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Abstract—Synchronous dataflow graphs (SDFGs) are widely
used to model digital signal processing (DSP) and streaming me-
dia applications. In this paper, we use retiming to optimize SDFGs
to achieve a high throughput with low storage requirement. Using
a memory constraint as an additional enabling condition, we
define a memory constrained self-timed execution of an SDFG.
Exploring the state-space generated by the execution, we can
check whether a retiming exists that leads to a rate-optimal
schedule under the memory constraint. Combining this with a
binary search strategy, we present a heuristic method to find
a proper retiming and a static scheduling which schedules the
retimed SDFG with optimal rate (i.e., maximal throughput) and
with as little storage space as possible. Our experiments are
carried out on hundreds of synthetic SDFGs and several models
of real applications. Differential synthetic graph results and real
application results show that, in 79% of the tested models, our
method leads to a retimed SDFG whose rate-optimal schedule
requires less storage space than the proven minimal storage
requirement of the original graph, and in 20% of the cases,
the returned storage requirements equal the minimal ones. The
average improvement is about 7.3%. The results also show that
our method is computationally efficient.

I. Introduction and RelatedWork

Dataflow models are widely used to represent DSP and
streaming media applications, which are usually required to
operate under real-time and resources constraints. Synchronous
dataflow graphs (SDFGs) [1] are often used to model multirate
DSP algorithms. Each node (also called actor) in an SDFG
represents a computation and each edge models a FIFO chan-
nel; the sample rates of actors may differ. An example SDFG,
G1, is shown in Fig. 1 (a). In this paper, we are concerned
with constructing efficient static schedules of SDFGs, where
the schedules need to satisfy memory constraints.

A static schedule arranges the computations of an algo-
rithm to be executed repeatedly. Execution of all the compu-
tations for the required number of times is referred to as an
iteration. The average computation time per iteration is called
the iteration period. SDFGs with recursion (or feedback) have
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Fig. 1. (a) The SDFG G1; (b) R(G1), a retimed graph of G1 by retiming
the actor B twice and C once. The sample rates are omitted when they are
1 and the computation time of each actor is attached inside the node. Black
dots represent initial tokens on the edges.

an inherent lower bound on the iteration period, referred to
as the iteration bound (i.e., the reciprocal of the maximum
throughput). It is impossible to achieve an iteration period
lower than the iteration bound, even when unlimited resources
are available. A schedule whose iteration period equals the
iteration bound is called a rate-optimal schedule.

Many studies have been conducted to investigate storage
aspects for SDFGs [2], [3], [4], [5]. Most of them focus on
finding a minimal storage requirement for a deadlock-free
execution or for an execution under throughput constraints.
None of them are concerned with how an SDFG can be
optimized to get a smaller storage requirement.

Retiming [6] is a graph transformation technique that
redistributes the graph’s initial tokens, while its functionality
remains unchanged. Retiming may reduce the iteration period
for static periodic schedules of an SDFG. We show in this
paper that it can also reduce the memory used by a graph.
For example, according to [5], a rate-optimal schedule of
G1 needs at least storage space 10 with distribution [4, 2, 4]
corresponding to the edges e1, e2 and e3, while for the retimed
graph R(G1), shown in Fig. 1 (b), the minimal storage needed
is 8 with distribution [2, 2, 4].

Then, how to find such a retiming and how to schedule the
retimed SDFG to achieve both optimal rate and low storage
requirement? We answer these questions in this paper.

We compute such retimings and schedules by analyzing the
behaviors of SDFGs. [7] proves that the iteration bound of an
SDFG can be computed by exploring the state space generated
by a self-timed execution (STE). STE analysis is used in [4] to
construct static periodic rate-optimal schedules with minimal
buffer sizes for homogenous synchronous dataflow graphs
(HSDFGs), which is a special type of SDFGs. It is used in [5]
to compute the minimal storage space under a given throughput
constraint, and it is used in [8] to get a rate-optimal schedule978-3-9815370-2-4/DATE14/ c©2014 EDAA



of an SDFG with and without processor constraints.

The state space includes the information of a retiming and
a rate-optimal schedule of the retimed graph [8]. We show in
this paper that the state space also includes the information
about memory required by a schedule. Using a memory
constraint as an additional enabling condition, we define a
memory constrained STE (MC-STE). Exploring the state-space
generated by the MC-STE, we can check whether a retiming
exists that leads to a rate-optimal schedule under the memory
constraint. Combining this with a binary search strategy, we
present a heuristic method to find a proper retiming and a static
scheduling which schedules the retimed SDFG with optimal
rate and with as little storage space as possible.

