
978-3-9815370-2-4/DATE14/©2014 EDAA

mDTM: Multi-Objective Dynamic Thermal Management
for On-Chip Systems

Heba Khdr, Thomas Ebi, Muhammad Shafique, Hussam Amrouch, Jörg Henkel

Karlsruhe Institute of Technology (KIT), Chair for Embedded Systems, Karlsruhe, Germany

heba.khdr@infromatik.uni-karlsruhe.de; {thomas.ebi, muhammad.shafique, amrouch, henkel} @ kit.edu

Abstract— Thermal hot spots and unbalanced temperatures between

cores on chip can cause either degradation in performance or may

have a severe impact on reliability, or both. In this paper, we propose
mDTM, a proactive dynamic thermal management technique for on-

chip systems. It employs multi-objective management for migrating

tasks in order to both prevent the system from hitting an undesirable

thermal threshold and to balance the temperatures between the cores.
Our evaluation on the Intel SCC platform shows that mDTM can

successfully avoid a given thermal threshold and reduce spatial

thermal variation by 22%. Compared to state-of-the-art, our mDTM
achieves up to 58% performance gain. Additionally, we deploy an

FPGA and IR camera based setup to analyze the effectiveness of our

technique.

I. INTRODUCTION AND RELATED WORK
Shrinking feature sizes of chip structures accompanied with the

increase in performance demand result in high on-chip power densi-

ties, and thereby high temperatures. Hence, thermal hot spots are

induced that jeopardize chip reliability through e.g. electromigration,

negative bias temperature instability (NBTI), etc. [12]. Moreover,

elevated temperatures decrease interconnects’ speed entailing perfor-

mance loss [15]. Two other thermal factors, namely spatial thermal

variation (i.e. the temperature difference between two cores Δi,jT =

Tcore_i – Tcore_j) and temporal thermal variation (i.e. temperature

difference for a core ΔT in a given time interval due to thermal

cycles1), also undermine reliability and reduce the lifetime of the chip

[12]. These effects induce uneven interconnect delay throughout the

chip dimensions resulting in clock skew problems, and thereby lead to

timing errors [8]. Besides their negative impact on reliability, thermal

variations akin to unbalanced thermal stress across the chip can cause

permanent physical damage through package fatigue and plastic

deformation [3].

Relying on cooling infrastructure alone to protect chips from high

temperatures is not always feasible, especially for embedded systems,

not only because of the relatively high monetary cost [19], but also

because of the space the cooling infrastructure requires. As a result,

minimizing severe thermal behavior is an important and continuous

challenge for researchers in the nano-scale era.

A. DTM Challenges
For developing efficient dynamic thermal management (DTM)

techniques, the following two key challenges need to be addressed:

1) Avoiding Threshold Temperature: The primary goal of most of

the DTM techniques is to keep temperatures below the thermal

threshold Tth, which is a specific temperature that must not be ex-

ceeded in order to ensure reliability and maintain performance2.

Means to accomplish this are, for instance, task migration or Dy-

namic Voltage Frequency Scaling (DVFS) when temperatures ap-

proach Tth. Another related issue is to lower the peak temperature

[23, 25] in addition to avoiding the thermal threshold for further
improvement of the chip lifetime [26].

1
 Thermal cycles are subsequent periods of heating and cooling.

2
 It is used to determine the Thermal Design Power (TDP), i.e., the avg.

maximum power of a chip that can be dissipated (e.g., 125W for Intel SCC).

2) Achieving Balancing of Temperatures across the chip to

minimize the maximum thermal variation MAX(Δi,jT), which is the

maximum difference in temperature between the hottest and the

coldest core. This is typically accomplished by reducing the power

consumption on the hottest core through the mechanism of task

migration. Achieving balance results in a reduction of the maxi-

mum possible temporal thermal variation and balanced aging of

different cores in an on-chip system. By decreasing MAX(Δi,jT),

the bounds for ΔT are reduced as well, as migrating a task from

the hottest core to the coldest will decrease MAXi,j(T) and increase

MINi,j(T).

B. State-of-the-Art DTM Techniques
In response to these challenges, several DTM techniques have

emerged to address the thermal concerns. Early DTM techniques

employ clock gating to prevent the system from hitting a given

thermal threshold [7, 18]. Besides preventing to exceed the thermal

threshold, these techniques also significantly reduce the power

consumption. However, they induce a sharply varying thermal profile,

i.e. the temperature observation shows large spatial and temporal

variations. Other techniques employ DVFS as a way to provide a

smoother thermal control for avoiding a specific thermal threshold

[22, 21, 14]. Zanini et al. [21] present a policy based on Model

Predictive Control (MPC) to determine the frequency and voltage

values, which prevent hitting a given thermal threshold while meeting

performance requirements. In order to mitigate the overhead of

thermal management that increases as the number of cores on chip

grows, a distributed MPC-based technique is introduced in [6]. In

[14], distributed PI controllers are employed to adjust the core fre-

quencies such that the temperature is kept just below a preset thermal

threshold. In order to alleviate the performance penalty associated

with the clock gating and DVFS, task migration based techniques are

utilized for DTM [11, 20]. Predictive thermal management technique

proposed in [20] maintains the system below a specific thermal

threshold using task migration. When the temperature of a core

exceeds the given thermal threshold, the running task will be migrated

to the coolest core. This work exploits the application thermal behav-

ior and the core thermal characteristic to predict the temperature.

