
Optimized Buffer Allocation in Multicore Platforms

Maximilian Odendahl∗, Andrés Goens∗, Rainer Leupers∗, Gerd Ascheid∗,
Benjamin Ries†, Berthold Vöcking† and Tomas Henriksson‡
∗Institute for Communication Technologies and Embedded Systems

†Department of Computer Science I

RWTH Aachen University, Aachen, Germany
‡Huawei Technologies, Stockholm, Sweden

Abstract—With the availability of advanced MPSoC and
emerging Dynamic RAM (DRAM) interface technologies, an
optimal allocation of logical data buffers to physical memory
cannot be handled manually anymore due to the huge design
space. An allocation does not only need to decide between an on-
or off-chip memory, but also needs to take an increasing number
of available memory channels, different bandwidth capacities
and several routing possibilities into account. We formalize this
problem and introduce a Mixed Integer Linear Programming
(MILP) model based on two different optimization criteria.
We implement the MILP model into a retargetable tool and
present a case study with representative data of the Long-Term-
Evolution (LTE) standard to show the real-life applicability of
our approach.

I. INTRODUCTION

In many industry sectors, e.g. in telecommunication, mem-

ory allocation is typically calculated statically instead of

dynamically during runtime to prevent fragmentation, non-
deterministic allocation time and out-of-memory errors by

design. Lately, the allocation options have grown tremendously
for a number of different reasons. On the one hand, the

increase of complexity in current and future communication

standards leads to complex applications with an increasing
number of logical data buffers. On the other hand, current

multicore Systems on Chip (SoCs) not only provide the

needed processing power to support several of these standards
simultaneously, but also offer an increased number of physical

memories, both on- and off-chip. Recent examples of such

architectures include the Texas Instruments (TI) Keystone [1]
series and the StarCore DSP series from Freescale [2].

Additionally, we see new possibilities to interface to Dy-
namic Random-Access Memory (DRAM) coming in the fu-

ture. High bandwidth will be provided over multiple channels

to fight the memory bottleneck of current system perfor-
mance. Examples for these emerging techniques, which are

scheduled for mass production in the next couple of years,

include 2.5D (High Bandwidth Memory) or 3D (Wide I/O)
DRAM integration [3]. Completely new approaches, such as

the Hybrid Memory Cube (HMC) [4], where a single HMC

unit will be able to offer more than 15x the bandwidth of
a current DDR3 module, are expected to push the number of

memory channels, latency and bandwidth capacities to another
level. While these technologies offer a huge opportunity of

accessing a large storage capacity very fast, it remains a grand

challenge how to effectively allocate memory and distribute
the access load in such a system. Therefore, even though

static allocation used to be fairly simple work in the past,

it has become prohibitively complex to find an optimized

allocation manually. Consequently, an automated solution is
highly desired.

As the main contribution of this paper, we approach the
buffer allocation as an extension of a multi commodity flow

problem [5]. This allows us to handle current and future

multicore platforms with advanded communication architec-
tures. We construct a graph, which is expanded over the

time horizon, to create a Mixed Integer Linear Programming

(MILP) model, finding an optimal allocation automatically for
two different optimization criteria.

The rest of this paper is organized as follows: The following

section gives an overview of the related work. Section III gives

an intuitive description of the problem followed by a formal-
ization of the same. A practical implementation of the formal

concept is given in Section IV. Section V applies the solution

and tooling to a case study, solving the allocation problem for
a Long-Term-Evolution (LTE) use case. Conclusions are given

in Section VI.

II. RELATED WORK

The buffer allocation problem has emerged as a new chal-

lenge from recent progress in multicore platforms. To the

best of our knowledge, no solution or approach exists in
the literature. Nevertheless, using a MILP model to solve

allocation problems has been used for many years during
hardware and software synthesis. Authors in [6] and [7] use

a binary MILP model for the allocation of multiport memories

during data path synthesis. This allows to minimize hardware
cost during ASIC design. More recent examples of allocation

problems using MILP include [8], where the authors present a

model and thorough theoretical analysis to generate an optimal
distributed shared memory architecture. On related work closer

to our software-centric challenge, authors in [9] also use a

MILP to solve the problem of application-specific memory
allocation. Their approach, however, is a more holistic one

which includes a way of extracting memory accesses data

automatically from C code as well as a tool for changing the
source code to reflect the calculated allocation.