To evaluate our new method, we implemented it in the tool
SDF3 [9]. We compare the storage requirements of the retimed
graphs with the minimal storage requirements of the original
graphs computed with [5]. We also show the execution time of
our method. Our experiments were carried out on hundreds of
synthetic SDFGs and several models of real applications. The
experimental results show that our method is computationally
efficient and the retimed SDFGs improve or equal the minimal
required storage space of the original SDFGs in about 79% and
20% of the tested models, resp.

The remainder of this paper is organized as follows. We
describe the definitions and an operational semantics of SDFGs
in Sections II and III, resp. Our main results are illustrated
in Sections IV and V. Section VI provides an experimental
evaluation. Section VII concludes.

II. Preliminaries

A synchronous dataflow graph (SDFG) is a finite directed
graph G = 〈V, E〉. V is the set of actors, modeling the functional
elements of the system; E is the set of directed edges, modeling
interconnections between functional elements. Each actor v
is weighted with its computation time t(v), a nonnegative
integer. Each edge e is weighted with three properties: d(e),
the number of initial tokens on e; prd(e), a positive integer that
represents the number of tokens produced onto e by each firing
of the source of e; cns(e), a positive integer that represents the
number of tokens consumed from e by each firing of the sink
actor of e. These numbers are also called the delay, production
rate and consumption rate, resp. Note that for technical reasons
explained later, we allow d(e) to be negative. The source actor
and sink actor of e are denoted as src(e) and snk(e), resp. The
set of incoming edges to actor v is denoted by InE(v), and the
set of outgoing edges from v by OutE(v). If prd(e) = cns(e) = 1
for each e ∈ E, G is a homogeneous SDFG (HSDFG).

An SDFG G is sample rate consistent [1] if and only if
there exists a positive integer vector q(V) satisfying the balance
equations, q(src(e))× prd(e) = q(snk(e))× cns(e) for all e ∈ E.
The smallest q is called the repetition vector. We use q to
represent the repetition vector directly. For example, a balance
equation can be constructed for each edge of G1 in Fig. 1 (a).
By solving these equations, we have G1’s repetition vector q =
[2, 1, 1]. Only sample rate consistent and deadlock-free SDFGs
are meaningful in practice. We consider only such SDFGs,
which can be verified efficiently [1].

An iteration is a firing sequence in which each actor v
occurs exactly q(v) times. A static schedule is a function S ,

mapping a firing to its start time. The ith firing of actor v starts
at time S (v, i), i ∈ [1,∞). If S (v, i + f · q(v)) = S (v, i) + T for
every firing of v, we say that the schedule S arranges each f
iterations as a cycle with a cycle period T . Such a schedule
can be represented by the first f iterations and period T . It
is the part of the schedule defined by S (v, i) with 1 ≤ i ≤
f · q(v) for all v. The iteration period (IP) of a static schedule
is the average computation time of an iteration, that is, T

f . The
iteration bound (IB) is the greatest lower bound of the IP. If
the IP of schedule equals IB, it is a rate-optimal schedule.

The IB of an HSDFG is given by its maximum cycle
mean [10]. A sample-rate consistent SDFG can always be
converted to an equivalent HSDFG, which captures the data
dependencies among firings of actors in the original SDFG
in an iteration [10]. The IB of an SDFG equals the IB of its
equivalent HSDFG. For example, the IB of G1 in Fig. 1 (a) is
5
2 , which can be computed by the maximum cycle mean of its
equivalent HSDFG. [7] presents a method to compute the IB
directly on an SDFG, which we introduce later.

Retiming [6] is a graph transformation technique that
redistributes the graph’s initial tokens while the functionality of
the graph remains unchanged. Retiming an actor once means
firing this actor once. The SDFG R(G1) shown in Fig. 1 (b),
for example, is a retimed graph of G1 by retiming R, which
is defined as R(A) = 0, R(B) = 2 and R(C) = 1. A retiming r
of G is legal if the number of initial tokens of each edge of
r(G) is nonnegative [11]. Only legal retimings are meaningful.
Note that retiming does not affect the IB of an SDFG.

