
A Constraint-Based Design Space Exploration
Framework for Real-Time Applications on MPSoCs

Kathrin Rosvall and Ingo Sander
KTH Royal Institute of Technology, School of ICT, Electronic Systems

Stockholm, Sweden
{krosvall, ingo}@kth.se

Abstract—Design space exploration (DSE) is a critical step in
the design process of real-time multiprocessor systems. Combin-
ing a formal base in form of SDF graphs with predictable plat-
forms providing guaranteed QoS, the paper proposes a flexible
and extendable DSE framework that can provide performance
guarantees for multiple applications implemented on a shared
platform. The DSE framework is formulated in a declarative style
as interprocess communication-aware constraint programming
(CP) model. Apart from mapping and scheduling of application
graphs, the model supports design constraints on several cost and
performance metrics, as e.g. memory consumption and achievable
throughput. Using constraints with different compliance level, the
framework introduces support for mixed criticality in the CP
model. The potential of the approach is demonstrated by means
of experiments using a Sobel filter, a SUSAN filter, a RASTA-
PLP application and a JPEG encoder.

I. INTRODUCTION

Although multiprocessor embedded platforms have been
available for many years, there is still a considerable lack
of systematic design methods that can guarantee real-time
performance for the final implementation. Current industrial
multiprocessor platforms are extremely difficult to analyze
due to shared resources and caches [1], and provide very
little support for a correct-by-construction design flow. As
a consequence, the verification costs are exploding and are
already dominating the overall design costs. To overcome
this situation, many predictable platforms, like PRET [2],
CoMPSoC [3], or JOP [4], have been proposed in recent
years. Together with models of computations (MoCs) [5],
providing a well-defined semantics for application models,
these predictable platforms form a solid base for a big step
towards a correct-by-construction design flow.

A key component of a correct-by-construction design flow
is the design space exploration (DSE) framework which per-
forms the interdependent steps of mapping, scheduling and
performance analysis with the goal to provide multiprocessor
schedules with performance guarantees. This paper introduces
a flexible and extendable DSE framework, combining a formal
MoC with predictable platform services. The framework is
formulated in a declarative style as constraint satisfaction
problem. The main contribution is a constraint-based DSE
framework which
• maps and schedules multiple applications on a shared

platform for computation and communication, providing
cost and performance guarantees for the individual appli-
cations and the system as a whole,

• supports mixed-criticality and performance metrics in
terms of allocated resources, memory consumption,
buffer dimensioning, processor utilization and achievable
throughput and can be conveniently extended with further
metrics without modifying the existing model,

• integrates a specialized constraint for interprocessor com-
munication aware throughput analysis,

• solves the DSE problem as a whole and thereby avoids the
disadvantages of decomposing it into the interdependent
sub-problems, and

• has illustrated its potential through a case study with
typical streaming applications and mixed-critical design
constraints.

II. RELATED WORK

In order to handle the complexity of the problem, mapping
and scheduling of SDFGs onto multiprocessor platforms under
performance constraints is often decomposed into its three
sub-problems, as in [6], [7], [8] and [9]. First, a mapping
is established based on an approximate cost function, e.g.
balancing the workload on the nodes in [7]. In a subsequent
step, a schedule is derived for the obtained mapping, typically
resorting to heuristic techniques such as list scheduling [6]. Fi-
nally, the performance of the resulting mapping and scheduling
is analyzed.

The CP-based approach used in this paper has the advan-
tage that mapping, scheduling and performance analysis are
performed simultaneously, i.e. the problem is not decomposed.
The impact of each step in the mapping and scheduling process
is evaluated immediately and as soon as a partial solution
proves unsatisfactory in terms of performance or cost metrics,
the search is continued in a different direction. Due to avoided
decomposition, the solution space of the model contains all
possible solutions and the chosen search technique, as de-
scribed in Section III-B, can either guarantee completeness
and optimality or, for larger scale problems, balance search
time and quality of found solutions.

Another advantage of the CP approach is that the same
model supports DSE problems with different goals, i.e. maxi-
mizing for throughput or minimizing the number of allocated
processors while satisfying memory constraints. In addition,
new cost or performance metrics can be added without chang-
ing the existing model. By this means, a CP-based DSE
framework offers flexibility and extendibility, as opposed to
problem-restricted heuristic approaches.