However, these state-of-the-art DTM techniques avoid a thermal

threshold but without aiming to balance the temperatures between

cores. Moreover, [7, 18] even increase the spatial and temporal

thermal variations, especially when applied to systems with many

cores.

A different branch of DTM techniques focus on balancing tempera-

tures between cores to minimize negative effects from thermal

variations [13, 17, 9, 10]. Coskun et al. [9] present the concept of a

proactive DTM technique that aims to predict temperatures in order to

act before thermal problems actually occur. Using an “auto-regressive

moving average” model to predict temperatures, they succeed to

reduce thermal variation and thermal hot spots. Another work in [10]

proposes a distributed thermal management policy DTB-M to balance

the temperatures via task migration among only the neighboring cores,

so that the performance overhead of task migration is alleviated.

Similar to [9], the temperatures of the cores are balanced and the

violations of thermal hot spots are reduced but not avoided. Thus,

these techniques may not be efficient in terms of thermal threshold

avoidance.

In summary: State-of-the-art DTM techniques either avoid thermal

thresholds or balance temperatures between cores. However, address-

ing only one of these two thermal concerns isolated from the other

(like, only avoiding thresholds) does not solve the other concern (in

this example: thermal imbalance) and thereby is not sufficient to

present a solution for the reliability concerns resulted from the thermal

issues. To illustrate such scenarios, we performed a practical case

study on the Intel SCC platform as discussed below.

C. Motivational Case Study
Within this case study, we show how single-objective DTM tech-

niques that aim to either avoid the threshold or balance the tempera-

ture can not address the complete thermal concerns. For this purpose,

we detail two scenarios on the SCC showing 32 core temperatures

while running various workloads. The upper part of Fig. 1 shows an

excerpt of core temperatures of an important observation point. The

temperatures in the first scenario are managed using the threshold-

avoidance DTM [20] (Fig. 1-a), while Balancing DTM is applied on

the second scenario [9] (Fig. 1-b). The lower part of Fig. 1 shows the

maximum spatial variation and temperature over time.

Fig. 1-a shows that the thermal threshold is avoided but the spatial

variations are significantly high, because threshold-avoidance DTM

just considers cores which are approaching the threshold in order to

avoid it using task migration without observing the spatial variation

between the cores to balance them. In contrast, the spatial thermal

variations are reduced in Fig. 1-b, but the preset threshold is hit after a

period of time, because the Balancing DTM just observes the spatial

variation between the cores to distribute them as evenly as possible,

and ignores the case where the temperatures of all cores are increased

and hit the threshold.

34

36

38

40

42

44

0 10 20 30 40

a) b)

Tth = 42 C

b) Balancing DTM [9]a)Threshold-Avoidance DTM [20]
M

A
X(Δ

i,j T)T
e
m

p
e
ra

tu
re

 [
 C

]
M

A
X

(Δ
i,
jT

)

a) 37% MAX(Δi,jT)

more than b)

T
e
m

p
e
ra

tu
re

 [
 C

]

b) 50%Tth

violations

Time [s] Time [s]

Tth

0

5

10

0 10 20 30 40

a) b)

Fig. 1: Motivational case study illustrating the limitations of threshold-

avoidance DTM and Balancing DTM

In order to alleviate the reliability threats incurred from thermal

behavior in on-chip systems, it is necessary to simultaneously

address both thermal concerns (i.e. threshold avoidance and thermal

balancing) in DTM techniques.

D. Our Novel Contributions and Concept Overview
We propose a multi-objective thermal management technique

(mDTM) for on-chip systems to jointly avoid thermal thresholds and

thermal imbalance. It employs a two distributed predictor systems (i.e.

two prediction units per core) coupled with two integrated centralized

management units in order to prevent any given thermal threshold and

to minimize thermal variations across the chip, respectively, in a

coordinated fashion. The two centralized management units are

responsible for taking decisions on task migration between the cores

depending upon the output of corresponding predictors.

Evaluation of our technique is performed on a real platform,

namely the Intel Single-Chip Cloud Computer (SCC) [4]. We also

apply our technique to an FPGA-based platform to cover high peak

temperature scenarios that are not possible on the Intel SCC. In the

FPGA setup, we verify the effectiveness of our mDTM technique

using real temperature measurements obtained from an infrared

camera that captures the chip thermal emission.

In our work we target thermal management of cores in an on-chip

system as a multi-objective optimization, i.e. jointly avoiding thermal

threshold and balancing the temperatures in an integrated management

loop.

