
978-3-9815370-2-4/DATE14/©2014 EDAA 

 

mDTM: Multi-Objective Dynamic Thermal Management 
for On-Chip Systems 

Heba Khdr, Thomas Ebi, Muhammad Shafique, Hussam Amrouch, Jörg Henkel 

Karlsruhe Institute of Technology (KIT), Chair for Embedded Systems, Karlsruhe, Germany 

heba.khdr@infromatik.uni-karlsruhe.de; {thomas.ebi, muhammad.shafique, amrouch, henkel} @ kit.edu 

Abstract— Thermal hot spots and unbalanced temperatures between 

cores on chip can cause either degradation in performance or may 

have a severe impact on reliability, or both. In this paper, we propose 
mDTM, a proactive dynamic thermal management technique for on-

chip systems. It employs multi-objective management for migrating 

tasks in order to both prevent the system from hitting an undesirable 

thermal threshold and to balance the temperatures between the cores. 
Our evaluation on the Intel SCC platform shows that mDTM can 

successfully avoid a given thermal threshold and reduce spatial 

thermal variation by 22%. Compared to state-of-the-art, our mDTM 
achieves up to 58% performance gain. Additionally, we deploy an 

FPGA and IR camera based setup to analyze the effectiveness of our 

technique. 

I. INTRODUCTION AND RELATED WORK 
Shrinking feature sizes of chip structures accompanied with the 

increase in performance demand result in high on-chip power densi-

ties, and thereby high temperatures. Hence, thermal hot spots are 

induced that jeopardize chip reliability through e.g. electromigration, 

negative bias temperature instability (NBTI), etc. [12]. Moreover, 

elevated temperatures decrease interconnects’ speed entailing perfor-

mance loss [15]. Two other thermal factors, namely spatial thermal 

variation (i.e. the temperature difference between two cores Δi,jT = 

Tcore_i – Tcore_j) and temporal thermal variation (i.e. temperature 

difference for a core ΔT in a given time interval due to thermal 

cycles1), also undermine reliability and reduce the lifetime of the chip 

[12]. These effects induce uneven interconnect delay throughout the 

chip dimensions resulting in clock skew problems, and thereby lead to 

timing errors [8]. Besides their negative impact on reliability, thermal 

variations akin to unbalanced thermal stress across the chip can cause 

permanent physical damage through package fatigue and plastic 

deformation [3]. 

Relying on cooling infrastructure alone to protect chips from high 

temperatures is not always feasible, especially for embedded systems, 

not only because of the relatively high monetary cost [19], but also 

because of the space the cooling infrastructure requires. As a result, 

minimizing severe thermal behavior is an important and continuous 

challenge for researchers in the nano-scale era. 

A. DTM Challenges 
For developing efficient dynamic thermal management (DTM) 

techniques, the following two key challenges need to be addressed: 

1) Avoiding Threshold Temperature: The primary goal of most of 

the DTM techniques is to keep temperatures below the thermal 

threshold Tth, which is a specific temperature that must not be ex-

ceeded in order to ensure reliability and maintain performance2. 

Means to accomplish this are, for instance, task migration or Dy-

namic Voltage Frequency Scaling (DVFS) when temperatures ap-

proach Tth. Another related issue is to lower the peak temperature 

[23, 25] in addition to avoiding the thermal threshold for further 
improvement of the chip lifetime [26]. 

                                                                 
1
 Thermal cycles are subsequent periods of heating and cooling. 

2
 It is used to determine the Thermal Design Power (TDP), i.e., the avg. 

maximum power of a chip that can be dissipated (e.g., 125W for Intel SCC). 