978-3-9815370-2-4/DATE14/ c©2014 EDAA

There are a number of related CP approaches. The work
presented in [10] proposed a CP approach to map and schedule
acyclic task graphs on multiple resources. The method pre-
sented in this paper can handle both acyclic and cyclic graphs.
The work in [11], [12] maps and schedules SDFGs on a hetero-
geneous multiprocessor platform with buffer and throughput
constraints, but in an iterative process. The approach of the
CP model is essentially different in that the representation of
the schedules in the CP model is time-based, not order-based
as in the model in this paper.

The work of Bonfietti et al. [13], [14] is most similar to
the approach used in this paper. However, that work does not
consider interprocessor communication, buffer dimensioning,
memory consumption, resource utilization or a specific target
platform. Also the throughput computation for the DSE frame-
work in this paper has been extended to enable interprocessor
communication-aware throughput analysis. Most significantly,
none of the above mentioned approaches, heuristic or CP-
based, supports simultaneous scheduling of multiple applica-
tions. The work in [7] considers multiple applications, but
each application is scheduled individually and seperated by
means of a TDMA time wheel. The approach presented in this
paper can map and schedule multiple applications on a shared
platform with or without individual or global performance
and cost constraints. The framework also offers support for
mixed-criticality, in the sense that constraints on performance
and cost metrics can be hard for some applications, while
other applications are provided with best-effort service on the
remaining resources.

III. THE DSE FRAMEWORK

Figure 1 illustrates the proposed design space exploration
(DSE) framework. It is designed to support three interdepen-
dent activities: mapping, scheduling and performance analysis.
The objective of the design space exploration framework is to
find an efficient implementation of a set of SDF-applications
with individual design constraints on a shared multiprocessor
platform which can provide predictable performance. The
framework supports cost and performance analysis in terms of
allocated resources, memory consumption, buffer dimension-
ing, processor utilization and minimum guaranteed throughput.
The following sections describe the framework from input
specifications to the resulting output.

A. Input
As illustrated in Figure 1, four different types of information

serve as input to the framework: One or more application
graphs with an associated set of design constraints, a descrip-
tion of the target platform for the implementation and the
processor-specific application properties in terms of worst-
case execution times and memory consumption.

Application Model: In order to allow for accurate per-
formance analysis at compile time, it is required that the
application description has an underlying formal model of
computation (MoC) which provides a sufficient level of an-
alyzability. In the current framework version SDF graphs
(SDFGs) [15] are used to describe the applications. The SDF
MoC is commonly used for streaming applications. It has the

Application Graph G1
Application Graph Gn

a1,1

a1,2

a1,3
p1,1 q1,1

p1,2

q1,2p1,3

q1,3 an,1

an,2

an,4

an,3
pn,1

qn,1 pn,2

qn,2

pn,3

qn,3 pn,4
qn,4

· · ·

Design Space Exploration

Design
Constraints D1

Design
Constraints Dn

· · ·
Processor-specific
Application Properties
(WCET, Memory Sizes)

Mapping

Performance Data

Schedules

Network Interface

CPUMemory

Network Interface

CPUMemory

· · ·

TDM· · · 1 · · · r 1 · · · r 1 · · ·
Time Division Multiplex Bus

Node 1 Node m

Platform
Model

Figure 1. Overview of the DSE Framework

advantage of high analyzability at compile time, e.g. static
scheduling, buffer dimensioning and throughput computation.

An SDFG G(A,C) consists of a finite set of actors A and a
finite set of channels C. An actor a ∈ A produces a fixed rate
of p tokens on outport op and sends them to an actor b that
consumes a fixed rate of q tokens from inport ip via a channel
c = (a, op, p, b, ip, q, tok). A channel can contain initial
tokens, denoted by tok . Initial tokens are visualized by a dot
on the channel, optionally with an adjacent integer indicating
the presence of more than one token.