II. OUR MULTI-OBJECTIVE DYNAMIC THERMAL MANAGEMENT
To fulfill the above-discussed goals, our mDTM employs two dis-

tributed predictor systems coupled with two integrated centralized

management units in order to avoid thermal threshold and thermal

imbalance. Each core is equipped with two predictors that obtain the

current temperatures of the cores from their respective thermal

sensors. The first predictor is Avoiding Threshold Distributed Predic-

tor (ATP). It predicts the temperature for each core based on extrapo-

lation from the current temperature, history of previous temperatures,

and increasing or decreasing trend of the core's temperature. This

predicted temperature is used by the Central Management Unit for

Avoiding Threshold (CU-AT) that makes the required decisions of task

migration between the cores in order to avoid the thermal threshold.

The second predictor is Achieving Thermal Balance Distributed

Predictor (ABP). It predicts the temperature deviation for each core

from the average temperature of all cores considering also the current

deviation, history of previous deviations, and increasing or decreasing

trend of the core's deviation. This predicted deviation is used by the

Central Management Unit for Achieving Thermal Balance (CU-AB)

that takes suitable task migration decisions to achieve a thermal

balance between the cores.

Our mDTM achieves proactive thermal management in two ways:

 By considering both the thermal history as well as the trend in

temperature change in both predictors, these are able to act be-

fore a temperature threshold is hit.

 By aiming to balance temperatures before a given threshold is

hit, isolated temperature peaks are avoided.

The functionality flow of our mDTM with integrated management

units is demonstrated in Fig. 2. In the following, we explain the four

key functional blocks of our mDTM followed by the coordinated

operation of two management units in Section II.A.

1) Avoiding Threshold Distributed Predictor System (ATP): It

predicts – for each core – the temperature for the next quantum

through extrapolation (RAT; Eq.1) using the temperature Tk at the

current point of time k and the history of previous temperature profile.

k 1

AT ,k k i

i k n

R T T n H (1)

Note that Tk is a measured value of core temperature at runtime.

Therefore, the thermal effects from the surrounding cores are implicit-

ly involved in Tk.

The term

k 1

i

i k n

T n denotes the average temperature over a speci-

fied time window to consider only the recent thermal history. Consid-

ering the whole thermal history results in inaccuracy in the prediction

when a dynamic workload is applied; which is the more general case

in the real systems. Therefore, for all predictors, we define a time

window Wn: [tk-n, tk-1], where tk-1 is the last instant of time before the

current point of time tk. This window limits the history to the recent

thermal history of the core of length n. The parameter H in Eq.1 is a

temperature offset used to determine whether the average temperature

of the history is high or low. If the average of history is greater than

H, the RAT value is increased, but if it is lower than H, the RAT value is

decreased, giving preference to cores that have been colder in the past.

In order to incorporate the rate of increase or decrease in the tem-

perature for two consecutive time quantum, our predictor employs a

correction factor to RAT, as shown in Eq.2, where Tk-1 denotes the

temperature in previous point in time k-1 and θ is the constant to

control the strength of correction.

 AT ,k AT ,k k k 1R R T T (2)

2) Central Management Unit for Avoiding Threshold (CU-AT):
Based on the RAT values of all cores, CU-AT determines, from which

cores, tasks should be migrated and to which cores tasks can be

assigned. For that purpose, two values are defined: the Proactive

Threshold (ProTth) and the Availability (A). When RAT of a given core

reaches the ProTth, CU-AT migrates a task from that core (see Eq.3).

In contrast, when RAT of a given core is equal to or less than the

Availability value, CU-AT can assign tasks to this core (see Eq.4).

AT thR ProT (3)

ATR A (4)

Intuitively, the relation between the predefined threshold Tth,

ProTth and A is given as follows:

 th thT ProT A (5)

3) Achieving Thermal Balance Distributed Predictor System

(ABP): Unlike the ATPs that considers the actual temperature, the

ABPs considers the error difference between the actual temperature Tk

and the chip average temperature Tavg(k) to compute the difference (ek)

of a core’s current temperature from the average temperature. Howev-

er, the extrapolation models of ABP are similar to that of ATP, i.e.

ABP also considers the history and correction factor, but in terms of

the error term; see Eqs.6 and 7.

k 1

AB,k k i k k avg

i k n

R e e n ; where e T T (6)

 AB,k AB,k k k 1R R e e (7)

4) Central Management Unit for Achieving Thermal Balance

(CU-AB): For CU-AB, the unit responsible for achieving balance, we

define a balancing parameter Bal. It represents the temperature above

Tavg that requires task migration to achieve thermal balance within a

specific range in order to consider the performance overhead induced

from task migration processes. The lower Bal is, the more migrating

processes occur and the more performance overhead is incurred, but

the less spatial variation and vice versa. Additionally, the ratio

between the total number of tasks M that are running on the given on-

chip system and the number of cores N also play a role in the decision

of CU-AB, because having more tasks than cores provides more

opportunity to achieve thermal balance between the cores. Therefore,

we define a run-time parameter, called DyBal, which is dynamically

re-adapted if M changes allowing more task migrations when dealing

with several tasks; see Eq.8.