By inserting precedence constraints with a finite number of
initial tokens between the source and sink actors of an SDFG,
any SDFG can be converted to a strongly connected graph [12].
We therefore only consider strongly connected SDFGs.

III. An Operational Semantics of SDFGs

For developing our method, we define the behavior of an
SDFG G in terms of a labeled transition system, represented
by LTS(G), similar to [8]. We use tn(e) to record the current
number of tokens on edge e. SDFGs allow simultaneous firings
of an actor. For different concurrent firings of an actor, the
one first to start is the one first to end. We use a queue tr(v)
to contain the remaining times of the concurrent firings of
actor v. The ith element of tr(v) is the remaining time of the
ith unfinished firing of v. Vector tnb(E) is used for memory
analysis. tnb(e) is the buffer usage of e at each moment. Our
purpose is to construct fast schedules, so we need a global
clock, glbClk, to record the time progress.

A state of LTS(G) is a 3-tuple that consists of the values of
tn(E), tr(V) and tnb(E). The initial state of LTS(G) is denoted
as s0. At s0, tn(E) and tnb(E) are the initial delay distribution
d(E); each element of tr(V) is an empty queue. The behavior
of an SDFG consists of a sequence of firings. We use actions
sFiring(v) and eFiring(v) to model the start and end of a firing
of v, and use readyS(v) and readyE(v) as predicates capturing
their enabling conditions, resp. In parallel with actor firing,
time elapses, represented by the increase of glbClk. A time
step is modeled by the action clk.

In line with [5], we choose a relatively conservative storage
abstraction to leave more room for implementation. That is,



when an actor starts firing, it claims the space of the tokens
it will produce, and it releases the space of the tokens it
consumes only when the firing ends.

The guard readyS(v) tests if there are sufficient tokens on
the incoming edges of actor v to enable a firing.

readyS(v) ≡de f ∀e ∈ InE(v) : tn(e) ≥ cns(e).

When a firing of v starts, it reduces the number of tokens
of its incoming edges according to the consumption rates and
inserts its computation time, t(v), into queue tr(v). At the same
time, the buffer size needed by the end of the firing is claimed.

sFiring(v) ≡de f ∀e ∈ InE(v) : tn′(e) = tn(e) − cns(e)
∧∀e ∈ OutE(v) : tnb′(e) = tnb(e) + prd(e)
∧ tr′(v) = ENQ(tr(v), t(v)),

where tn′(e), tnb′(e) and tr′(v) refer to the value of tn(e), tnb(e)
and tr(v) in the new state, resp.; ENQ(tr(v), t(v)) inserts t(v) at
the end of tr(v). For conciseness, we omit the elements of states
if their values remain unchanged. The space for the consumed
tokens on the incoming edges of v is not yet released at this
moment; therefore the tnb of those edges remains unchanged.
The effect of sFiring can be illustrated by the change from
state S 1 to state S 2 in Fig. 2.

When the remaining time of a firing of v is zero, the firing
is ready to end. This is modeled by the guard readyE(v).

readyE(v) ≡de f HeadQ(tr(v)) = 0,

where HeadQ(tr(v)) returns the first element of tr(v).

When a firing of v ends, it increases tokens of its outgoing
edges according to the production rates and removes the first
element from queue tr(v). The space for the consumed tokens
on the incoming edges of v is released.

eFiring(v) ≡de f ∀e ∈ OutE(v) : tn′(e) = tn(e) + prd(e)
∧∀e ∈ InE(v) : tnb′(e) = tnb(e) − cns(e)
∧ tr′(v) = DLQ(tr(v)),

where DLQ(tr(v)) removes the first element of tr(v). Note that
the space for the increased prd(e) tokens on the outgoing edges
of v has been claimed when the firing starts, so the end of the
firing does not increase the required space of it outgoing edges.

Time progresses as much as possible when no actor is ready
to end. The largest possible time step is the minimal element
of tr(v) for all v. We use mStep to represent it.

mStep = min
c∈
⋃

v∈V tr(v)
c.

A time step reduces the remaining times of all firings by mStep
and increases the global clock by mStep. That is,

clk ≡de f (∀v ∈ V : |tr(v)| > 0⇒ (∀x ∈ tr(v) : x′ = x − mStep))
∧ glbClk′ = glbClk + mStep,

where |tr(v)| means the length of tr(v). Its enabling condition
guarantees that a clk action leads to a nonnegative value in
tr(v). In a time step, time may not progress if any actor with
zero execution time has started firings.