The fixed production and consumption rates allow for static
scheduling of SDFGs. For all consistent SDFGs, a function
γ : A→ N gives the number of repetitions of each actor during
one iteration of the graph. At the end of one iteration, the state
of the channels is equal to the initial token configuration.

When using techniques as CP, it is important that the
constraint model is not built on restricting assumptions. In case
of the mapping and scheduling problem, this means that the
full potential of parallelism needs to be exposed to the model.
The design constraints, as described in a following part of this
section, can then be used to limit the solution space if desired,
e.g. by specifying that all instances of an SDF actor shall be
mapped onto the same node.

The CP model is therefore supplied with the most parallel
representation of one iteration of the SDFGs, which contains
all γ(a) repetitions of each actor a and the dependencies, i.e.
tokens exchanged, between them. Algorithm 1 shows how to
convert an SDFG into the most parallel representation. As a
result, every channel will have homogeneous rates, as can be
seen in the example in Figure 2. Note that the conversion
is different from the conversion to HSDF in [16], since the
rates can be greater than 1. In the following, the term actor
will refer to the actors of the SDFG with homogeneous rates,
unless otherwise stated.

Platform Model: In order to provide real-time guarantees,
the underlying platform needs to be predictable with respect
to timing behavior. To enable worst-case communication time
analysis in the current version of the DSE framework, we
assume a TDM bus-based multiprocessor architecture as il-
lustrated in Figure 1. A TDM round consists of several time

a b32

64
8

a0

a1

a2

b0

b1

2
2

2
2

1
1

1
1

4
4

4

2

2 2
2

2

2

4

4

Figure 2. SDFG conversion example with γ(a, b) = (3, 2)

Algorithm 1 SDFG conversion
Input: SDF graph G = (A,C) with repetition vector γ(A)
Output: rate-homogeneous SDF graph G′ = (A′, C′)

1: for each actor a in A, add γ(a) actors a0, ..., aγ(a)−1 to A′

2: for each actor a in A′, set outportsa = 0 and inportsa = 0
3: for each channel (a, op, p, b, ip, q, tok) in C do
4: i, k, r, t := 0
5: j := outportsai
6: l := inportsbk
7: x := γ(a) · p
8: while x > 0 do
9: if r==0 then

10: p′ := min(p, q)
11: x := x− p′
12: r := |p− q|
13: else
14: p′ := min(r, p, q)
15: x := x− p′
16: r := max(x mod p, x mod q)
17: if tok > 0 and tok > x then t := p′;
18: add channel (ai, j, p′, bk, l, p′, t) to C′
19: outportsai := outportsai + 1
20: inportsbk := inportsbk + 1
21: if (γ(a) ∗ p− x) mod p == 0 then
22: i := (i+ 1) mod γ(a)
23: j := outportsai
24: else j := (j + 1)
25: if (γ(b) ∗ q − x) mod q == 0 then
26: k := (k + 1) mod γ(b)
27: l := inportsbk
28: else l := (l + 1)

slots and each processing node which sends data over the
interconnect will be assigned one or more dedicated slots.

For interprocessor communication by means of token ex-
change, it is assumed that the buffers are placed into the local
memory of the processing node hosting the receiving actor.
The DSE framework can provide both self-timed or static
schedules, as described in the following section. To accom-
modate for self-timed schedules, the platform needs to provide
blocking send and receive primitives which are provided by
a dedicated communication block, e.g. a network interface.
Static schedules require a time-based runtime scheduler.

A platform can have different kinds of processing nodes, e.g.
a general purpose CPU or a dedicated hardware accelerator for
a specific SDF actor function. For all valid combinations of ac-
tors and processing nodes, the resulting properties in terms of
worst-case execution time (WCET) and memory consumption
is an additional input to the framework. At a later stage, the
platform model is planned to be extended, e.g. by integrating
shared memory and network-on-chip communication.

Design Constraints: The proposed framework allows the
designer to specify constraints that the generated mapping and
scheduling have to satisfy. These types of constraints will be
referred to as design constraints to avoid confusion with the
constraints that constitute a constraint programming model.

