
From Simulink to NoC-based MPSoC on FPGA

Francesco Robino, Johnny Öberg
Department of Electronic Systems

Royal Institute of Technology (KTH), Sweden
Email: {frobino,johnnyob}@kth.se

Abstract—Network-on-chip (NoC) based multi-processor sys-
tems are promising candidates for future embedded system
platforms. However, because of their complexity, new high level
modeling techniques are needed to design, simulate and synthesize
embedded systems targeting NoC-based MPSoC.

Simulink is a popular modeling environment suitable to
model at system level. However, there is no clear standard to
synthesize Simulink models into SW and HW towards a NoC-
based MPSoC implementation. In addition, many of the proposed
solutions require large overhead in terms of SW components
and memory requirements, resulting in complex and customized
multi-processor platforms.

In this paper we present a novel design flow to synthesize
Simulink models onto a NoC-based MPSoC running on low-cost
FPGAs. Our design flow constrains the MPSoC and the Simulink
model to share a common semantics domain. This permits to
reduce the need of resource consuming SW components, reducing
the memory requirements on the platform. At the same time,
performances (throughput) of dataflow applications can increase
when the number of processors of the target platform is increased.
This is shown through a case study on FPGA.

I. INTRODUCTION

We are approaching the sea-of-cores/processors era [2]. Multi-
processor systems-on-chip (MPSoCs) will soon be composed
of hundreds of heterogeneous processing elements (PEs) [5].
Networks-on-chip (NoCs) [8] have been proposed as an effi-
cient communication structure between them. To simplify the
specification, verification and implementation of NoC-based
MPSoCs, embedded system designers need new abstraction
layers above register-transfer level (RTL).

System-level [5] has been proposed as the new abstraction
layer, and system-level design (SLD) is considered the next
frontier in electronic design automation (EDA). At the system-
level, resources are defined in terms of abstract functions (sys-
tem behavior) and blocks (system architecture). Design targets
include both software (SW) and hardware (HW) 1, which are
generated automatically to guarantee correct functionality, and
optimal performance and resource utilization.

However, while tools and libraries such as Simulink [9] and
SystemC has been shown to be suitable to model and simulate
at system-level, automated mapping and refining of system-
level models onto MPSoCs has been shown to be very difficult
to achieve [15]. In addition, the lack of common semantics
between the abstraction layers involved in the refinement
process leads to design errors that are not caught until well
into the implementation phase.

In the published literature, only a few number of end-
to-end approaches from Simulink to MPSoC have been pro-
posed. Some of them use ad-hoc expensive-complex plat-

1HW corresponds to implemented circuit elements (e.g. CPUs/PEs), SW
corresponds to the instructions of functions performed by the HW.

forms (e.g. [13]) and require resource consuming operating
systems (OSs) to support the flow (e.g. [1]).

In this paper, we describe a SLD methodology which starts
from a Simulink model and generates a NoC-based MPSoC
implementation of the model. HW and SW description files
are automatically generated for fast prototyping on low-cost
FPGAs, characterized by low memory and logic elements
availability. The generated MPSoC prototype behaves accord-
ing to the semantics of the Simulink model, providing exactly
same results as the simulation. The platform generated with
our flow does not need OSs to support the end-to-end flow.

The contributions of this work are:

• to introduce a SLD flow enabling refinement of a
Simulink model on to a NoC-based MPSoC.

• to connect the execution semantics of the Simulink
model and the NoC-based MPSoC platform.

• a working prototype on low-cost FPGA, running with-
out the need of an OS, reducing memory requirements.

II. RELATED WORK

K.Popovici et al. [13] describe a platform-based design flow
starting from a Simulink model, and allowing easy exper-
imentation of several mappings of the application onto an
heterogeneous NoC-based MPSoC [12]. Depending on the
Simulink blocks specification the application is then extracted
into an intermediate model of functionality (C tasks) and
platform (SystemC), enabling virtual prototyping of the entire
system at different abstraction level. Virtual prototyping is
carefully addressed, but less details are reported regarding a
real prototype. The virtual prototype requires an OS (e.g. eCos)
and uses 1 RISC processor and 1 DSP, while we present an
OS free design with 4 RISC processors.