 DyBal Bal N / M (8)

Thus, CU-AB decides to migrate a task from a given core when

the output of the relevant ABP RAB obtained from Eq.7 meets the

following condition (Eq.9).

ABR DyBal (9)

A. Integrated Management in mDTM
Since avoiding the thermal threshold is more critical than achiev-

ing balance, the ATPs have a higher priority over the ABPs and,

hence, the ATPs are activated first. After the ATPs perform the

required predictions, their outputs are passed to the CU-AT which

migrates tasks from cores that meet the migrating condition given in

Eq.3 and places these tasks in a waiting queue. Then, the CU-AT

identifies which cores can run these waiting tasks through checking

the availability condition (Eq.4). If there is no migration command

issued by the CU-AT in the current iteration and no tasks occupy the

waiting queue, the ABPs will be activated. Otherwise, they remain

inactive in this iteration to avoid unnecessary task migrations, as the

core temperatures will change after applying the task migrations

issued by the CU-AT.

Once the ABPs are activated, they calculate RAB values to be

passed to the CU-AB. Then, CU-AB migrates tasks from the core

which has the highest value of RAB and meets the Eq.9, and assigns

this task to the core with the lowest value of RAB. While CU-AT and

CU-AB may choose different tasks to migrate, a task chosen by the

CU-AT will always be migrated from a hotter core to a colder one,

thus never contradicting the CU-AB. The ABPs remains deactivated

until all tasks in the waiting queue are assigned to available cores, to

ensure these tasks are executed. Fig. 2 illustrates the coordinated

operations of CU-AT and CU-AB management units.

The migration commands issued by CU-AB or CU-AT during

each iteration of the management loop are sent to the cores. We have

adapted the OS scheduler on each core to receive commands to start

and/or stop tasks. In order to get faster cooling down, besides task

migration, we use DFS knob to scale down the frequency of the core

to the minimum possible frequency when a task is migrated from it.

However, when a task is assigned to a core, we scale the frequency up

to the maximum value to obtain better performance. After applying

the decisions on all cores, the management loop returns to the first

step. This loop is repeated for each discrete management interval dt.

Central decision Unit for

Achieving Thermal Balancing

(CU-AB)

AT- Predictors

Stop a task

from Core i

& put it in the

Waiting queue

Assign a task

from the waiting

queue to core i

and start it

Enable ABPs

& get the average of

chip temperature Tavg

Stop a task

from the

core c

Assign the

Stopped task

to the core of

lowest RAB value

Waiting Queue

(WQ)

No

commands from

CU-AT& WQ

empty

…

ATP1

T1

RAT1

Central decision Unit for

Avoiding Threshold Temperature

(CU-AT)

RAT,i >=

ProTth

RAT,i < A

True True
True

AB- Predictors

RAB>=

DyBal

Find the core c

of the highest

RAB value

Get the core temperatures

Send the issued commands to

the corresponding core dispatchers

True

False

Core 1

Dispatcher s

NoC

Multi-Core System

Core 2

Dispatcher s

Core N

Dispatcher s

…

…T1 T2 TN

ta
sk

ta
sk

task

…ATP2

T2

RAT2

ATPN

TN

RATN

ABP1

T1, Tavg

RAT1

…ABP2

T2 , Tavg

RAT2

ABPN

TN , Tavg

RATN

s denotes the sensor

Fig. 2: Overview and operational flow of our mDTM

Discussion: By adjusting the parameters for our management

modules to the physical properties of the chip, we can guarantee that a

threshold cannot be hit given the current thermal state and the history.

While this results in more false positives (i.e. predicting a threshold

hit too early, or when none would occur) it eliminates more critical

false negatives. In our experiments, we find the rate of false positives

to be at most 1 per workload configuration (i.e. number and type of

tasks), mainly due to the self similarity of sequential thermal cycles.

B. mDTM’s Effect on Thermal Cycling
An increase in thermal cycling could be the direct result of ther-

mal management techniques such as mDTM which migrates tasks

from the hot cores and assign tasks to them after they cool down

within a period of time. The negative effect of thermal cycling on the

lifetime of chip is determined by two factors: the difference between

the max and min temperature within the cycle ΔT, as well as the total

number of cycles during the lifetime of the chip Ƞcy [12].

Since ATP considers the thermal history of the cores, CU-AT re-

duces the number of thermal cycles. When the thermal history in Wn is

relatively hot, the RAT is increased, decreasing the ability of the given

core to run tasks (see the availability condition Eq.3). The length of

Wn influences the rate of reducing Ƞcy; the longer Wn the less Ƞcy. To

reduce ΔT within thermal cycles, we can decrease the difference

between the Proactive Threshold (ProTth) and the Availability (A), by

increasing the value of A. Furthermore, ΔT can be reduced also

through minimizing the parameter Bal. However, minimizing ΔT will

increase task migration rate resulting in more performance overhead.