There are two classes of design constraints. They can

either concern performance and cost metrics, as for example
throughput or memory consumption, or the mapping and
scheduling decisions itself. For the performance metrics, the
level of compliance needs to be specified as either satisfy
or optimize (i.e. maximize or minimize). By this means, the
DSE framework supports mixed criticality applications in the
sense that satisfy-constraints are hard constraints that must be
fulfilled. Optimize-constraints allow for best-effort solutions,
using the remaining resources after fulfilling all hard con-
straints. Furthermore, the design constraints can have a local or
global scope, concerning either individual applications, actors
and processing nodes or the entire system. An example for a
local constraint can be “Application 1 must produce at least
one sample every 500 cycles.”. A global constraint could e.g.
minimize the number of allocated processing nodes.

The set of design constraints concerning the mapping and
scheduling decisions give the designer the opportunity to
directly influence the process if desired. An example for such a
design constraint is “Actor A shall be mapped onto processing
node X (or: a processing node of type X).”, where X could e.g.
be a specific hardware accelerator for the function of actor A.

The use of design constraints is a very powerful method
which allows to use the same DSE model for mapping and
scheduling SDFGs on a shared multiprocessor platform for
problems with diverse design goals. Design constraints can be
combined in any thinkable way to fit the design requirements.
This provides for a framework with great flexibility.

B. Method
The problem of mapping and scheduling is a typical applica-

tion for combinatorial optimization. Constraint Programming
(CP) is a well-proven technique for solving combinatorial
problems, with and without optimality requirements. In CP,
the components of a problem are modeled in terms of decision
variables. Each variable has a domain of possible values.
The relationship between variables are described in form of
constraints, e.g. the values of two integer variables x and y

may have to satisfy the constraint x < y.
The first step of CP is to create a model of the solution

with variables, their domains, constraints and optionally an
optimization criterion. Then, a constraint solver performs
the intertwined steps of propagation, branching and search.
Propagation removes values from the variable domains that are
in conflict with the constraints. Branching builds a search tree
by trying the remaining alternatives from the variable domains
after propagation. Lastly, the search operates on the created
tree to find solutions that satisfy all constraints.

A fundamental advantage of CP over the commonly used
heuristic algorithms is the separation of the description of the
problem from the way it is solved. Due to this separation of
concerns, different solvers and solving techniques for finding
a solution to the same constraint model can be applied, e.g.
with respect to the scale of the problem. If exhaustive search is
applicable, the approach is optimal and complete, i.e. finding
the optimal solution is guaranteed and finding no solution
means that no solution exists. For problems of larger scale,
it may be preferred to sacrifice optimality and completeness
through the application of a heuristic search method which

A

C

B
1

1

2 2
11

Application 1

D

E

3

3

Application 2

WCET

P0

P1 2 2 11

C D EA B

- 3 31 4

4

Figure 3. Example Application Graphs with WCET table

can find a solution in reasonable time. Whichever search
method is chosen to find a solution, they can all operate on
the same CP model. Furthermore, a CP model is modular
and therefore easily extendable due to the declarative nature
of the models. New components, e.g. additional performance
metrics, can be conveniently integrated without modifying the
existing constraints of the CP model.

The decision variables in the current version of the CP
model are described in Section IV.

C. Output

As final result, the framework provides 1) an allocation
of platform resources, 2) a mapping of actors to processing
nodes, 3) a schedule ordering the actors on each node, 4) a
schedule for interprocess communication for each node on
the TDM bus with derived worst-case communication times
(WCCTs), and 5) cost and performance data for the system
and all applications, currently in terms of throughput, memory
consumption, minimum buffer sizes and processor utilization.

The framework maps and schedules one iteration of the
SDFG. The created schedules are pipelined and not blocked,
which means that the execution of different iterations of the
graph can overlap in time on different nodes.

Within the CP model, the representation of schedules is
order-based (as opposed to time-based). As final output of the
framework, both order-based, i.e. self-timed according to the
terminology of [17], or time-based fully static schedules can
be provided. For self-timed schedules, only the order and not
the exact start times of actor executions are specified. Instead,
exact start times result from the arrival of the required data
tokens at run time. As support for self-timed execution, the
platform must provide blocking write and read mechanisms
for interprocessor communication, since the actor executions
synchronize by means of the exchanged data tokens. For fully
static schedules, all start times are fixed. A runtime scheduler
is needed to support this type of schedules.