Kai Huang et al. [4] describe a system-level design flow
using Simulink combined algorithm and architecture model
(CAAM), a unified model that combines aspects related to
the architecture (e.g. PEs available in the platform) into the
algorithm model. From CAAM, it is possible to virtually
prototype the entire system at different abstraction levels.
In contrast to our approach, their PEs do not communicate
through a NoC, they require an OS to support the flow, and
the target platform is not a low-cost FPGA.

Caspi et al. [1] identify the periodic execution semantic of a
subset of Simulink blocks. They are then able to transform the
Simulink model into an intermediate layer described through
the synchronous language Lustre [3], which executes functions
periodically, triggered by a synchronous signal. Similarly, a
MPSoC implementing the Time Triggered Architecture (TTA)
model [7], enables significant events to happen periodically
during specific time slots. Sharing such execution concept, a
end-to-end design flow is proposed.

However, the TTA model can only be supported using an978-3-9815370-2-4/DATE14/ c© 2014 EDAA

Initialization

Simulation
stop time?

Start simulation

Y

N

Store inputs

Compute outputs

Generate outputs

Advance simulation time

Stop simulation

Si
m

ul
at

io
n

lo
op

(a) Simulink

Execute SW processes

HB tick
received?

Begin

Y

N

PE

HB tick SW

Initialize SW processes

Wait first HB tick

(b) HeartBeat

Fig. 1. Simulink simulation semantics and HeartBeat semantics

OS on the PEs of the target MPSoC, and it requires complex
HW to support synchronization between PEs without using a
globally distributed clock.

III. SIMULINK DESIGN FLOW FOR EMBEDDED SYSTEMS

A. An environment for system-level designs

Simulink [9] is a module of Matlab used to model, test and
verify embedded systems. A Simulink model is graphically
described through the use of blocks (e.g. an adder, a transfer
function, etc.) and subsystems (a set of blocks), linked by
signals. Using different blocks and subsystems, architecture
and application specification can be combined in a mixed
HW/SW model, as proposed by SLD methods. In this work,
our proposal is to describe SW tasks through standard Simulink
blocks, while the underlying HW is described using the
concept of subsystem and signals.

B. Simulink execution model

The execution and validation of a Simulink model is performed
through simulation. The semantics of the simulation process,
shown in Fig. 1a, are documented in [13]. The first step
of a simulation is the initialization. During this step the
model is compiled to an executable file on the host machine.
The compiler determines the invocation order of the blocks,
depending on their dependencies.

After the initialization, the simulation loop is started.
During the simulation loop the simulation time is frozen.
Inputs are stored, subsequently the outputs and the state of
the system are computed. Then the successive simulation time
point where to evaluate the model is computed. Finally the
simulation time is increased, and the loop starts again.

The successive time points at which the states and outputs
are computed are called time steps. The length of time between
steps is called step size (tstep). The simulation loop continues
until the specified simulation time ends. Simulink provides a
set of programs, known as solvers, to calculate outputs and step
size. In this work we consider the fixed-step solver, solving the
model without varying the step size from the beginning to the
end of the simulation.

C. Simulink Embedded Coder

A Simulink model can be translated to C and C++ code for
use on embedded processors through the Simulink Embedded
Coder [9]. Following the Simulink execution model in Fig.1a,

PE 0 PE 1

PE 2PE 3

0 1 2
HB period

HB ticks

0 1 2 3

0 1 2 431 2 430 5

3

Fig. 2. MPSoC compliant with the HB model

the generated program executes a background task, and it
expects to be periodically interrupted by a timer. During the
interrupt service routine (ISR), a generated function evaluating
output and state of the system, rt_OneStep, must be exe-
cuted. Executing rt_OneStep periodically in an ISR routine
implements the simulation loop shown in Fig. 1a. Every tick
of the timer the ISR is executed, inputs are stored, the system
state is computed, and outputs are written out.

IV. FROM SIMULINK TO NOC-BASED MPSOC

Compiling and mapping the code generated through the Em-
bedded Coder onto NoC-based MPSoCs is still an open issue
in the Simulink community. To enable an end-to-end SLD flow
we follow the principles of the platform-based design method-
ology [15], constraining platform (MPSoC) and functionality
(Simulink model) to share a common semantic domain. In this
work, we aim to constrain the target MPSoC to reproduce the
Simulink execution semantics shown in Fig.1a. The functions
modeled in Simulink should be executed on the platform once
each time step. In addition, the length of time between time
steps (tstep) must be long enough to allow the platform to
execute the functions. These conditions can be achieved if the
platform behaves following the HeartBeat model.