Although reducing ΔT in our technique increases Ƞcy, but the

number of cycles for different ΔT is not comparable unless they are

normalized to a reference temperature change.

III. EVALUATION AND EXPERIMENTAL RESULTS
We evaluate our mDTM on the Intel SCC platform with 48 full IA

P54C cores and 48 thermal sensors to measure the core temperatures.

However, the peak temperature that the SCC cores reach does not

exceed 45°C in our experiments due to the cooling system attached to

the SCC chip. Therefore, for evaluation of our technique on the real

system, we adopt a low value for the thermal threshold, i.e. 42°C in

our experiments on the SCC platform. Additionally, to illustrate the

effectiveness of our mDTM in avoiding high thermal thresholds, we

deployed an FPGA-based setup where higher peak temperatures can

be incurred; i.e. 85°C. In this case, we set the threshold to 76°C. Our

FPGA setup emulates four cores as rectangular regions of Toggle-Flip

Flops (T-FFs) and the task as the action of toggling the FFs on a

Xilinx Virtex5 FPGA [5]. For temperature measurement of the FPGA,

we use an infrared thermal camera DIAS pyroview 380L compact [2]

that is capable of capturing temperatures of structures with a spatial

resolution of 50 µm per pixel and an accuracy of ±1°C [2].

A. Evaluation on Intel SCC Platform
We implement our mDTM technique in the OS scheduler. The

predictors ATPs and ABPs are distributed on the cores while CU-AT

and CU-AB are realized to one central core. For rapid evaluation,

however, we find it beneficial to run our technique on a PC connected

to the SCC in order to allow rapid testing of different configurations

and also extracting and processing large log traces for analyzing the

results of our technique.

We set the management step dt, which is the minimum possible

period in the off-chip scenario. However, it is still 5x less than the

state-of-the-art technique [14], and thus, our technique can react at a

fine granularity.

The parameter ProTth is given as: ProTth = Tth - maxΔT, where

maxΔT is the maximum temperature increment of the SCC, during dt.

Empirically, we find that maxΔT is equal to 2.5. Considering the

potential noise in the sensors measurements, we set ProTth to 39.

Observing the incurred increase in temperature, when a task is migrat-

ed to a core, we set A to 33, which avoids the need to re-migrate the

task again from the current core. The rest of the parameters are set

empirically. Table I contains the parameter values used by the man-

agement modules.

TABLE I PREDICTOR PARAMETER SETTINGS

Parameter θ ProTth A H n

Value 0.5 39 33 38 10

We execute various scenarios with different number of tasks and

cores. We test both benchmarks burnP5 and cpuburn-in from the

benchmark suite cpuburn [1], but we find that burnP5 exhibits the

most heat generation of a task on the SCC due to its significant stress

on the targeted cores, therefore we employ it in the most of our

experiments on the SCC.

The results of six experiments are demonstrated in Fig. 3 as quar-

tiles of 32 core temperatures during runtime, depicted in a representa-

tive window of the execution time to keep the results comprehensible.

At the beginning of these experiments, we run 16 tasks (burnP5) on

16 cores, and let the other 16 cores idle to be exploited later through

task migration. However, our implementation is not limited to this

scenario and in the next section other scenarios are demonstrated

when the number of the tasks and cores are identical. Fig. 3-b illus-

trates the core temperatures when our mDTM technique is applied.

Once the tasks start on the cores, the temperatures begin to increase on

the running cores. As long as the temperature is still relatively far

from the threshold (42°C), the CU-AT does not migrate any task, thus

ABPs are activated and CU-AB triggers task migration between cores

in order to balance the temperature. When the temperature approaches

the predefined threshold on some cores, the CU-AT stops the tasks

from these cores and places them temporarily in the waiting queue

until another core can run the stopped tasks (see Eq.4). As noted in

Fig. 3-b, our mDTM technique is capable of preventing the threshold

from being hit during runtime, besides reducing the thermal spatial

variation between cores. The mDTM capability to achieve its goal is

illustrated by a comparison with the base-case in Fig. 3-a, which

presents the core temperatures when no thermal management is

applied to the system.

In our experiments, we compare our work with two single-

objective state-of-the-art DTM [9, 20], namely bDTM and pDTM,

respectively. For fairness of comparison between different DTM

policies, we provide same methods for task migration and prediction.

