives is to develop
a power model that is valid across all DVFS levels. This re-
quires that we collect data at all possible combinations of core
DVFS settings. Note that this is impossible to achieve using
the default Linux kernel where conservative, performance or
on-demand policies are pre-defined and used. It is interesting
to note that the default behavior of the kernel, for all SPEC
CPU2006 benchmarks, is to assign a corner DVFS to the
core. As illustrated by the histogram in Figure 1(a), even for
the on-demand governor, the least aggressive adaptive policy,
often the cores operates at one of two extreme DVSF levels.
Intermediate frequencies are rarely assigned as indicated by
very low probability of occurrence.

For near-uniform coverage of the DVFS space, we assign
DVFS levels to the cores randomly after regular intervals
of five seconds throughout the execution of a benchmark.
It is clear from the histograms in Figure 1(b) and 1(c) that
this random DVFS assignment scheme can cover the entire
DVSF space much more uniformly than can be done using
the existing linux governors.

C. Impact of Sleep States

In case of multiple cores, not all cores have to be active at
the same time. Depending on the characteristics of the work-
load under execution, some cores can be idle and thus enter

(a) Ondemand Governor (b) C-states Enabled (c) C-states Disabled

(d) Ondemand Governor (e) C-states Enabled (f) C-states Disabled

Fig. 1. Effective frequency (top) and power (bottom) histograms for the xalancbmk benchmark

Fig. 2. Difference in power consumption with and without C-states

a sleep state. This directly translates into savings in power
consumption. Figure 2 shows the total power consumption
when all 12 cores are active and running the same workload.
This is done for the two cases of sleep states enabled and
disabled. The power reduction resulting from enabling C-states
is clearly shown in Figure 2 and is the main motivation for
developing a power proxy adapted to each C-state setting.

This reduction in total power consumption may be further
explained by comparing frequency histograms in Figures 1(b)
and 1(c) against the power histograms in Figures 1(e) and
1(f). For these experiments, two cores were active, one in each
socket, and only one SPEC CPU2006 benchmark was running
on the processor. When the C-states are disabled, all the cores
are active and a change in frequency instantly leads to a change
in power consumption. When C-states are enabled, however,
one core can go idle, as can be observed in Figure 1(e) in
terms of almost constant power consumption for core 1.

D. Performance Monitoring Counter Selection

The lower the number of performance counters selected
for power proxy, the more scalable is model wit increasing

Fig. 3. Correlation of various PMCs with Processor Power

number of cores. A very small number of counters, however,
may result in a significant loss of modeling accuracy. We
have therefore to identify the key performance counters that
correlate best with power consumption.

Figure 3 shows the correlation between power consumption
and the per-core PMCs. Power has high correlation with
C0RES, EXEC, TEMP, IPC and operating frequency FREQ.
These high correlation values are very intuitive. Enabling sleep
states results in a lower correlation of power with frequency
and temperature.

Including two PMCs which are not independent in the
regression models may deteriorate the model accuracy, and in
a linear model may typically results in a negative weight (α′s
) for one of the PMC’s. Ranking based on correlation, we have
chosen the following four performance counter for multicore
power modeling: IPC, FREQ, TEMP and C0RES as they
exhibit the highest correlation with core power consumption.
The introduction of a temperature term will help account for
leakage power and is in line with other models accounting for
both dynamic and leakage power [3].

TABLE I: Coefficients for the unified model

Parameter Value
αFREQ 6.39
αIPC −0.16
αC0RES −0.08
αTEMP .02
α0 41.34
MAE 3.30%

Fig. 4. Multicore power estimation with the unified power model for 12 active
cores

E. Unified Power Models with 4 Performance Counters

In our previous work [5], we reported on two different
power models, one for sleep states enabled and other for
sleep states disabled. In this work, we present a single unified
model which captures power consumption for both scenarios.
In order to incorporate the effect of sleep states, we modulate
the performance counters by the C-state residency parameter,
namely, C0RES, as represented in

P = α0 + αTEMP

N∑
n=1

Cn
TEMPC

n
C0RES

+ αFREQ

N∑
n=1

Cn
FREQC

n
C0RES (2)

+ αIPC

N∑
n=1

Cn
IPCC

n
C0RES + αC0RES

N∑
n=1

Cn
C0RES

where n indicates the core number, N is the total number
of active cores, and P is the total power consumption of
the processor. The power of the nth core is the weighted
sum of the performance counter values corresponding to the
core. Modulating performance counter values by the C0RES
parameter results in a nonlinear model. To compute its coef-
ficients, nonlinear regression is used with optimal parameters
given in Table I. It is worth nothing that when C-states are
disabled, a core can not enter any of the sleep states, and the
C0RES is 100%. The model becomes effectively linear. Figure
4 illustrates the accuracy of the model in tracking processor
power through all sleep-state scenarios. The Mean Absolute
modeling Error (MAE) for this unified model is only 3.30%.