All of the models for the allocation impose restrictions

on the supported platforms, as neither a distinction between

different paths nor a distinction between different bandwidth
capacities along a single path are supported. Additionally, they

use a huge amount of binary variables, making it scale poorly.

In this paper, we address both limitations. We believe it is

the first to support a flexible architecure model by combining

978-3-9815370-2-4/DATE14/ c©2014 EDAA



Fig. 1. Simple Mapping of Buffers

the buffer allocation problem with a multi commodity flow
problem into one MILP model. Additionally, we are able to

solve our model even for large input data by using an elegant

construction of the constraints.

III. BUFFER ALLOCATION

Before formalizing the buffer allocation problem, a small
example is given to illustrate the challenges posed in the

presence of today’s advanced platforms. An application con-

sisting of a set of logical buffers is given on the left side
of Figure 1. Such an application is described in an abstract

way as a number of flows. Each flow accesses a logical buffer

(b) from a processing element (PE) with a certain bandwidth
requirement. While the assignment of a flow to a specific

processing element is given, static buffer allocation assigns

each logical buffer to a physical memory. While doing so,
it must ensure that buffers fit into the available memory,

bandwidth requirements are met and the load on the sytem

is as small as possible.

Consider a simplified architecture given on the right side of
Figure 1, consisting of two processing elements (PE), each

one with a local memory (LM), and a bus connecting a

shared memory (SM). Assume also that each communication
possibility, represented by an arrow inside the given MPSoC,

has an identical bandwidth capacity, i.e. data width and clock

frequency are the same throughout the platform. Placing the
logical buffers into memory for this architecture is trivial

as the options are very limited. The allocation choice for a

single buffer, assuming it fits into local and shared memory,
is not critical to the performance of the application due to

identical bandwidth capabilities to the memories. Considering

the complete system, the only issue left for a designer is
to manage the load of the bus, which can still be handled

manually.

Fig. 2. Complex Mapping of Buffers to TI C6670

Now consider the realistic problem setup shown in Figure 2,
which shows an increased number of logical buffers and a

high-level overview of the TI C6670’s architecture [1]. As

can be seen, the number of allocation options has grown
tremendously. We now not only have an increased number

of memories, but also different levels of shared memory
(L2 SRAM, DRAM) with different sizes. Additionally, the

platform features different bandwidth capacities throughout

the system. Obtaining an optimal allocation is already difficult
for this example in which different buffer sizes and different

lifetimes, which can be identified in a real application, were

not even considered. Solving the entire problem is even more
challenging, making an automated solution desirable to find

an optimal allocation.

A. Problem Formulation

A multicore platform, such as the one given in Figure 2,

consists of a set of processing elements PE, a set of physical
memories PM and a communication architecture. It can be

modeled as a multigraph G = (V = PE ∪PM, E ⊆ V × V )
with a bandwidth capacity function bw : E → N, with values

in bytes per time unit. An instance of the buffer allocation

problem consists of a given architecture graph G, a set of
logical buffers B = {b1, . . . , bl} with their sizes w(bi) ∈ N

in bytes, an index set I ⊂ N of flows and a set of time

points T = {1, . . . , N} ⊂ N. To each flow i ∈ I, we
associate a processing element pi ∈ PE , a logical buffer

bi ∈ B, a bandwidth demand di in bytes per time unit between

the processor and the buffer, and a start time tstarti ∈ T

and end time tendi ∈ T, which in turn define a lifetime

Li = {tstarti , . . . , tendi − 1} of the i-th flow.

A feasible solution to the buffer allocation problem is a

mapping that assigns each logical buffer to a unique physical
memory such that at any given time the size of all logical

buffers mapped to a physical memory does not exceed its

storage capacity cap(pm) ∈ N for pm ∈ PM. Additionally,
each flow must route its demand di over one unique path

from its processing element to the physical memory on which

its buffer is mapped. We consider two different scenarios for
interpreting a given demand:

• As a constant value per time unit that has to be sent
through the network in each time point during its lifetime.

• As an absolute value, arbitrarily distributed over its

lifetime. We thus set the demand that must be sent in
this scenario to di := di · (tendi − tstarti ) for each flow

i ∈ I.

Independent of which scenario is considered, the sum of all

demands going through one logical link e ∈ E should not lead

to an overload at any point in time. Moreover, we define two
different optimization criteria for our definition of an optimal

solution:

• The first criterion minimizes the maximal load among all

logical links. This gives us the largest possible margin
in our system to be prepared for any peaks of a flow’s

demand.