In either case, the schedule consists of a transient phase
and a periodic phase. By transient phase, we refer to the time
it takes to execute the first iteration of the graph when the
system is started. The length of the transient phase, the initial
latency, is individual for each application, as is the throughput.
The throughput is the inverse of the length of the periodic
phase, i.e. the time it takes to complete one iteration of the
SDF application graph after the transient phase.

Figure 4 shows a schedule, in form of the fully static
version, which the framework finds for the example application
graphs in Figure 3 and a platform with 2 processing nodes. The
schedule contains computation performed on the processing
nodes P0 and P1 as well as communication in form of

Appl. 1 Initial latency: 5 Appl. 1 Periodic Phase: 5

Appl. 2 Initial latency: 3
0 1

P0

P1

2 3 5 7 86

A B

D CE

A C

A B

D CE

A CP0

10

Appl. 2 Periodic Phase: 5

Figure 4. Possible mapping and schedule on two nodes for the application
graphs in Figure 3

messages sent over the TDM bus (in the row marked with
a gray arrow). In the presented solution, actors A and B are
mapped onto P0, while C, D and E are mapped onto P1.
For WCCT analysis, all local communication is assumed to
have zero delay. Only the token exchange from actor A to
actor C suffers a communication delay due to the bus transfer.
Based on the bus bandwidth, number of TDM slots, length
of the TDM round and token rate and size, the WCCT for
this example has been determined to be 2 cycles. In order to
capture the worst case for the communication time, it has to
be assumed that a message becomes available to the network
interface for sending exactly when its last TDM slot ends.

As illustrated in Figure 4, the first iteration of Application 1
is completed after 5 cycles. Hence, the initial latency is 5
cycles. The second iteration completes at cycle 10, yield-
ing a throughput of 1

5
samples
cycles . Application 2 also reaches a

throughput of 1
5
samples
cycles , after an initial latency of 3 cycles.

All buffers need to hold one token each. The utilization for
each processing node is the sum of the actors’ WCETs on
that node divided by the length of the periodic phase of the
applications allocated to that node. In the presented solution,
both P0 and P1 have a utilization of 1.

IV. THE CP MODEL

This section describes the decision variables which consti-
tute the CP model. The problem to solve is the mapping and
scheduling of n SDF application graphs Gz (Az , Cz) onto
a platform model with a set of processing nodes P and a
bus divided into m TDM slots. We denote the union sets of
application graph actors and channels as A =

⋃
z∈[0,n−1]Az

and C = ⋃
z∈[0,n−1] Cz , respectively. The WCET and memory

consumption of actors on processing nodes is given by the
functions t : A × P → N and mem : A × P → N. In the
following, we list all variables in the CP model and explain
how they are constrained.
proca ∈ P,∀a ∈ A: captures the mapping of actors.
nexta ∈ A ∪ {−1}, ∀a ∈ A: captures the order-based

schedules for the processing nodes. The value of nexta
identifies the direct successor of an actor a in the schedule
for node proca , whereas −1 indicates that a is the last actor
on that node. For every pair of actors (a, b), if b depends on
a , i.e. a series of channels with no initial tokens leads from
a to b, then a may not be scheduled after b on the same
processing node. A no cycle constraint ensures that cyclic
dependencies on and across processing nodes are avoided in
order to prevent deadlock.
sendOrderc and recOrderc ∈ |C|, ∀c ∈ C: describe the

communication schedule by ordering the messages sent from

C

A B

D E Rec
A,C

Send
A,C

bA,C

bA,C

Figure 5. Mapping- and scheduling-aware graph representing the mapping
and schedule on two processors from Figure 4

and received on each processing node. The order depends
primarily on the actor schedule, i.e. the nexta variables, but
for cases were one actor has several outgoing (incoming)
channels for which the receiving (sending) actors are mapped
on another processing node, the order can be set arbitrarily
and will therefore generate branches in the search tree.
tdmAllocp ∈ [0,m], ∀p ∈ P : allocates a number of TDM