V. CONCLUSION AND FUTURE WORK

In this paper, we have developed a unified scalable per-
core dynamic power proxy for multicore processor using Intel
RAPL Interface. The main novelty of our power proxy is
the introduction of sleep-state residency as an independent
performance counter and as a modulator for other counters.
The latter feature makes the model quadratic and results
in improved accuracy especially when core sleep states are
enabled. The model has been validated using SPEC CPU2006
benchmarks on a 12-core processor with MAE error of 3.3%.
Default Linux kernel drivers and policies have been used for
C-state transitions. Deeper insights can be obtained into power
consumption behavior of C-states by customizing the Linux
drivers. Only the performance counters supported by Intel
PCM have been considered. In the future, we plan to use
tools such as pfmon and integrate them with the Intel RAPL
interface to extend the PCMs used. We also plan to train and
test the new power proxy model using media, productivity and
web-centric workloads.

ACKNOWLEDGMENT

The authors would like to acknowledge very helpful dis-
cussions with Andrew Henroid from Intel, and with Pradip
Bose, Alper Buyuktosunoglu, and Canturk Isci from IBM.
This work was supported by SRC under Contract 2011-TJ-
2192 with customized funding from ATIC, Abu Dhabi, UAE.

REFERENCES

[1] B. Goel, S. A. McKee, R. Gioiosa, K. Singh, M. Bhadauria, and
M. Cesati, “Portable, scalable, per-core power estimation for intelligent
resource management,” in Int. Green Computing Conference, 2010.

[2] M. Floyd, M. Ware, K. Rajamani, T. Gloekler, B. Brock, P. Bose,
A. Buyuktosunoglu, J. Rubio, B. Schubert, B. Spruth, J. Tierno, and
L. Pesantez, “Adaptive energy-management features of the ibm power7
chip,” IBM Journal of Research and Development, vol. 55, no. 3, pp.
8:1–8:18, 2011.

[3] W. Huang, C. Lefurgy, W. Kuk, A. Buyuktosunoglu, M. Floyd, K. Ra-
jamani, M. Allen-Ware, and B. Brock, “Accurate fine-grained processor
power proxies,” in Proceedings of the 45th Annual International Sym-
posium on Microarchitecture, December 2012, pp. 224–234.

[4] A. Bartolini, “Dynamic power management: from portable devices to
high performance computing,” Ph.D. dissertation, University of Bologna,
2011.

[5] M. Yasin, A. Shahrour, and I. Elfadel, “Ultra compact, quadratic
power proxies for multi-core processors,” in 20th IEEE International
Conference on Electronics, Circuits, and Systems (ICECS), 2013.

[6] F. Bellosa, “The benefits of event: driven energy accounting in power-
sensitive systems,” in Proceedings of the 9th workshop on ACM SIGOPS
European workshop: beyond the PC: new challenges for the operating
system. ACM, 2000, pp. 37–42.

[7] W. Bircher, J. Law, M. Valluri, and L. K. John, “Effective use of
performance monitoring counters for run-time prediction of power,”
University of Texas at Austin Technical Report TR-041104-01, 2004.

[8] I. Takouna, W. Dawoud, and C. Meinel, “Accurate mutlicore processor
power models for power-aware resource management,” in Dependable,
Autonomic and Secure Computing (DASC), 2011 IEEE Ninth Interna-
tional Conference on. IEEE, 2011, pp. 419–426.

[9] A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann, “Power
management architecture of the 2nd generation intel R© core microarchi-
tecture, formerly codenamed sandy bridge,” 2011.

[10] T. Willhalm. (2012, August) Intel performance counter monitor
- a better way to measure cpu utilization. [Online]. Avail-
able: http://software.intel.com/en-us/articles/intel-performance-counter-
monitor-a-better-way-to-measure-cpu-utilization