• The second one minimizes the maximal used memory
space among all physical memories. This optimization

criterion aims for the best reuse of physical memory,



allowing to reduce the memory size of a given, initial
architecture as much as possible.

The difficulty lies in the fact that the routing depends on

the mapping of the logical buffers and that flows can have

different starting and ending times, i.e. the current state of the
system changes rapidly at every time point.
If we consider only the optimal flow routing through the

architecture graph, the problem can be interpreted as an
integer concurrent multi commodity flow problem (ICMCF).

Neglecting the buffer allocation, we are already confronted

with an NP-hard problem, since ICMCF is NP-hard already
for two commodities in bipartite graphs [10]. Adding the

additional task of buffer allocation increases the combinatorial
complexity further. As we are confronted with an NP-hard

problem and we are interested in an optimal solution, we are

not able to use any heuristic that runs in polynomial time. In
order to solve an ICMCF instance, it is a common approach

to formulate a MILP model [11]. We will present a combined

MILP for the buffer allocation problem including optimal
routing of flow for the two different scenarios introduced

above, formulated for finding a feasible and optimal solution.

B. Time Expanded Graph

1) Construction: Our MILP model is constructed based on
a graph representation. To handle the change over time, i.e.

how different flows can have different concurrent lifetimes,
we use a standard technique of expanding a graph over the

time horizon [12]. We construct a time expanded graph GT =
(V T, ET) consisting of copies Gk of the architecture graph
G. A copy Gk shall represent a snapshot of a system at a

given time interval, i.e. the representation of the situation in

the communication network during a fixed set of consecutive
time points. Let

g + 1 := |{tstarti | i ∈ I} ∪ {tendi | i ∈ I}|

be the number of distinct timepoints at which a flow starts or

one has ended. Clearly, g + 1 ≤ 2|I|. We partition T into g
disjoint sets Tk, denoted by groups, between the start of a new

flow or after one has ended and one time unit before the next

such change. For every 1 ≤ k ≤ g, we also note which flows
i ∈ I are alive during Tk and denote the set of these as:

Ik = {i ∈ I | Tk ⊆ Li}

For each k ∈ {1, . . . , g}, we create a copy Gk of the original
graph and define scaled capacities for Gk by:

bw((e)k) = bw(e) · |Tk|

where for each edge e ∈ E, (e)k denotes the copy of e in

the k-th copy of the graph Gk. Note that strictly speaking, the
bandwidth capability is converted during this step into a data

capacity limit.
For each flow i ∈ I, we add an artificial node si to the

graph and join each flow node to all copies of its source:

for all i ∈ I, k ∈ {1, . . . , g} with i ∈ Ik :

(si, (pi)k) ∈ ET

where (pi)k denotes the k-th copy of the processing element

node associated to the flow i. We need to add a final set of

nodes which correspond to logical buffers. For this, we first de-
fine the lifetime of a buffer b ∈ B as Lb := {tstarti1

, . . . , tendi2
−1},

where i1 is the flow to b with the smallest starting time and i2
that with the highest end time. To complete the construction
of the time expanded graph, we consider each group k and

every logical buffer b for which the group k is within its
lifetime, i.e. where Tk ⊆ Lb holds. For each such buffer

b ∈ B, we add a node bk, which we connect to the copy

of each physical memory mk in that group: (mk, bk) ∈ ET.
The bandwidth of all these additional edges is formally set to

be infinite; in practice, these vertices are not taken into account

for bandwidth considerations.

2) Example: To illustrate the creation of the time expanded

graph, a simple example is given. Table I shows two different
flows associated to two different logical buffers. Figure 3

shows a simple architecture graph with a processor and two
communication possibilities to a memory. The bandwidth

capacities are annotated on the edges. Figure 4 shows the con-

structed time expanded graph. Based on the timing intervals,
three copies of the original architecture graph are created with

their respective scaled capacities.

PE Buffer Demand Start End

p1 b1 10 0 5

p1 b2 20 2 6

TABLE I
EXAMPLE FLOW DATA

Fig. 3. Architecture Graph

Fig. 4. Time Expanded Graph

C. Linear Programs

We now present all necessary constraints for describing our

proposed MILP model to solve the buffer allocation problem.

1) Allocation Constraint: First, a linear constraint for a
unique mapping of buffers to physical memories is presented.