A. The HeartBeat model

The HeartBeat (HB) model defines a set of rules constraining
the execution semantics on a generic NoC-based MPSoC
platform. A HB is a global periodic event which is made visible
simultaneously to all PEs of the NoC-based MPSoC. Similarly
to a clock in synchronous hardware, a HB can be represented
through HB ticks repeated periodically with period tHB (HB
period). Every single received HB tick triggers a compute cycle
on the PE. SW processes mapped on the PEs are executed once
every HB tick, during an execution time tε. Afterwards, they
can communicate with SW processes on other PEs through
the NoC, taking a communication time tc. The communicated
data will be visible for the target PE on the following HB tick,
so, in the HB model, functionalities running on different PEs
become pipelined.

The principle is outlined in Fig.2. It shows a system
following the HB semantics, composed by 4 PEs connected
through a 2 × 2 mesh NoC. Each PE is a processor running
a single SW process, communicating its result to a neighbor
PE. The output from the SW process in PE0 will be available
for the process running in PE1 one HB tick later, the output
from PE1 will be available for PE2 one HB tick later, etc.

The HB execution semantics are enforced on each PE by
the HB wrapper. It is an initial program containing the main
function of the local PE. It embeds the SW processes mapped
on the PE, and triggers their execution and communication,
based on the HB tick, as shown in Fig.1b.

TABLE I. COMMON SEMANTICS PARAMETERS AND DESIGN RULES

Simulink HB compliant MPSoC
time steps HB ticks
step size (tstep) HB period (tHB)
simulation loop SW processes triggered by HB wrapper
rt onestep SW running on one PE
blocks instuctions of SW process
subsystem SW processes on a single PE (rt onestep)
signal NoC communication path

B. Connecting Simulink and HB NoC-based MPSoC semantics

From Fig.1a and Fig.1b, we see that SW processes triggered
by the HB wrapper execute once each HB period. Therefore,
they are equivalent to the rt_onestep function that is
executed in the simulation loop each Simulink simulation step.
Consequently, if we map a single rt_onestep function on
a single PE on the HB compliant platform, and tstep = tHB ,
we will get exactly the same behavior.

The previous observation is clarified in Table I where
it is shown that each parameter characterizing the Simulink
semantics has a counterpart in a HB compliant MPSoC. This
means that we can use Simulink models to program HB
compliant MPSoCs. Simulink blocks can be used to describe
instructions of functions performed by a PE (SW processes).
Subsystems, which are composed by sets of blocks, are used
to create SW processes that should run on different PEs. Each
subsystem generates its own rt_onestep function, which is
then mapped on a PE. Simulink signals connects subsystems
(PEs), and they are mapped to the NoC intercommunication
paths. These design rules are summarized in Table I.

C. The design flow

To enable an end-to-end design flow from Simulink to NoC-
based MPSoC on FPGA, we use the NoC System Generator
(NSG) tool [11] as back-end. The tool requires a XML input
file, describing the platform architecture, and it generates
synthesizable VHDL describing a multi-processor platform.
PEs can be chosen between Nios2, uBlaze or Leon3 cores, and
they are connected through the Nostrum NoC architecture [8].

SW processes running on the PEs are provided by the user
as C code, and if the user specifies on which PE each C
file should be mapped (through the XML input file), the tool
automatically download the compiled C code on the specified
PEs. NSG can generate MPSoC platforms compliant with
the HeartBeat model [14], including a clock divider shared
between the PEs, generating HB ticks.

In our design flow, shown in Fig.3, we extract the
rt_onestep functions from the C files generated by the
Embedded Coder for each subsystem. We then specify in the
XML file to map a single rt_onestep function for each PE.
NSG embeds each rt_onestep function in an HB wrapper,
triggering their execution once each tHB .

The tHB for the generated platform must be specified in
the XML file. It must comply to the following time constraints:

tstep = tHB ≥
M

max
i=0

(tεi + tci) (1)

where M is the number of PEs, while tεi and tci are the worst
case execution time (WCET) and worst case communication
time (WCCT) of the SW process(es) running on node PEi, as
introduced in Sec. IV-A.