Therefore, the difference purely illustrates the effect of optimization

objective of different DTM policies. From [9], we apply the proposed

balancing policy which redistributes tasks among cores to achieve

thermal balancing. It is obvious from Fig. 3-c, that bDTM balance the

temperatures among the cores. It also reduces the rate of hitting the

threshold in the early phase of the execution time. However, after a

period of time, when the temperatures of all the cores increase, a lot of

cores hit the threshold. In contrast to that, the threshold is avoided

when pDTM [20] is applied (see Fig. 3-d), but the thermal spatial

variation is not reduced. We observe that the maximal spatial thermal

is reduced by 22% when our mDTM is applied (see Fig. 3-b) com-

pared to the results of the pDTM (see Fig. 3-d).

To examine mDTM's capability of adapting to additional sudden

stress applied on the system, we start 16 additional tasks on the

unoccupied cores at the point of time t= 2.4s during runtime (see Fig.

3-e). Fig. 3-f illustrates similar experiment but with different addition-

al tasks (cpuburn-in). It is shown in both Fig. 3-e and Fig. 3-f, that at a

specific point of time the temperatures increase suddenly on all cores.

Nevertheless, our mDTM still avoids the threshold and balances

temperatures.

Overhead: To evaluate the overhead of our technique we examine the

communication and computation required to implement one manage-

ment step. The computation overhead is 0.07% of each management

step (off-chip). On-chip, the computational overhead of the distributed

ATPs and ABPs is 0.086% and the centralized CU-AT and CU-AB is

0.068%. The communication latency is considerably higher in the off-

chip implementation, taking 94 µs and 2.4 µs for off-chip and on-chip,

respectively [16]. From our experiments, at each dt, the maximum

amount of the sent packets is up to 5.7 KB/s at the bottleneck case.

Compared to the total bandwidth of the NoC on the SCC (64 GB/s),

we find that the total communication overhead is less than 0.01% of

the total bandwidth.

B. Analysis on FPGA-based Setup

50

55

60

65

70

75

80

85

90

95

0 6 12 18 24 30 36
Time [s]

T
e

m
p

e
ra

tu
re

 [
 C

]

DIAS Pyroview

thermal camera

Xilinx Virtex-5

Without packaging

Threshold

50

55

60

65

70

75

80

85

90

95

0 6 12 18 24 30 36

core1 core2

core3 core4

a) mDTM is

applied

b) No DTM is

applied

Fig. 4: The thermal behavior on the FPGA setup in two cases:

a) applying our mDTM policy; b) without a DTM policy

In our FPGA setup, we run an experiment with two tasks and de-

pict the temperatures captured by the infrared camera (see Fig. 4).

Fig. 4-a and –b illustrate the temperature profiles over time for two

cases, i.e. with and without our mDTM, respectively. Analogous to

our observation in the SCC experiments, we notice in Fig. 4-a how the

core temperatures increase continuously once the tasks run on the

cores. CU-AB balances the temperature between the cores as long as

no core meets the migrating condition of the CU-AT. When any core

temperature approaches the preset threshold (76°C), CU-AT works to

avoid the threshold. Whenever temperature goes down and diverges

from the threshold, and no tasks occupy the waiting queue the CU-AB

commences operation. As seen in Fig. 4-a, the temperature never

reaches the predefined threshold. Thus, we ensure that our mDTM

technique can avoid high thresholds. However, in Fig. 4-b, where no

thermal management is applied, the temperatures of all cores exceed

the thermal threshold reaching more than 90 °C.

IV. PERFORMANCE COMPARISON TO STATE-OF-THE-ART
Since keeping associated performance penalties low is a key con-

cern of DTM techniques, we evaluate our mDTM in terms of perfor-

mance overhead. We compare to D2TM proposed in [14], as it aims to

maximize the performance under thermal constraint. D2TM imple-

ments distributed PI controllers at all cores to adjust core frequencies

to keep the temperatures slightly below the thermal threshold. The

frequency is scaled one level down when a thermal threshold is about

to be hit, and scaled one level up when the core temperature is less

than the thermal threshold with a specific offset. We implement their

PI controller on the cores of the Intel SCC platform.

0

10

20

30

40

50

60

B
e
tt

e
r

T
im

e

[s

]

T denotes Task

C denotes Core

Number of Tasks and Cores

m
D

T
M

12T@16C 16T@16C 16T@24C 24T@24C 24T@32C 32T@32C

D
2
T

M

m
D

T
M

D
2
T

M

m
D

T
M

D
2
T

M

m
D

T
M

D
2
T

M

m
D

T
M

D
2
T

M

m
D

T
M

D
2
T

M

30% 27% 55%

53%
58%

52%

 Fig. 5: Comparison of the execution time of several scenarios between our

mDTM and D2TM [14]; mDTM always has better performance

To evaluate the performance of each technique, we measure the

required execution time of a specific workload -- lower execution time

means more performance. We conduct 6 scenarios, with different

numbers of tasks (burnP5) on different numbers of cores and manage

the core temperatures using both D2TM and mDTM. Each scenario is

represented with a bar in Fig. 5 that shows the distribution of the

elapsed time on cores to execute their tasks. The maximum value at

any bar indicates the total execution time of the workload on all cores,

while the red square indicates the average execution time of all cores.