Each logical buffer b ∈ B could, in principle, be allocated to

any physical memory. Hence, for each pair (b, m) of a buffer
b ∈ B and a physical memory node m ∈ PM, we define a

binary variable yb,m. A value of yb,m = 1 denotes that the



buffer b is placed in the physical memory m. This leads to
the following constraint:

for all b ∈ B :
∑

m∈PM

yb,m = 1 (1)

Since the yb,m are all binary, this constraint ensures that for

each buffer b exactly one of the yb,m will be set to one.
2) Size Constraint: In every solution, the size of all logical

buffers mapped to a physical memory has to be smaller than

the capacity of that physical memory at any given time. Using
the notation above, we get the following constraint:

for all k ∈ {1, . . . , g}, for all m ∈ PM :
∑

b∈B:Tk⊆Lb

yb,m · w(b) ≤ cap(m) (2)

3) Unique Path Constraint: Every flow should send its
demand over exactly one path in the architecture graph G. Let

Pi be the set of paths starting from the processing element pi

of flow i. For each flow i and each path P ∈ Pi, we introduce
a binary variable xi(P ), where xi(P ) = 1 means that flow i

routes its demand via path P . For the flow i ∈ I, let bi denote
the target buffer of i. The unique path constraint is specified

as the following:

for all i ∈ I, for all m ∈ PM :
∑

P∈Pi: P ends in m

xi(P ) = ybi,m (3)

If a logical buffer bi is not allocated to a physical memory m,

the corresponding variable ybi,m is set to zero, hence no path

to this memory can be chosen. On the other hand, if ybi,m = 1,
exactly one path will be chosen, since all xi(P ) variables are

binary.
An additional constraint is needed for the second scenario

because for a fixed chosen path in the architecture graph, the

demand di can be split over the corresponding paths in the
time expanded graph. For example, it is now allowed that

the demand di is routed in a single group. To formulate the

constraint, we need to introduce additional variables for all
demands and all paths in the time expanded graph. For each

flow i and each path P ′ in GT of i, let zi(P
′) be a continuous

variable between 0 and 1. These variables indicate which

percentage of the demand will be routed over the path P ′.

For every path P in the original graph, we define the set PP

as the set of all the paths from GT corresponding to the path

P . Using this notation, we are able to formulate the additional

constraint for the second scenario following the same principal
from constraint (3):

for all i ∈ I, for all P ∈ Pi :
∑

P ′∈PP

zi(P
′) = xi(P ) (4)

4) Bandwidth Constraint: In order to formulate the band-

width constraint of each edge, we consider each path in GT

and its corresponding binary variable. Again, let P ′ be a path
in GT and let |Tk(P ′)| denote the number of time points in

the unique copy through which P ′ goes. Further, let P be the

path in the original architecture graph corresponding to P ′.
For the first scenario, we must consider the binary variables

xi(P ) and get the following bandwidth constraint:

for all e ∈ ET :
∑

P ′:e∈P ′

∑

i∈I:P∈Pi

xi(P )|Tk(P ′)|di ≤ bw(e)

(5)

This constraint needs to be slightly modified for the second

scenario. We have to replace xi(P ) by zi(P
′) since only a

percentage of the demand will be routed through the path

P ′ (during the times from group k(P ′)). We thus get the

constraint:

for all e ∈ ET :
∑

P ′:e∈P ′

∑

i∈I:P ′∈P ′

i

zi(P
′) · di ≤ bw(e) (6)

5) Objective Functions: Up to now, we have only set up

constraints that guarantee any feasible buffer allocation. To
obtain an optimal solution based on our two different criteria,

we enhance our model with additional parameters. We will

use λ1 as a parameter for our first optimization criterion to
minimize the maximal load among all logical links. We have

to add λ−1
1 to the right hand side of constraints (5) and (6),

respectively, in order for the equations to remain linear. For

the first scenario, this results in the constraint:

for all e ∈ ET :
∑

P ′:e∈P ′

∑

i∈I:P∈Pi

xi(P )|Tk(P ′)|di ≤ λ−1
1 bw(e)

(7)

For the second scenario, we get:

for all e ∈ ET :
∑

P ′:e∈P ′

∑

i∈I:P ′∈P ′

i

zi(P
′) · di ≤ λ−1

1 bw(e)

(8)

Similarly, we consider another parameter λ2 for the second
optimization criterion to minimize the maximal used memory.