An action of LTS(G) is any of the sFiring, eFiring and clk
actions. A transition from state to state of LTS(G) is caused by

glbClk=5
S1:
tn=[2,0,2]
tnb=[2,0,2]
tr=[^,^,^]

glbClk=5
S2:
tn=[0,0,2]
tnb=[2,1,2]
tr=[^,{1},^]

sFiring(B)

glbClk=6
S4:
tn=[0,1,2]
tnb=[0,1,2]
tr=[^,^,^]

…

…
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Fig. 2. A part of the MC-STE of G1 with MC = [2, 2, 4]).

any of its actions constrained by their enabling conditions. An
execution of an SDFG G is an infinite alternating sequence of
states and transitions of LTS(G). We use actions to represent
transitions that are caused by them.

An sFiring or eFiring action happens at a certain time
point followed by a state at the same time. We use a.glbClk
to represent the time when such action or state a occurs.

The operational semantics extends the semantics in [8] by
adding tnb(E) to record the storage requirement.

IV. Memory Constrained Self-timed Execution

A self-timed execution (STE) is an execution in which time
steps only occur when no actors are ready to start [10]. An STE
ultimately goes into a repetitive pattern (called the periodic
phase). The periodic phase includes one or more complete
iterations. The firing sequence before the periodic phase is
called the transient phase. The average iteration computation
time in the periodic phase is exactly the IB of the SDFG [7].

Without taking into account any resource constraints, an
STE runs as soon as possible. A rate-optimal schedule can
be delivered from it [8]. A storage requirement can also be
computed according to the semantics we define in Section III.
If an STE cannot get sufficient storage space when it is ready
to go, some of its enabled firings have to be blocked. We call
such an STE a memory constrained STE (MC-STE).

In an MC-STE, besides sufficient tokens on its incoming
edges, enough space on its outgoing edges is needed for an
actor to fire. See some states of an MC-STE shown in Fig. 2,
for example. At state S 1, tokens on edges are available for
actor A to fire twice and B to fire once. When the storage
space of the edge 〈A, B〉 is limited to 2, there is insufficient
space left for the tokens that will be produced by the firings
of A, then the firings of A are blocked.

Suppose a memory constraint is modeled by a vector
MC(E). The enabling condition for a firing of an actor now
also needs to check the remaining space of its outgoing edges.
We denote the new enabling condition as readySmc.

readySmc(v) ≡de f readyS(v)
∧(∀e ∈ OutE(v) : prd(e) ≤ MC(e) − tnb(e)).



An SDFG with memory-constrained buffers is an instance
of the Resource-Aware SDF model of [13], with the edge
buffers as resources. These buffers can also be modeled by
adding an incoming edge with tokens to model available
storage space [5]. Therefore, an MC-STE of an SDFG is in
fact an STE of another SDFG in which a reverse edge with
proper initial tokens is added for each edge.

Theorem 1. An MC-STE of SDFG G = 〈V, E〉 with memory
constraint MC(E) is an STE of SDFG G′ = 〈V, E ∪ E′〉, in
which E′ = {〈v, u〉|〈u, v〉 ∈ E} and for each e′ = 〈v, u〉 ∈ E′ :
d(e′) = MC(e) − d(e), prd(e′) = cns(e) and cns(e′) = prd(e),
where e = 〈u, v〉 ∈ E.

In G′, there may exist e′ ∈ E′ with d(e′) < 0 when the
buffer capacity MC(e) is smaller than d(e). Redistribution of
those initial tokens may reduce the buffer requirement of e.

By Theorem 1, the properties of the STE [7] are still
satisfied by the MC-STE. An MC-STE of an SDFG, σ,
includes a periodic phase and a transient phase, denoted as
σp and σt, resp. The beginning state and the end state of σp
are denoted as sb and se, resp. The periodic phase consists of a
whole number of iterations, denoted as nIter(σp). The average
iteration computation time in σp is

IP(σp) = (se.glbClk − sb.glbClk)/nIter(σp).

However, since memory constraints limit the throughput,
IP(σp) does not always equal the IB of the SDFG considered,
but rather the IB of G′ mentioned in Theorem 1.

We can find an MC-STE in finitely many steps: beginning
with the initial state s0 and ending at se. We directly call such a
finite state sequence an MC-STE in the remainder of the paper.
The procedure to obtain an MC-STE of G with a memory
constraint MC, conSTE(G,MC), is a variation of Algorithm 1
in [8], in which readyS(v) is replaced with readySmc(v).