2) Achieving Balancing of Temperatures across the chip to 

minimize the maximum thermal variation MAX(Δi,jT), which is the 

maximum difference in temperature between the hottest and the 

coldest core. This is typically accomplished by reducing the power 

consumption on the hottest core through the mechanism of task 

migration. Achieving balance results in a reduction of the maxi-

mum possible temporal thermal variation and balanced aging of 

different cores in an on-chip system. By decreasing MAX(Δi,jT), 

the bounds for ΔT are reduced as well, as migrating a task from 

the hottest core to the coldest will decrease MAXi,j(T) and increase 

MINi,j(T). 

B. State-of-the-Art DTM Techniques 
In response to these challenges, several DTM techniques have 

emerged to address the thermal concerns. Early DTM techniques 

employ clock gating to prevent the system from hitting a given 

thermal threshold [7, 18]. Besides preventing to exceed the thermal 

threshold, these techniques also significantly reduce the power 

consumption. However, they induce a sharply varying thermal profile, 

i.e. the temperature observation shows large spatial and temporal 

variations. Other techniques employ DVFS as a way to provide a 

smoother thermal control for avoiding a specific thermal threshold 

[22, 21, 14]. Zanini et al. [21] present a policy based on Model 

Predictive Control (MPC) to determine the frequency and voltage 

values, which prevent hitting a given thermal threshold while meeting 

performance requirements. In order to mitigate the overhead of 

thermal management that increases as the number of cores on chip 

grows, a distributed MPC-based technique is introduced in [6]. In 

[14], distributed PI controllers are employed to adjust the core fre-

quencies such that the temperature is kept just below a preset thermal 

threshold. In order to alleviate the performance penalty associated 

with the clock gating and DVFS, task migration based techniques are 

utilized for DTM [11, 20]. Predictive thermal management technique 

proposed in [20] maintains the system below a specific thermal 

threshold using task migration. When the temperature of a core 

exceeds the given thermal threshold, the running task will be migrated 

to the coolest core. This work exploits the application thermal behav-

ior and the core thermal characteristic to predict the temperature. 

However, these state-of-the-art DTM techniques avoid a thermal 

threshold but without aiming to balance the temperatures between 

cores. Moreover, [7, 18] even increase the spatial and temporal 

thermal variations, especially when applied to systems with many 

cores. 

A different branch of DTM techniques focus on balancing tempera-

tures between cores to minimize negative effects from thermal 

variations [13, 17, 9, 10]. Coskun et al. [9] present the concept of a 

proactive DTM technique that aims to predict temperatures in order to 

act before thermal problems actually occur. Using an “auto-regressive 

moving average” model to predict temperatures, they succeed to 

reduce thermal variation and thermal hot spots. Another work in [10] 

proposes a distributed thermal management policy DTB-M to balance 

the temperatures via task migration among only the neighboring cores, 

so that the performance overhead of task migration is alleviated. 

Similar to [9], the temperatures of the cores are balanced and the 

violations of thermal hot spots are reduced but not avoided. Thus, 



these techniques may not be efficient in terms of thermal threshold 

avoidance. 

In summary: State-of-the-art DTM techniques either avoid thermal 

thresholds or balance temperatures between cores. However, address-

ing only one of these two thermal concerns isolated from the other 

(like, only avoiding thresholds) does not solve the other concern (in 

this example: thermal imbalance) and thereby is not sufficient to 

present a solution for the reliability concerns resulted from the thermal 

issues. To illustrate such scenarios, we performed a practical case 

study on the Intel SCC platform as discussed below. 

C. Motivational Case Study 
Within this case study, we show how single-objective DTM tech-

niques that aim to either avoid the threshold or balance the tempera-

ture can not address the complete thermal concerns. For this purpose, 

we detail two scenarios on the SCC showing 32 core temperatures 

while running various workloads. The upper part of Fig. 1 shows an 

excerpt of core temperatures of an important observation point. The 

temperatures in the first scenario are managed using the threshold-

avoidance DTM [20] (Fig. 1-a), while Balancing DTM is applied on 

the second scenario [9] (Fig. 1-b). The lower part of Fig. 1 shows the 

maximum spatial variation and temperature over time. 