We notice that the total execution time when our technique is applied

is 48% less on average (up to 58%) compared to the total execution

time when D2TM is applied. Comparing the mean execution time of

both techniques, our mDTM requires 38% less execution time on

average.

A strong point in the results is that our technique also gets up to

53% higher performance when the number of cores and tasks are

30

32

34

36

38

40

42

0.00 0.60 1.20 1.80 2.40 3.00

30

32

34

36

38

40

42

0.00 0.60 1.20 1.80 2.40 3.00

30

32

34

36

38

40

42

6.60 7.20 7.80 8.40 9.00 9.60

a)Base Case – no thermal management:

- Threshold is hit

- Temperatures are not balanced

b) mDTM :

+Threshold is avoided

+22% less spatial variation compared to (d)

Te
m

p
e

ra
tu

re
 [
 C

]
Time [s] Time [s]

30

32

34

36

38

40

42

0.00 0.60 1.20 1.80 2.40 3.00

30

32

34

36

38

40

42

0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20

Time [s]

c) bDTM policy [9]:

- Threshold is hit

+Temperatures are balanced

d) pDTM policy [20]:

+Threshold is avoided

- Temperatures are not balanced

e) mDTM – Varying Workload:

+Threshold is avoided

+Temperatures are balanced

30

32

34

36

38

40

42

0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20

f) mDTM – Varying Workload &Tasks:

Additional different tasks (cpuburn-in)

loaded at t = 2.10 s,

+Threshold is avoided

+Temperatures are balanced

Maximum Minimum

75%-Quartile

50%-Quartile
Tth25%-Quartile

MAX(Δi,jT)

Te
m

p
e

ra
tu

re
 [
 C

]

Fig. 3 The temperatures of 32 cores on Intel SCC presented as quartiles and depicted through 6 different scenarios in order to demonstrate the

efficiency of our mDTM in fulfilling the targeted goals

identical. In this case, our mDTM also migrates tasks, because the

incurred temperature of the task is distinct in each core. Despite the

overhead of task migration, our mDTM performance surpasses D2TM

performance.

To present a more detailed picture of the comparison results and

to find an interpretation of the performance gain of mDTM compared

to D2TM, we present the corresponding temperatures and frequencies

on core 13, as an example, in the scenario of 24 tasks running on 24

cores in Fig. 6 and Fig. 7, respectively. From Fig. 6, it is obvious that

the peak temperatures resulted from mDTM are higher than ones

resulted by D2TM, because the cores of our mDTM always run their

tasks with the highest frequency (800 Mhz), and thereby obtain more

performance. In addition, when the core meets the migration condi-

tion, our mDTM stops the tasks from the core and scales down the

frequency to the lowest value (100 Mhz) if possible. That leads to fast

cooling and significant decrease in temperature, and thus when the

core run again a task, it can remain in operation for longer time

periods until its temperature rises again. In contrast to our technique,

D2TM scales frequency down step by step and keeps the task running

in the case of approaching the threshold, and scales it up step by step

in the case of having less temperature. Therefore, there is not enough

period for cooling down in the first case and task execution time

becomes inefficient in the second one. Fig. 7 illustrates the frequency

scaling operations done by both techniques. We notice, when mDTM

is applied, the core finishes its task faster compared to D2TM, result-

ing in better performance.

Time [s]

T
e
m

p
e
ra

tu
re

 [
 C

]

32

34

36

38

40

42

0.06 1.86 3.66 5.46 7.26 9.06 10.86 12.66 14.46 16.26

Our ATAB Dist.PID2TM [14]Our mDTM

0.0 1.8 3.6 5.4 7.2 9.0 10.8 12.6 14.4 16.2

Fig. 6: Temperature comparison at one of the core

While the majority of mDTM computation can be executed in

parallel through the distributed ATPs and ABPs, the main limitation

of our technique is that it relies on the central CU-AT and CU-AB to

make decisions based on these computations. This presents a bottle-

neck in the scalability of the technique. However this was not an issue

on the tested 48 core Intel SCC, since the inherent latency of thermal

effects remains lower than the communication time required to

acquire predictor outputs and act upon them. Additionally, our

technique can easily be extended to follow hierarchical structure in

order to be scalable in the emerging manycore systems.

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Performance

Gain 18%

Time [s]

F
re

q
u
e
n
c
y
 [

M
h
z
]

D2TM [14]Our mDTM

Fig. 7: Frequency scaling comparison at one of the core

V. CONCLUSION
In this paper, we proposed a multi-objective thermal management

technique to simultaneously prevent hitting an undesirable threshold

and distributing temperature between cores as uniformly as possible

with low impact on the performance. We illustrate the effectiveness of

our technique using two real-world platforms. Additionally, different

experiments running on Intel SCC showed that our goals are success-

fully accomplished with 22% less spatial thermal variation. Finally,

we achieved 58% better performance results compared to other

competitors. Multi-objective DTM techniques provide a more feasible

and practical solution to effectively avoid thermal concerns in on-chip

systems that undermine their reliable operations and life time.