According to the operational semantics, the number of
tokens on each edge decreases only after an sFiring action.
The enabling condition of sFiring guarantees that the number
of tokens never goes negative in an execution. Hence, the
transient phase of an MC-STE forms a legal retiming of G.

Theorem 2. Given the MC-STE σ of an SDFG G, the retiming
r defined as, r(v) = the number of sFiring(v) actions in σt for
each v, is legal.

V. Rate-Optimal Scheduling underMemory Constraints

If an SDFG is equivalently transformed to a new graph
whose initial delay distribution is the same as the delay
distribution of a state in σp of an MC-STE, then the times
that sFiring actions in σp happen shifted by sb.glbClk, form
a schedule of the new graph. It is obvious that a retiming
obtained from σt transforms the SDFG to such a new graph.
The vector tnb of a state records the memory required at each
moment. It implies the memory required by the schedule.

Theorem 3. Given the MC-STE σ of an SDFG G and the
retiming obtained from σt, r, a schedule S of r(G) with its
IP= IP(σp) is defined as: for 1 ≤ i ≤ nIter(σp) · q(v),

S (v, i) = sFiring(v, i).glbClk − sb.glbClk,

where sFiring(v, i) starts the ith firing of v in σp. The sched-
ule requires storage space

∑
e∈E TNB(e), where TNB(e) =

maxs∈σp s.tnb(e).

A procedure for scheduling G under memory constraint
MC, conSch(G,MC), is a variation of Algorithm 2 in [8],
in which STE(G) is replaced with conSTE(G,MC). If the IP
returned by conSch(G,MC) equals the IB of G, we say that
MC is feasible for a rate-optimal schedule of G.

For an MC-STE σ, σt may need more storage space than
σp. In a real implementation of an SDFG, if the retiming
process is carried out at runtime, the firings corresponding to
r can be arranged to run under the buffer size of S with a
slower speed (less concurrent firings) instead of an as soon as
possible execution like in the MC-STE.

According to our assumption of the storage model, in
an MC-STE, the order of sFirings at the same moment is
irrelevant. A different order leads to the same state. At state
S 1 in Fig. 2, for example, no matter whether sFiring(A) or
sFiring(B) occurs first, after all the enabled firings start, the
resulting state is always S err. Hence, at S 1, sFiring(A) has to
be blocked. Therefore, if procedure conSch(G,MC) does not
return a rate-optimal schedule, no other MC-STE of G with
MC can lead to a rate-optimal schedule.

We can then present an algorithm to seek a retiming
which can lead to a rate-optimal schedule with the storage
space as small as possible. We use a binary search per edge
on the memory constraints. The TNB(E) of an STE records
the memory required by a rate-optimal schedule without any
resource limitation. It is already feasible. We use it as an
upper bound of the binary search. The lower bound can be set
to 〈0, ..., 0〉 or a storage distribution to avoid deadlock gotten
by [2]. The former is too low and the latter itself takes time
to compute. We use a compromise between them. Let LB(E)
be a vector, in which each LB(e) is the larger one of prd(e)
and cns(e). A deadlock-free execution uses at least LB(e) buffer
size for e. We use LB(E) as a lower bound of the binary search.

Algorithm 1 conOptSch(G)
Input: A strongly connected SDFG G
Output: A legal retiming r, a rate-optimal schedule S of r(G)

with the storage space minB
1: Get the IB and TNB from STE(G)

// By Algorithm 1 in [8]
2: Let optB = TNB
3: for all e ∈ E do
4: Perform a binary search over [LB(e), optB(e)] ; assum-

ing x is the value considered, let vector MC be defined
as MC(e) = x and MC(e′) = optB(e′) if e′ , e; use
conSch(G,MC) to test whether MC is feasible for a
rate-optimal schedule and let optB = MC if so.

5: end for
6: get r, S and TNB from σ = conSTE(G, optB)
7: minB =

∑
e∈E TNB(e)

8: return r, S and minB

The procedure is shown in Algorithm 1. It includes |E|
binary searches and begins with the memory constraint optB =
TNB of STE. Each time one edge e is considered, while
the buffer sizes of other edges remain unchanged. A binary



search over LB(e) and optB(e) is used to find the smallest
buffer size of e, and then optB(e) is set to the smallest value.
After all edges are checked, we get a smallest feasible storage
distribution optB. The schedule returned by conSch(G, optB)
is rate-optimal and requires minB for storage.