Fig. 1-a shows that the thermal threshold is avoided but the spatial 

variations are significantly high, because threshold-avoidance DTM 

just considers cores which are approaching the threshold in order to 

avoid it using task migration without observing the spatial variation 

between the cores to balance them. In contrast, the spatial thermal 

variations are reduced in Fig. 1-b, but the preset threshold is hit after a 

period of time, because the Balancing DTM just observes the spatial 

variation between the cores to distribute them as evenly as possible, 

and ignores the case where the temperatures of all cores are increased 

and hit the threshold. 
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Fig. 1: Motivational case study illustrating the limitations of threshold-

avoidance DTM and Balancing DTM 

In order to alleviate the reliability threats incurred from thermal 

behavior in on-chip systems, it is necessary to simultaneously 

address both thermal concerns (i.e. threshold avoidance and thermal 

balancing) in DTM techniques. 

D. Our Novel Contributions and Concept Overview 
We propose a multi-objective thermal management technique 

(mDTM) for on-chip systems to jointly avoid thermal thresholds and 

thermal imbalance. It employs a two distributed predictor systems (i.e. 

two prediction units per core) coupled with two integrated centralized 

management units in order to prevent any given thermal threshold and 

to minimize thermal variations across the chip, respectively, in a 

coordinated fashion. The two centralized management units are 

responsible for taking decisions on task migration between the cores 

depending upon the output of corresponding predictors. 

Evaluation of our technique is performed on a real platform, 

namely the Intel Single-Chip Cloud Computer (SCC) [4]. We also 

apply our technique to an FPGA-based platform to cover high peak 

temperature scenarios that are not possible on the Intel SCC. In the 

FPGA setup, we verify the effectiveness of our mDTM technique 

using real temperature measurements obtained from an infrared 

camera that captures the chip thermal emission. 

In our work we target thermal management of cores in an on-chip 

system as a multi-objective optimization, i.e. jointly avoiding thermal 

threshold and balancing the temperatures in an integrated management 

loop. 

II. OUR MULTI-OBJECTIVE DYNAMIC THERMAL MANAGEMENT 
To fulfill the above-discussed goals, our mDTM employs two dis-

tributed predictor systems coupled with two integrated centralized 

management units in order to avoid thermal threshold and thermal 

imbalance. Each core is equipped with two predictors that obtain the 

current temperatures of the cores from their respective thermal 

sensors. The first predictor is Avoiding Threshold Distributed Predic-

tor (ATP). It predicts the temperature for each core based on extrapo-

lation from the current temperature, history of previous temperatures, 

and increasing or decreasing trend of the core's temperature. This 

predicted temperature is used by the Central Management Unit for 

Avoiding Threshold (CU-AT) that makes the required decisions of task 

migration between the cores in order to avoid the thermal threshold. 

The second predictor is Achieving Thermal Balance Distributed 

Predictor (ABP). It predicts the temperature deviation for each core 

from the average temperature of all cores considering also the current 

deviation, history of previous deviations, and increasing or decreasing 

trend of the core's deviation. This predicted deviation is used by the 

Central Management Unit for Achieving Thermal Balance (CU-AB) 

that takes suitable task migration decisions to achieve a thermal 

balance between the cores.  

Our mDTM achieves proactive thermal management in two ways: 

 By considering both the thermal history as well as the trend in 

temperature change in both predictors, these are able to act be-

fore a temperature threshold is hit. 

 By aiming to balance temperatures before a given threshold is 

hit, isolated temperature peaks are avoided. 

The functionality flow of our mDTM with integrated management 

units is demonstrated in Fig. 2. In the following, we explain the four 

key functional blocks of our mDTM followed by the coordinated 

operation of two management units in Section II.A. 