TABLE II. WCET, MINIMUM tHB , MEMORY REQUIREMENTS

1 PE 4 PEs
Source Noise Filter Sink

WCET - Min. tHB [ms] 28 7,90 11,68 8,00 0,01
Mem. req. w/o OS [KB] 53 33 27 21 16
Mem. req. eCos [KB] +20 +20 for each PE
Mem. req. uCLinux [MB] +2 +2 for each PE

Simulink + Embedded Coder

C code: main loop(s), ISR(s), rt_onestep function(s)

Extraction of rt_onestep, one for each subsystem

C code: rt_onestep function(s), data structure

Embed in HB wrapper

NoC System Generator

VHDL files

Prototype synthesis on FPGA

System-level
specification

RTL MPSoC
specification

step size = XML file
subsystems = # PEs

Fig. 3. Simulink to MPSoC design flow

V. CASE STUDY

To prove the feasibility of our approach, we have implemented
the whole SLD flow starting from a Simulink model of a digital
signal processing (DSP) application. The DSP application used
in this case study is a Simulink tutorial [10], shown in Fig.4a.
A sinusoidal source block generates a sinusoidal signal. Then,
some random noise, generated by a random source block
and a digital high pass FIR filter, is added to the sinusoidal
signal. The noisy signal is then filtered by a low pass FIR
filter, which removes the noise component. Fig.4c shows the
most significant signals of the modeled system. The upper plot
shows the signal produced by the sinusoidal source block and
the noisy signal. In the lower plot, the red signal is the result
of the noisy signal filtered through the low pass FIR filter. The
design runs on a Cyclone IVE FPGA.

A. From Simulink to single processor

If the designer does not specify any subsystem, he/she is tar-
geting the entire DSP system on a single processor, following
the methodology proposed by the Embedded Coder [9] and
shown in Fig.4a. The designer configures NSG to map the
only rt_onestep function on a single PE. The function is
triggered every HB tick, and it exhibits the exact same results
between Simulink simulation and FPGA prototype, as shown
in the red signal in Fig.4c (simulation and FPGA output is
identical).

To maximize the throughput we want to run our platform
with the minimum HB period (tHB). The minimum tHB can be
calculated using Eq. 1, where M = 1 and tc = 0 (no commu-
nication through the NoC). The value of tε, representing the
WCET of rt_onestep on the selected PE (Nios2/e), has
been found through extensive emulations, measuring start and
end time of the executed function through a 50 MHz timer,
and it is reported in Table II. For a single processor system,
the maximum throughput (minimum tHB) we could achieve
on the FPGA prototype was one output sample every 28 ms.

B. From Simulink to 4 processor system

If the designer divides the DSP system in 4 subsystems,
he/she can configure NSG to map the DSP system on a

PE
HB tick

(a) 1 processor Simulink model

PE 0 PE 1

PE 2PE 3

(b) 4 processors Simulink model (c) Simulink and prototype results

Fig. 4. Experiment setup and results

HB compliant platform, composed by 4 Nios2/e soft-cores
connected through a 2 × 2 NoC, as shown in Fig.4b. Each
subsystem will be mapped on a different PE, in accordance to
the Simulink/HB translation rules shown in Table I. The first
subsystem, Source, contains the sinusoidal source block. The
second, Noise, contains the noise generator and the high pass
FIR filter. The third, Filter, contains the low pass FIR filter,
while the fourth, Scope, is just printing out the results.

The Embedded Coder generates one rt_onestep func-
tion for each subsystem. Each function is then automatically
embed in a HB wrapper and mapped to one of the 4 PEs of
the NoC-based MPSoC.

In this situation, to find the minimum tHB (and so the
maximum throughput) we use Eq. 1, with M = 4. tε for
each subsystem has been evaluated with the same methodology
presented in the previous subsection, and reported in Table II.
From the table, we can see that tε of the Noise subsystem,
11.68 ms, is the largest. This means that it is the bottleneck of
our system, defining the minimum tHB . A upper bound of tc
for the Nostrum based platform created by the NSG, can be
found through the following equation, discussed in [6], [14]:

tc ≤ npackets · (RNIsend + 5DN +RNIrcv) (2)

where npackets is the number of packets to be sent, RNIsend
and RNIrcv are the time it takes to inject/fetch a packet
in/from the network, D is the diameter of the NoC, N is
the maximum number of packets with highest priority in the
network. For our 2 × 2 NoC, tc ≤ 328 ticks< 0.01 ms. This
is several orders of magnitude less than the minimum tHB ,
11.68 ms, so tc can safely be ignored in this example.