Algorithm 1 is heuristic. In general, the buffer sizes can
not be determined independently from each other. Hence,
the results may differ when the order of edges chosen for
the search changes. As shown in our experimental results,
however, in most cases, Algorithm 1 does return a storage
requirement less or at most equal to the proven minimal
feasible storage space returned by [5], which does not use
retiming. We use a random edge order in our experiments.

VI. Experimental Evaluation

A. Experimental Setup

We implemented our algorithm conOptSch in SDF3 [9].
We compare the storage space for the retimed graphs returned
by our method (minB) with the minimal storage requirements
of the original graphs computed using the algorithm of [5]
(SGB08) and show the execution time of them. We performed
experiments on two sets of SDFGs, running on a 2.67GHz
CPU with 12MB cache. The experimental results are shown
in Tables I, II and III. All execution times are measured in
milliseconds (ms).

The first set of SDFGs consists of five practical DSP
applications, including a sample rate converter (SaRate) [14], a
satellite receiver (Satellite) [15], a maximum entropy spectrum
analyzer (MaxES), an Mp3 playback application (Mp3) [16]
and a channel equalizer (CEer) [17]. Adopting the method
in [12], by introducing to each model a dummy actor with
computation time zero and edges with proper rates and delays
to connect the dummy actor to the actors that have no incoming
edges or no outgoing edges, we convert these models to
strongly connected graphs.

The second set of tested models consists of 540 synthetic
strongly connected SDFGs generated by SDF3, mimicking real
DSP applications. The number of actors in an SDFG, denoted
as nA, and the sum of the elements in the repetition vector,
denoted as nQ, have significant impact on the performance of
the various methods. We distinguish three different ranges of
nA: 10-15, 20-25, and 50-65; and three different ranges of nQ:
1000-1500, 2000-2500, and 4000-6000. A large delay count
may slowdown the STE procedure and therefore our method.
The SDF3 parameter ‘initialTokens prop’, denoted as nD, is
used to control the amount of delays in a generated SDFG in
SDF3. The delay count changes from small to large when it is
set to be from 0 to 1. We choose two values of nD: 0 and 0.9.
Then we generate SDFGs according to different combinations
of nA, nQ and nD to form 18 groups. Each group includes
30 SDFGs. The explicit difference in nA, nQ and nD among
these groups is helpful for showing how the performance of
our method changes with them.

For both sets, we consider each SDFG in two cases: with
and without auto-concurrency. In the former case, at the same
time, there can be concurrent firings of the same actor. In
the latter case, the number of concurrent firings of an actor is
limited to one. To analyze an SDFG without auto-concurrency,

we use a method different from [5], in which a self-loop with
one initial token is added to each actor to model the limitation.
We do this by not allowing a size of queue tr(v) larger than one.
Recall that tr(v) contains the remaining times of the concurrent
firings of actor v; when its size is limited to one, no concurrent
firings of the same actor are allowed.

B. Experimental Results

Table I gives the information about and results for the
practical DSP examples. There are three parts in Table I. The
first part is the information on the graphs, including the number
of actors (nA) and the sum of the elements in the repetition
vector (nQ); the second part shows the iteration bound (IB) of
each graph and the returned storage requirement and execution
time of our method (minB) and [5] (SGB08) when auto-
concurrency is allowed; the third part shows the same items
for the cases without auto-concurrency. The information and
the storage space do not include the dummy actors and edges.

TABLE I. Experimental results for practical DSP examples

Graph Information

name Mp3 SaRate MaxES CEer Satellite

nA 4 6 13 22 22

nQ 10601 612 1288 42 4515

IB 116424 5.25 5764 47128 1.83

Storage Requirement

minB 2916 1328 2087 73 15168

SGB08 N N N 73 N*

Execution Time (ms)

minB 213 45 55 1 5807

SGB08 N N N 1 N

Without Auto-concurrency

IB 120000 960 8192 47128 1056

Storage Requirement

minB 2902 34 1322 73 1544

SGB08 N 34 N 73 1544

Execution Time (ms)

minB 193 16 59 1 91

SGB08 N 18 N 3 897
* no results available because of timeout.

For the practical DSP models for which SGB08 can finish
in ten hours and return the results, our method reaches the
minimal storage requirement of the original graphs. The model
that takes the longest execution time is the satellite model,
which has a relatively large nA and nQ.