slots to each processing node. The sum of allocated slots may
not exceed m. A processing node without any interprocessor
communication is assigned 0 slots. If m is greater than the
number of processing nodes that need to access the bus, then
the additional slots can be distributed arbitrarily. Hence, the
variables will generate branches in the search tree.
wceta ∈ N (∀a ∈ A): assigns the WCET to each actor,

depending on the mapping. I.e. wceta := t(a, proca).
wcctc ∈ N (∀c ∈ C): determines the WCCT of each

channel. If the sending and receiving actor are mapped onto
the same node, the WCCT is 0. Otherwise it is derived from
token rate and size, allocated TDM slots, bus bandwidth and
communication schedule, considering potentially preceding,
blocking messages. Since, in the current version of the model,
the token buffers are assumed to be placed into the local
memory of the receiving actors’ processing node, the WCCT
only comprises the sending time. Once shared memories are
integrated into the platform model, the WCCT analysis will
also include the receiving time.
initLatencyz ∈ N, ∀z ∈ [0, n − 1]: captures the length

of the first iteration of each application graph, derived from
schedule and WCETs.
periodz ∈ N, ∀z ∈ [0, n − 1]: gives the length of the

periodic phase, i.e. the inverse of the throughput, for each
application. For the presented model, a specialized constraint
has been implemented which performs a maximum cycle mean
(MCM) analysis on a graph representation of the mapped and
scheduled application graphs with actor delays corresponding
to WCETs for the application actors and WCCT for commu-
nication actors. For details on MCM analysis, we refer to [18].
The MCM analysis is performed for each application, starting
from its first actor. An example for a mapping- and scheduling-
aware graph (MSAG) is shown in Figure 5, representing the
mapping and scheduling from Figure 4.

The schedule on each node, given by the nexta variables,
is represented by the cycles of actors (A,B) and (D,E,C).
For each channel c with wcctc > 0, two communication
actors are added to the MSAG, one representing the sending
delay and the other representing the receiving delay (cur-
rently 0). The communication actors are ordered according
to sendOrderc and recOrderc. Initial tokens, if present, are
placed on the channel from sending to receiving actor. The

back-edges with initial tokens from the communication actors
represent free spaces in the buffer.
bufferSzc ∈ N (∀c ∈ C): gives the buffer size for each

channel required in order to achieve the predicted throughput.
Two dependent actors can be executed in parallel in the
periodic phase (in a pipelined fashion) if sufficient tokens for
the connecting channel are produced in the transient phase.
The amount of tokens produced determines the buffer size.
memLoadp ∈ N, ∀p ∈ P : is calculated from the sum of

actor sizes mem(a, proca) with proca = p, i.e. all actors
allocated to the node p, and the sum of buffer sizes that are
placed in to the nodes local memory. memLoadp must not
exceed the local memory size of processing node p.
utilizationp ∈ Q[0, 1], ∀p ∈ P : gives the processor

utilization as the ratio between sum of WCETs of actors on
node p and the length of the period of the application(s) which
have actors mapped onto p.
procsAlloc ∈ |P |: gives the number of processing nodes

with utilizationp > 0
In addition to the constraints described above, the specified

design constraints are also integrated into the CP model as
constraints on the decision variables. The variables proca,
nexta, sendOrderc, recOrderc and tdmAllocp are used for
branching to construct the search tree. The values of the
remaining variables result directly from assignments of the
aforementioned.

V. EXPERIMENTS

In order to evaluate the potential of the presented approach,
we use four typical streaming applications for experiments,
as depicted in Figure 6. Because the applications have been
gathered from various sources, both WCETs and actor sizes for
data and memory have been adapted and normalized to cycles
for time units and data units (du) for data and memory sizes.
The target platform consists of 8 homogeneous processing
nodes that are connected via a TDMA bus with 8 slots per
round and a bandwidth of 32 du

cycle . The length of the TDMA
round is 1 cycle. All tokens have a size of 8 du and the local
memory of the processing nodes is 160 du. The actor’s WCETs
and sizes are listed in Table I. The experiments were conducted
on a Quad-core running at 2.5 GHz with 8 GB of RAM, using
the Gecode constraint solver.