The lower plot in Fig.4c shows a comparison between the
output signal of the prototype running on a single PE (red line)
and the output signal of the prototype running on 4 PEs. The
results are the same, but shifted in time since the 4 processor
system functionality is pipelined across 3 HB periods.

Splitting the system in 4 subsystems using our methodol-
ogy, increase the throughput of the system of ∼ 2.4×. If we
would have created 4 subsystems having equal WCET (i.e.
7 ms), we could have reached a theoretical 4× throughput
increase. The increase in throughput comes at the expense of
memory. The total on-chip memory needed by 4 PEs is larger
than the one needed from the single PE case, because each PE
does not need only the set of instruction represented by the
rt_onestep function, but also boot code for each processor,
in addition to the code for implementing the HB semantics.

Table II shows the on-chip memory needed for each PE
(Nios2/e) when we map the whole system on 1 PE, and when
we spread it on 4 PEs. However, our design flow still saves

memory resources if compared with other flows using OSs
(e.g. [1], [4], [13]). As shown in Table II, adding an OS on
each PE requires an additional overhead of at least 20 KB for
each PE, in addition to the memory needed to store the code.

VI. CONCLUSIONS

We have described a SLD flow that allows the synthesis of
Simulink models to NoC-based MPSoCs, generating a working
prototype on low-cost FPGAs.

The generated MPSoC is constrained to share a common
semantics domain with the Simulink model, so that the results
between simulation and implementation of the prototype are
the same, without the need of resource consuming SW com-
ponents (such as operating systems).

The proposed flow has been shown through a case study on
FPGA, which is used to discuss benefits in terms of memory
consumption and performances, together with the limitations.

REFERENCES

[1] P. Caspi et al. From Simulink to scade/Lustre to TTA: a layered
approach for distributed embedded applications. In Proc. of conf. on
Language, compiler, and tool for embedded systems, LCTES, 2003.

[2] S. Davidson. Sailing on a sea of processors. Design Test of Computers,
IEEE, 16(4):112, oct-dec 1999.

[3] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language Lustre. Proc. of the IEEE, 1991.

[4] K. Huang et al. Simulink-based MPSoC design flow: Case study of
motion-jpeg and H.264. In Design Automation Conference, DAC, 2007.

[5] The International Technology Roadmap for Semiconductors (ITRS),
Design, 2011. http://www.itrs.net/.

[6] A. Jantsch. Models of computation for networks on chip. In Application
of Concurrency to System Design. ACSD 2006., pages 165–178, 2006.

[7] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings
of the IEEE, 91(1):112 – 126, jan 2003.

[8] S. Kumar et al. A network on chip architecture and design methodology.
In VLSI. Proc. IEEE Computer Society Annual Symposium on, 2002.

[9] Mathworks. Simulink documentation center. Website. http://www.
mathworks.se/help/simulink/.

[10] Mathworks. Digital filter block. Website, August 2013. http://www.
mathworks.se/help/dsp/ug/digital-filter-block.html.

[11] J. Öberg and F. Robino. A NoC system generator for the sea-of-cores
era. In Proc. of the 8th FPGAWorld Conference, FPGAWorld ’11, 2011.

[12] K. Popovici and A. Jerraya. Simulink based hardware-software codesign
flow for heterogeneous MPSoC. In Proc. of the Summer Computer
Simulation Conference, SCSC, 2007.

[13] K. Popovici et al. Embedded systems design: Hardware and software
interaction. In Embedded Software Design and Programming of
Multiprocessor System-on-Chip, Embedded Systems. Springer, 2010.

[14] F. Robino and J. Öberg. The HeartBeat model: a platform abstrac-
tion enabling fast prototyping of real-time applications on NoC-based
MPSoC on FPGA. In ReCoSoC, 2013.

[15] A. Sangiovanni-Vincentelli. Quo vadis SLD: Reasoning about trends
and challenges of system-level design. IEEE, 95(3):467–506, 2007.