1) Avoiding Threshold Distributed Predictor System (ATP): It 

predicts – for each core – the temperature for the next quantum 

through extrapolation (RAT; Eq.1) using the temperature Tk at the 

current point of time k and the history of previous temperature profile. 
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Note that Tk is a measured value of core temperature at runtime. 

Therefore, the thermal effects from the surrounding cores are implicit-

ly involved in Tk. 

The term 
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T n  denotes the average temperature over a speci-

fied time window to consider only the recent thermal history. Consid-

ering the whole thermal history results in inaccuracy in the prediction 

when a dynamic workload is applied; which is the more general case 

in the real systems. Therefore, for all predictors, we define a time 

window Wn: [tk-n, tk-1], where tk-1 is the last instant of time before the 

current point of time tk. This window limits the history to the recent 

thermal history of the core of length n. The parameter H in Eq.1 is a 



temperature offset used to determine whether the average temperature 

of the history is high or low. If the average of history is greater than 

H, the RAT value is increased, but if it is lower than H, the RAT value is 

decreased, giving preference to cores that have been colder in the past. 

In order to incorporate the rate of increase or decrease in the tem-

perature for two consecutive time quantum, our predictor employs a 

correction factor to RAT, as shown in Eq.2, where Tk-1 denotes the 

temperature in previous point in time k-1 and θ is the constant to 

control the strength of correction. 

    AT ,k AT ,k k k 1R R T T  (2) 

2) Central Management Unit for Avoiding Threshold (CU-AT): 
Based on the RAT values of all cores, CU-AT determines, from which 

cores, tasks should be migrated and to which cores tasks can be 

assigned. For that purpose, two values are defined: the Proactive 

Threshold (ProTth) and the Availability (A). When RAT of a given core 

reaches the ProTth, CU-AT migrates a task from that core (see Eq.3). 

In contrast, when RAT of a given core is equal to or less than the 

Availability value, CU-AT can assign tasks to this core (see Eq.4). 

AT thR ProT  (3) 

ATR A  (4) 

Intuitively, the relation between the predefined threshold Tth, 

ProTth and A is given as follows: 

 th thT ProT A  (5) 

3) Achieving Thermal Balance Distributed Predictor System 

(ABP): Unlike the ATPs that considers the actual temperature, the 

ABPs considers the error difference between the actual temperature Tk 

and the chip average temperature Tavg(k) to compute the difference (ek) 

of a core’s current temperature from the average temperature. Howev-

er, the extrapolation models of ABP are similar to that of ATP, i.e. 

ABP also considers the history and correction factor, but in terms of 

the error term; see Eqs.6 and 7. 
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4) Central Management Unit for Achieving Thermal Balance 

(CU-AB): For CU-AB, the unit responsible for achieving balance, we 

define a balancing parameter Bal. It represents the temperature above 

Tavg that requires task migration to achieve thermal balance within a 

specific range in order to consider the performance overhead induced 

from task migration processes. The lower Bal is, the more migrating 

processes occur and the more performance overhead is incurred, but 

the less spatial variation and vice versa. Additionally, the ratio 

between the total number of tasks M that are running on the given on-

chip system and the number of cores N also play a role in the decision 

of CU-AB, because having more tasks than cores provides more 

opportunity to achieve thermal balance between the cores. Therefore, 

we define a run-time parameter, called DyBal, which is dynamically 

re-adapted if M changes allowing more task migrations when dealing 

with several tasks; see Eq.8. 

 DyBal Bal N / M  (8) 

Thus, CU-AB decides to migrate a task from a given core when 

the output of the relevant ABP RAB obtained from Eq.7 meets the 

following condition (Eq.9). 