getPixel

gx

6

6

gy

6
6

abs

1

1

1

1

getImage

usan

1

1

direction

2

2

thin

3

3

putImage

2

2

frontEnd

rasta

2

2

compJah

1

1

backEnd

1

1

powspec

2

2

audspec

2

2

2

2

rastaFilter

1

1

3

3

1
1

readImg

CC

1

1

DCT_0
1

1

DCT_1
1

1

DCT_2

1

1

DCT_3

1

1

DCT_4

1

1

DCT_5

1

1

Huffman_0

1

1

Huffman_1

1

1

Huffman_2

1

1

Huffman_3

1

1

Huffman_4

1
1

Huffman_5

1
1

CS
1

1

1

1

1

1

1

1

1

1

1

1

writeImg

1

1

readImg

CC_0

1

1

DCT_0
1

1

DCT_1
1

1

DCT_2

1

1

DCT_3

1

1

DCT_4

1

1

DCT_5

1

1

Huffman_0

1

1

Huffman_1

1

1

Huffman_2

1

1

Huffman_3

1

1

Huffman_4

1
1

Huffman_5

1
1

CS
1

1

1

1

1

1

1

1

1

1

1

1

writeImg

1

1

Sobel SUSAN RASTA-PLP JPEG encoder

Figure 6. The SDF applications graphs used in the experiments

The DSE process has been evaluated with all possible
combinations from one up to all four applications sharing
the same platform for computation and communication. The

Table I
ACTOR WCETS [CYCLES] AND SIZES [DU]

Actor WCET size Actor WCET size
getPixel 320 2 powspec 235 6
gx 77 4 audspec 108 5
gy 77 4 compJah 170 4
abs 123 5 rastaFilter 194 7
getImage 20 2 backEnd 133 5
usan 1177 4 getImg 413 8
direction 833 4 CC 1101 4
thin 32 5 DCT 252 6
putImage 15 5 Huffman 340 5
frontEnd 141 2 CS 2524 4
rasta 31 4 writeImg 132 5

Table II
EXPERIMENTAL RESULTS. RUNTIME AND GUARANTEED THROUGHPUT−1

[cycles
sample

]. GRAY CELLS: BEST-EFFORT CANDIDATE.

Scenario First Solution Best Solution
So Su Ra Jp So Su Ra Jp

Sobel 41ms 41ms
320 320

Susan 38ms 38ms
1177 1177

Rasta 212ms 212ms
235 235

JPEG 1467ms 66311ms
2656 2524

SoSu 251ms 3402ms
320 1197 320 1177

SoRa 1155ms 19059ms
364 364 320 278

SoJp 4761ms 13539ms
320 3248 397 2656

SuRa 1884ms 7612ms
1561 1561 1197 235

SuJp 8731ms 26390ms
1197 3248 1197 2524

RaJp 9126ms 46670ms*
364 3248 364 2996

SoSuRa 3522ms 47790ms*
397 2030 515 397 2030 343

SoSuJp 13688ms 29751ms*
397 2030 4432 397 2030 3290

SoRaJp 10378ms 173186ms*
397 515 4432 397 515 2656

SuRaJp 7594ms 1229642ms*
2030 515 4432 2030 515 2786

SoSuRaJp 10644ms 253305ms*
397 2030 540 5606 397 2030 540 4432

framework was configured to satisfy real-time constraints in
terms of required throughput for all but one application. The
remaining application was mapped and scheduled after best-
effort with the goal to maximize the throughput to reflect
mixed-criticality optimization. Table II lists all evaluated sce-
narios, i.e. combinations of applications. The cells with gray
background indicate which application was chosen for best-
effort in each scenario. The required throughput bounds were
set as follows: Sobel 1

400
sample
cycles , SUSAN 1

1050
sample
cycles and

RASTA 1
550

sample
cycles , considering that one iteration of the SDFG

produces one sample.
In order to satisfy the hard real-time constraints, the search

was in all cases continued until a satisfying solution was found.
As a means to balance the effort spent in terms of search
time and the quality of the solution in terms of minimized
throughput, the optimizing search was interrupted if no better
solution was found within 30 minutes (1800000ms).