I. ACKNOWLEDGMENT
This work is supported in parts by the German Research Founda-

tion (DFG) as art of the priority program "Dependable Embedded
Systems" (SPP 1500 - spp1500.itec.kit.edu).

REFERENCES
[1] Cpuburn. http://www.cpuburnin.com/.

[2] DIAS Infrarred Camera. http://www.dias-infrared.com/pdf/-
pyroview380lcompact_eng.pdf.

[3] Failure mechanisms and models for semiconductor devices, JEDEC.
http://www.jedec.org.

[4] Intel labs. http://www.intel.com/content/www/us/en/research/intel-
research.html.

[5] Xilinx fpgas. http://www.xilinx.com.

[6] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “Thermal and energy
management of high-performance multicores: Distributed and self-
calibrating model-predictive controller”, IEEE Transactions on Parallel
and Distributed Systems, pages 170–183, 2013.

[7] D. Brooks and M. Martonosi, “Dynamic thermal management for high-
performance microprocessor”, HPCA’01, pages 171–182, 2001.

[8] A. Chakraborty, K. Duraisami, A. Sathanur, P. Sithambaram, L. Benini,
A. Macii, E. Macii, and M. Poncino, “Dynamic thermal clock skew
compensation using tunable delay buffers”, ISLPED’06, pages 162–167,
2006.

[9] A.K. Coskun, T.S. Rosing, and K.C. Gross, “Proactive temperature
balancing for low cost thermal management in MPSoCs”, ICCAD’08,
pages 250–257, 2008.

[10] Y. Ge, P. Malani, and Q. Qiu, “Distributed task migration for thermal
management in many-core systems”, DAC ’10, 2010.

[11] M. Gomaa, M. D. Powell, and T. N. Vijaykumar, ”Heat-and-run:
leveraging SMT and CMP to manage power density through the
operating system”, ASPLOS’04, pages 260–270, 2004.

[12] J. Henkel, T. Ebi, H. Amrouch, and H. Khdr, “Thermal management for
dependable on-chip systems”, ASP-DAC’13, Jan. 2013.

[13] W-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin,
“Thermal-aware task allocation and scheduling for embedded systems”,
DATE’05, pages 898–899, 2005.

[14] M. Kadin, S. Reda, and A. Uht, “Central vs. distributed dynamic thermal
management for multi-core processors: which one is better?”,
GLSVLSI’09, pages 137–140, 2009.

[15] V. Narayanan and Y. Xie, “Reliability concerns in embedded system
designs”, Computer, pages 118–120, Jan. 2006.

[16] P. Reble, C. Clauss, M. Riepen, S. Lankes, and T.Bemmerl, “Connecting
the cloud: Transparent and flexible communication for a cluster of intel
SCCs”, https://communities.intel.com.

[17] S. Sharifi, A.K. Coskun, and T.S. Rosing, “Hybrid dynamic energy and
thermal management in heterogeneous embedded multiprocessor SoCs”,
DAC’10, pages 873–878, Jan. 2010.

[18] K. Skadron, M.R. Stan, W. Huang, Sivakumar Velusamy, Karthik
Sankaranarayanan, and D. Tarjan, “Temperature-aware
microarchitecture”, ISCA’03, pages 2–13, Jun. 2003.

[19] Chengmo Yang and A. Orailoglu, “Processor reliability enhancement
through compiler-directed register file peak temperature reduction”,
DSN’09.pages 468–477, 2009.

[20] Inchoon Yeo, Chih Chun Liu, and Eun Jung Kim, “Predictive dynamic
thermal management for multicore systems”, DAC’08, 2008.

[21] F. Zanini, D. Atienza, L. Benini, and G. De Micheli. “Multicore thermal
management with model predictive control”, ECCTD, pages 711–714,
Aug. 2009.

[22] F. Zanini, D. Atienza, and G. De Micheli, “A control theory approach for
thermal balancing of MPSoC”, ASP-DAC '09, pages 37–42, Jan. 2009.

[23] S. Corbetta, W. Fornaciari, D. Zoni, “A Temperature and Reliability
Oriented Simulation Framework for Multi-Core Architectures”,
ISVLSI’12, pp 51-56, Aug. 2012.

[24] S. Corbetta, W. Fornaciari D. Zoni, “Thermal-Performance Trade-off in
Network-On-Chip Architectures”, IEEE SoC 2012, October, 2012.

[25] T.Ebi, H.Amrouch, J.Henkel, “COOL: Control-based Optimization of
Load-balancing for Thermal Behavior”, CODES+ISSS’12, 2012.

[26] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M.
Tahoori, N. Wehn, “Reliable on-chip systems in the nano-era: Lessons
learnt and future trends”, ACM/IEEE DAC, 2013.