ABR DyBal  (9) 

A. Integrated Management in mDTM 
Since avoiding the thermal threshold is more critical than achiev-

ing balance, the ATPs have a higher priority over the ABPs and, 

hence, the ATPs are activated first. After the ATPs perform the 

required predictions, their outputs are passed to the CU-AT which 

migrates tasks from cores that meet the migrating condition given in 

Eq.3 and places these tasks in a waiting queue. Then, the CU-AT 

identifies which cores can run these waiting tasks through checking 

the availability condition (Eq.4). If there is no migration command 

issued by the CU-AT in the current iteration and no tasks occupy the 

waiting queue, the ABPs will be activated. Otherwise, they remain 

inactive in this iteration to avoid unnecessary task migrations, as the 

core temperatures will change after applying the task migrations 

issued by the CU-AT. 

Once the ABPs are activated, they calculate RAB values to be 

passed to the CU-AB. Then, CU-AB migrates tasks from the core 

which has the highest value of RAB and meets the Eq.9, and assigns 

this task to the core with the lowest value of RAB. While CU-AT and 

CU-AB may choose different tasks to migrate, a task chosen by the 

CU-AT will always be migrated from a hotter core to a colder one, 

thus never contradicting the CU-AB. The ABPs remains deactivated 

until all tasks in the waiting queue are assigned to available cores, to 

ensure these tasks are executed. Fig. 2 illustrates the coordinated 

operations of CU-AT and CU-AB management units. 

The migration commands issued by CU-AB or CU-AT during 

each iteration of the management loop are sent to the cores. We have 

adapted the OS scheduler on each core to receive commands to start 

and/or stop tasks. In order to get faster cooling down, besides task 

migration, we use DFS knob to scale down the frequency of the core 

to the minimum possible frequency when a task is migrated from it. 

However, when a task is assigned to a core, we scale the frequency up 

to the maximum value to obtain better performance. After applying 

the decisions on all cores, the management loop returns to the first 

step. This loop is repeated for each discrete management interval dt. 
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Fig. 2: Overview and operational flow of our mDTM 



Discussion: By adjusting the parameters for our management 

modules to the physical properties of the chip, we can guarantee that a 

threshold cannot be hit given the current thermal state and the history. 

While this results in more false positives (i.e. predicting a threshold 

hit too early, or when none would occur) it eliminates more critical 

false negatives. In our experiments, we find the rate of false positives 

to be at most 1 per workload configuration (i.e. number and type of 

tasks), mainly due to the self similarity of sequential thermal cycles. 

B. mDTM’s Effect on Thermal Cycling 
An increase in thermal cycling could be the direct result of ther-

mal management techniques such as mDTM which migrates tasks 

from the hot cores and assign tasks to them after they cool down 

within a period of time. The negative effect of thermal cycling on the 

lifetime of chip is determined by two factors: the difference between 

the max and min temperature within the cycle ΔT, as well as the total 

number of cycles during the lifetime of the chip Ƞcy [12]. 

Since ATP considers the thermal history of the cores, CU-AT re-

duces the number of thermal cycles. When the thermal history in Wn is 

relatively hot, the RAT is increased, decreasing the ability of the given 

core to run tasks (see the availability condition Eq.3). The length of 

Wn influences the rate of reducing Ƞcy; the longer Wn the less Ƞcy. To 

reduce ΔT within thermal cycles, we can decrease the difference 

between the Proactive Threshold (ProTth) and the Availability (A), by 

increasing the value of A. Furthermore, ΔT can be reduced also 

through minimizing the parameter Bal. However, minimizing ΔT will 

increase task migration rate resulting in more performance overhead. 

Although reducing ΔT in our technique increases Ƞcy, but the 

number of cycles for different ΔT is not comparable unless they are 

normalized to a reference temperature change. 

III. EVALUATION AND EXPERIMENTAL RESULTS 
We evaluate our mDTM on the Intel SCC platform with 48 full IA 

P54C cores and 48 thermal sensors to measure the core temperatures. 