Table II contains two columns with results. The first column
shows the time after which a first satisfying solution was found

and also the quality of the solution in terms of throughput.
Note that the results are given as inverse of the throughput,
i.e. length of the periodic phase. The second column shows
the best solution that could be found within the time limit of
30 minutes after a previous solution. For the first three cases,
the optimal solution was found at once. For all other scenarios
better solutions were found. For the first 9 scenarios, the search
for an optimal solution was completed within the time limit.
For the remaining 6 scenarios, marked with an asterix, no
guarantee for optimality can be given, because the search has
not completed within the time limit.

We want to emphasize that a simple branch-and-bound
search engine without elaborated branching techniques was
used for the experiments, which is reasonable since the focus
of the paper lies in the modeling of the DSE problem.
Nonetheless, the framework has already in this stage proven
capable of finding good-quality solutions within a reasonable
amount of time. As a next step, we plan to investigate how
different search techniques can be exploited to efficiently find
solutions for larger scale problems. We also want to clarify that
the goal of the framework is not to find the global optimum,
but to spent reasonable effort to find good quality solutions.

VI. CONCLUSIONS AND FUTURE WORK

The paper has presented a flexible and extendable DSE for
real-time multiprocessor systems based on constraint program-
ming. As demonstrated in the experiments, the framework can
give guarantees for individual applications with specific design
constraints of mixed-criticality sharing the same predictable
platform. In future work we plan to extend the framework
to integrate shared memories and networks-on-chip into the
platform model, and to explore efficient solving techniques.

REFERENCES

[1] R. Wilhelm et al., “The worst-case execution-time problem—overview
of methods and survey of tools,” ACM TECS, vol. 7, no. 3, 2008.

[2] B. Lickly et al., “Predictable programming on a precision timed archi-
tecture,” in CASES, 2008.

[3] A. Hansson et al., “CoMPSoC: A template for composable and pre-
dictable multi-processor system on chips,” ACM TODAES, 2009.

[4] C. Pitter and M. Schoeberl, “A real-time Java chip-multiprocessor,” ACM
TECS, vol. 10, no. 1, 2010.

[5] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing
models of computation,” IEEE TCAD, vol. 17, no. 12, 1998.

[6] S. S. Bhattacharyya et al., “Optimized software synthesis for syn-
chronous dataflow,” in ASAP, 1997.

[7] S. Stuijk et al., “Multiprocessor resource allocation for throughput-
constrained synchronous dataflow graphs,” in DAC, 2007.

[8] O. Moreira et al., “Multiprocessor resource allocation for hard-real-time
streaming with a dynamic job-mix,” in IEEE RTAS, 2005.

[9] M. Fakih et al., “Towards performance analysis of SDFGs mapped to
shared–bus architectures using model–checking,” in DATE, 2013.

[10] K. Kuchcinski, “Constraints-driven scheduling and resource assign-
ment,” ACM Trans. Design Autom. Electr. Syst., vol. 8, no. 3, 2003.

[11] J. Zhu et al., “Buffer minimization of real-time streaming applications
scheduling on hybrid CPU/FPGA architectures,” in DATE, 2009.

[12] ——, “Constrained global scheduling of streaming applications on
MPSoCs,” in ASP-DAC, 2010.

[13] A. Bonfietti et al., “Throughput constraint for synchronous data flow
graphs,” in CPAIOR, 2009.

[14] ——, “An efficient and complete approach for throughput-maximal SDF
allocation and scheduling on multi-core platforms,” in DATE, 2010.

[15] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” in
Proceedings of the IEEE, ser. 9, vol. 75, 1987.

[16] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Schedul-
ing and Synchronization, 1st ed. Marcel Dekker, Inc., 2000.

[17] E. Lee and S. Ha, “Scheduling strategies for multiprocessor real-time
DSP,” in GLOBECOM ’89, 1989.

[18] A. Dasdan and R. Gupta, “Faster maximum and minimum mean cycle
algorithms for system-performance analysis,” IEEE TCAD, 1998.