Tables II and III give the results for the synthetic exam-
ples. Besides the ranges of nA and nQ of the graphs, each
table includes two parts for cases with and without auto-
concurrency, resp. Each part shows the storage improvement
of our method comparing with [5] and the execution times.
Each point includes the average, maximal and minimal values
(AVG/MAX/MIN) of graphs in the same group.

The storage improvements show no clear difference when
nQ changes, so we show only the results divided by nA. For
the same nA, the average of the improvements of the cases
without auto-concurrency is larger. Of 79%, 20% and 1% of all



TABLE II. Experimental results for synthetic examples with nD = 0

10-15 20-25 50-65
�����nA

nQ

Storage Improvement (AVG/MAX/MIN) (%)

imp. 2.5/45.7/-29.7 5.4/48.0/-1.5 8.9/59.7/-20.0 1k-6k*

Execution Time (AVG/MAX/MIN) (ms)

minB

12/56/0 14/90/1 73/355/3 1k-1.5k

22/68/1 35/345/2 101/847/4 2k-2.5k

33/214/2 104/685/3 229/2,560/6 4k-6k

SGB08 11% of the tested graphs does not finish within 30 minutes.

Without Auto-concurrency

Storage Improvement (AVG/MAX/MIN) (%)

imp. 8.7/65.8/0.2 7.7/72.5/0.3 11.9/60.8/0.8 1k-6k

Execution Time (AVG/MAX/MIN) (ms)

minB 25/99/3 53/344/7 412/2,051/52
1k-1.5k

SGB08 68/1,042/5 497/11,226/19 346/781/132

minB 66/177/4 131/688/16 942/5,400/64
2k-2.5k

SGB08 128/1,049/8 1,582/57,034/36 2,793/48,719/294

minB 96/640/10 415/4,321/14 2,119/9,313/177
4k-6k

SGB08 192/1,761/23 N/N/41 2,970/28,577/548
* 1k=1000.

TABLE III. Experimental results for synthetic examples with nD = 0.9

10-15 20-25 50-65
�����nA

nQ

Storage Improvement (AVG/MAX/MIN) (%)

imp. 2.4/51.6/-0.1 4.1/38.6/0.0 6.2/45.2/-0.2 1k-6k

Execution Time (AVG/MAX/MIN) (ms)

minB

161/972/1 249/2,220/2 321/1,869/2 1k-1.5k

467/9,313/1 371/2,043/1 409/6,076/8 2k-2.5k

742/4,393/16 223/1,674/3 745/5,325/10 4k-6k

SGB08 24% of the tested graphs does not finish within 30 minutes.

Without Auto-concurrency

Storage Improvement (AVG/MAX/MIN) (%)

imp. 8.7/90.0/-11.2 7.0/84.5/0.3 9.0/46.9/0.3 1k-6k

Execution Time (AVG/MAX/MIN) (ms)

minB 102/296/6 340/1,996/17 2,513/31,154/32
1k-1.5k

SGB08 84/349/8 245/1,163/23 1,218/6,562/152

minB 176/1,116/6 804/9,281/13 2,699/51,197/126
2k-2.5k

SGB08 333/3,697/13 435/2,203/44 1,980/13,063/369

minB 483/2,346/80 529/2,128/26 4,788/28,829/177
4k-6k

SGB08 9,167/267,587/22 N/N/56 12,013/278,440/630

the tested models that finished within 30 minitues, our method
returns storage spaces smaller than, equal to and larger than
that returned by [5], resp. The average improvement is 7.3%.

The maximal execution time on all models is about 51
seconds. In the same group, for both methods, the execution
times of different models may differ largely, but the differences
among groups are clear, the execution times generally increase
with the nA, nQ and nD. For most graphs, for the same model,
our method runs the cases allowing auto-concurrency faster
than the cases without auto-concurrency. On the contrary, [5]
runs faster on the latter cases.

VII. Conclusion

In this paper, we have presented an efficient heuristic
method to use retiming to optimize SDFGs. The retimed graph
is statically scheduled with optimal rate and with a storage
requirement which is often less than the proven minimal
storage requirement of the original graph. Our experimental
results show that our method does not reach the minimum
only in 1% of the hundreds of tested models, while in 79%
of the cases it returns a lower required storage space than the
minimum of the original graph.
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