However, the peak temperature that the SCC cores reach does not 

exceed 45°C in our experiments due to the cooling system attached to 

the SCC chip. Therefore, for evaluation of our technique on the real 

system, we adopt a low value for the thermal threshold, i.e. 42°C in 

our experiments on the SCC platform. Additionally, to illustrate the 

effectiveness of our mDTM in avoiding high thermal thresholds, we 

deployed an FPGA-based setup where higher peak temperatures can 

be incurred; i.e. 85°C. In this case, we set the threshold to 76°C. Our 

FPGA setup emulates four cores as rectangular regions of Toggle-Flip 

Flops (T-FFs) and the task as the action of toggling the FFs on a 

Xilinx Virtex5 FPGA [5]. For temperature measurement of the FPGA, 

we use an infrared thermal camera DIAS pyroview 380L compact [2] 

that is capable of capturing temperatures of structures with a spatial 

resolution of 50 µm per pixel and an accuracy of ±1°C [2].  

A. Evaluation on Intel SCC Platform  
We implement our mDTM technique in the OS scheduler. The 

predictors ATPs and ABPs are distributed on the cores while CU-AT 

and CU-AB are realized to one central core. For rapid evaluation, 

however, we find it beneficial to run our technique on a PC connected 

to the SCC in order to allow rapid testing of different configurations 

and also extracting and processing large log traces for analyzing the 

results of our technique. 

We set the management step dt, which is the minimum possible 

period in the off-chip scenario. However, it is still 5x less than the 

state-of-the-art technique [14], and thus, our technique can react at a 

fine granularity.  

The parameter ProTth is given as: ProTth = Tth - maxΔT, where 

maxΔT is the maximum temperature increment of the SCC, during dt. 

Empirically, we find that maxΔT is equal to 2.5. Considering the 

potential noise in the sensors measurements, we set ProTth to 39. 

Observing the incurred increase in temperature, when a task is migrat-

ed to a core, we set A to 33, which avoids the need to re-migrate the 

task again from the current core. The rest of the parameters are set 

empirically. Table I contains the parameter values used by the man-

agement modules. 

TABLE I PREDICTOR PARAMETER SETTINGS 

Parameter θ ProTth A H n 

Value 0.5 39 33 38 10 

We execute various scenarios with different number of tasks and 

cores. We test both benchmarks burnP5 and cpuburn-in from the 

benchmark suite cpuburn [1], but we find that burnP5 exhibits the 

most heat generation of a task on the SCC due to its significant stress 

on the targeted cores, therefore we employ it in the most of our 

experiments on the SCC.  

The results of six experiments are demonstrated in Fig. 3 as quar-

tiles of 32 core temperatures during runtime, depicted in a representa-

tive window of the execution time to keep the results comprehensible. 

At the beginning of these experiments, we run 16 tasks (burnP5) on 

16 cores, and let the other 16 cores idle to be exploited later through 

task migration. However, our implementation is not limited to this 

scenario and in the next section other scenarios are demonstrated 

when the number of the tasks and cores are identical. Fig. 3-b illus-

trates the core temperatures when our mDTM technique is applied. 

Once the tasks start on the cores, the temperatures begin to increase on 

the running cores. As long as the temperature is still relatively far 

from the threshold (42°C), the CU-AT does not migrate any task, thus 

ABPs are activated and CU-AB triggers task migration between cores 

in order to balance the temperature. When the temperature approaches 

the predefined threshold on some cores, the CU-AT stops the tasks 

from these cores and places them temporarily in the waiting queue 

until another core can run the stopped tasks (see Eq.4). As noted in 

Fig. 3-b, our mDTM technique is capable of preventing the threshold 

from being hit during runtime, besides reducing the thermal spatial 

variation between cores. The mDTM capability to achieve its goal is 

illustrated by a comparison with the base-case in Fig. 3-a, which 

presents the core temperatures when no thermal management is 

applied to the system.  

In our experiments, we compare our work with two single-

objective state-of-the-art DTM [9, 20], namely bDTM and pDTM, 

respectively. For fairness of comparison between different DTM 

policies, we provide same methods for task migration and prediction. 

Therefore, the difference purely illustrates the effect of optimization 

objective of different DTM policies. From [9], we apply the proposed 

balancing policy which redistributes tasks among cores to achieve 

thermal balancing. It is obvious from Fig. 3-c, that bDTM balance the 

temperatures among the cores. It also reduces the rate of hitting the 

threshold in the early phase of the execution time. However, after a 

period of time, when the temperatures of all the cores increase, a lot of 

cores hit the threshold. In contrast to that, the threshold is avoided 

when pDTM [20] is applied (see Fig. 3-d), but the thermal spatial 

variation is not reduced. We observe that the maximal spatial thermal 

is reduced by 22% when our mDTM is applied (see Fig. 3-b) com-

pared to the results of the pDTM (see Fig. 3-d).  

To examine mDTM's capability of adapting to additional sudden 

stress applied on the system, we start 16 additional tasks on the 

unoccupied cores at the point of time t= 2.4s during runtime (see Fig. 

3-e). Fig. 3-f illustrates similar experiment but with different addition-

al tasks (cpuburn-in). It is shown in both Fig. 3-e and Fig. 3-f, that at a 

specific point of time the temperatures increase suddenly on all cores. 

Nevertheless, our mDTM still avoids the threshold and balances 

temperatures. 

Overhead: To evaluate the overhead of our technique we examine the 

communication and computation required to implement one manage-



ment step. The computation overhead is 0.07% of each management 

step (off-chip). On-chip, the computational overhead of the distributed 

ATPs and ABPs is 0.086% and the centralized CU-AT and CU-AB is 

0.068%. The communication latency is considerably higher in the off-

chip implementation, taking 94 µs and 2.4 µs for off-chip and on-chip, 

respectively [16]. From our experiments, at each dt, the maximum 

amount of the sent packets is up to 5.7 KB/s at the bottleneck case. 

Compared to the total bandwidth of the NoC on the SCC (64 GB/s), 

we find that the total communication overhead is less than 0.01% of 

the total bandwidth. 

B. Analysis on FPGA-based Setup 
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Fig. 4: The thermal behavior on the FPGA setup in two cases: 

a) applying our mDTM policy; b) without a DTM policy 

In our FPGA setup, we run an experiment with two tasks and de-

pict the temperatures captured by the infrared camera (see Fig. 4). 

Fig. 4-a and –b illustrate the temperature profiles over time for two 

cases, i.e. with and without our mDTM, respectively. Analogous to 

our observation in the SCC experiments, we notice in Fig. 4-a how the 

core temperatures increase continuously once the tasks run on the 

cores. CU-AB balances the temperature between the cores as long as 

no core meets the migrating condition of the CU-AT. When any core 

temperature approaches the preset threshold (76°C), CU-AT works to 

avoid the threshold. Whenever temperature goes down and diverges 

from the threshold, and no tasks occupy the waiting queue the CU-AB 

commences operation. As seen in Fig. 4-a, the temperature never 

reaches the predefined threshold. Thus, we ensure that our mDTM 

technique can avoid high thresholds. However, in Fig. 4-b, where no 

thermal management is applied, the temperatures of all cores exceed 

the thermal threshold reaching more than 90 °C. 

IV. PERFORMANCE COMPARISON TO STATE-OF-THE-ART 
Since keeping associated performance penalties low is a key con-

cern of DTM techniques, we evaluate our mDTM in terms of perfor-

mance overhead. We compare to D2TM proposed in [14], as it aims to 

maximize the performance under thermal constraint. D2TM imple-

ments distributed PI controllers at all cores to adjust core frequencies 

to keep the temperatures slightly below the thermal threshold. The 

frequency is scaled one level down when a thermal threshold is about 

to be hit, and scaled one level up when the core temperature is less 

than the thermal threshold with a specific offset. We implement their 

PI controller on the cores of the Intel SCC platform.  
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 Fig. 5: Comparison of the execution time of several scenarios between our 

mDTM and D2TM [14]; mDTM always has better performance 

To evaluate the performance of each technique, we measure the 

required execution time of a specific workload -- lower execution time 

means more performance. We conduct 6 scenarios, with different 

numbers of tasks (burnP5) on different numbers of cores and manage 

the core temperatures using both D2TM and mDTM. Each scenario is 

represented with a bar in Fig. 5 that shows the distribution of the 

elapsed time on cores to execute their tasks. The maximum value at 

any bar indicates the total execution time of the workload on all cores, 

while the red square indicates the average execution time of all cores. 

We notice that the total execution time when our technique is applied 

is 48% less on average (up to 58%) compared to the total execution 

time when D2TM is applied. Comparing the mean execution time of 

both techniques, our mDTM requires 38% less execution time on 

average.  

A strong point in the results is that our technique also gets up to 

53% higher performance when the number of cores and tasks are 
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Fig. 3 The temperatures of 32 cores on Intel SCC presented as quartiles and depicted through 6 different scenarios in order to demonstrate the 

efficiency of our mDTM in fulfilling the targeted goals 



identical. In this case, our mDTM also migrates tasks, because the 

incurred temperature of the task is distinct in each core. Despite the 

overhead of task migration, our mDTM performance surpasses D2TM 

performance.  

To present a more detailed picture of the comparison results and 

to find an interpretation of the performance gain of mDTM compared 

to D2TM, we present the corresponding temperatures and frequencies 

on core 13, as an example, in the scenario of 24 tasks running on 24 

cores in Fig. 6 and Fig. 7, respectively. From Fig. 6, it is obvious that 

the peak temperatures resulted from mDTM are higher than ones 

resulted by D2TM, because the cores of our mDTM always run their 

tasks with the highest frequency (800 Mhz), and thereby obtain more 

performance. In addition, when the core meets the migration condi-

tion, our mDTM stops the tasks from the core and scales down the 

frequency to the lowest value (100 Mhz) if possible. That leads to fast 

cooling and significant decrease in temperature, and thus when the 

core run again a task, it can remain in operation for longer time 

periods until its temperature rises again. In contrast to our technique, 

D2TM scales frequency down step by step and keeps the task running 

in the case of approaching the threshold, and scales it up step by step 

in the case of having less temperature. Therefore, there is not enough 

period for cooling down in the first case and task execution time 

becomes inefficient in the second one. Fig. 7 illustrates the frequency 

scaling operations done by both techniques. We notice, when mDTM 

is applied, the core finishes its task faster compared to D2TM, result-

ing in better performance. 
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Fig. 6: Temperature comparison at one of the core 

While the majority of mDTM computation can be executed in 

parallel through the distributed ATPs and ABPs, the main limitation 

of our technique is that it relies on the central CU-AT and CU-AB to 

make decisions based on these computations. This presents a bottle-

neck in the scalability of the technique. However this was not an issue 

on the tested 48 core Intel SCC, since the inherent latency of thermal 

effects remains lower than the communication time required to 

acquire predictor outputs and act upon them. Additionally, our 

technique can easily be extended to follow hierarchical structure in 

order to be scalable in the emerging manycore systems. 
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Fig. 7: Frequency scaling comparison at one of the core 

V. CONCLUSION 
In this paper, we proposed a multi-objective thermal management 

technique to simultaneously prevent hitting an undesirable threshold 

and distributing temperature between cores as uniformly as possible 

with low impact on the performance. We illustrate the effectiveness of 

our technique using two real-world platforms. Additionally, different 

experiments running on Intel SCC showed that our goals are success-

fully accomplished with 22% less spatial thermal variation. Finally, 

we achieved 58% better performance results compared to other 

competitors. Multi-objective DTM techniques provide a more feasible 

and practical solution to effectively avoid thermal concerns in on-chip 

systems that undermine their reliable operations and life time.  
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