For this case, we have to add λ−1
2 to constraint (2) and get:

for all k ∈ {1, . . . , g}, for all m ∈ PM :
∑

b∈B,Tk⊆Lb

yb,m · w(b) ≤ λ−1
2 cap(m) (9)

Adding either the objective function min λ−1
1 or min λ−1

2 to

our model gives us an optimal solution for the respective
criterion. A value of λ1 > 1 would indicate that not all logical

links are loaded to full capacity, e.g. λ1 = 2 means that all

logical links are at most half loaded. The value of λ1 gives
therefore a direct hint for the available freedom of potential

peaks in the bandwidth requirements of a demand. On the
other hand, a value of λ1 < 1 would mean that the problem

is not feasible, i.e. some of the logical links are overloaded.

Analogous to λ1, a value of λ2 > 1 means that the full
memory capacity has not been used and the physical memory

size could be reduced.



(a) MPSoC and associated
architecture graph

(b) Toolflow

Fig. 5. Tooling Functionality

IV. TOOLING

A tool was created to implement the MILP and find a
solution to the buffer allocation problem. We describe the

inputs to the tool and give an overview of the functionality.

A. Input

To make the tool applicable to any target MPSoC, it is
designed with retargetability in mind. Therefore, an architec-

ture model described in Extended Markup Language (XML)

provides a simplified view of the target MPSoC. It describes
a platform by its processing elements, memory hierarchy

supporting local and shared memories and its interconnect
architecture with respective access widths and clock frequen-

cies. Using this description, diverse platforms from simple bus-

based architectures to complex Network-on-Chip communica-
tion architectures can be dealt with. More than one connection

between individual elements is possible, which allows several

routing possibilities between different entities. This XML
representation is converted automatically by the tool into our

architecture graph G to ease development. Its vertices consist

of individual entities of the architecture such as processing
elements, memories and the communication architecture 1 . If

a communication possibility exists between two elements, an

edge is created with a bandwidth value bw(e), resulting from
the given access width and clock frequency. As there can be

more than one communication possibility, more than one edge

can exist between two vertices. An example architecture with
its associated architecture graph is shown in Figure 5 (a).

Additionally, an application model is added consisting of

the input data for logical buffers and flows. They are specified
as simple text files, which can be easily written manually or

generated by external tools, e.g. from an automated source
code analysis. As presented in Section III-A, logical buffers

are annotated in the application model by their sizes, whereas

a flow consists of a processing element pi, a logical buffer bi,
a demand di and a lifetime Li.

B. Functionality

Based on the timing of all flows, the tool calculates the

different groups Tk and the lifetime of all buffers and uses

1For certain interconnect elements, e.g. a memory bus, additional vertices
are created to model a single bandwidth on a logical link. These details are
not important for solving the buffer allocation problem and are thus out of
the scope of this paper.

Fig. 6. MPSoC architecture

a constructed architecture graph to build the time expanded
graph GT as described in Section III-B1. As a next step, the

graph is used to find all possible paths from a processing

element to all reachable logical buffers. With this information,
all variables and constraints of the MILP can be constructed

and solved using the C++ interface of the Gurobi Optimizer
5.6 [13]. Our tool includes several features for visualization

of the architecture, a graphical representation of the solution

and a simulation framework for the load in the communication
architecture. A high level overview is given in Figure 5 (b).

V. CASE STUDY

A. Experimental Setup

We tested our implementation with representative data de-
rived from a Long Term Evolution (LTE) application with a

frame duration of 1 ms, resulting in 106 time points. The
test data consists of 2709 flows accessing 907 logical buffers

which need to be mapped to physical memories. The buffer

sizes are in the range from 224 bytes to 50 MB, whereas the
demands are in the range from 1 MB/s to 6181 MB/s. We use

a hypothetical, but representative architecture consisting of 80

processing elements, each one with a local memory, and four
shared memories connected by an interconnection network

with an aggregate bandwidth of 2560 Gbit/s. Each shared

memory can be accessed by two different connections with
identical bandwidth capacities. The used architecture is shown

in Figure 6. Memories are annotated by their sizes, whereas

data width and clock frequency are given for connections.

B. Results

Application Graphs & MILP Solver
Scenario 1 Feasible 33 min 21 min
Scenario 1 Load 33 min 4 hours
Scenario 1 Memory 33 min 24 min
Scenario 2 Feasible 26 min 22 min
Scenario 2 Load 26 min 7 days
Scenario 2 Memory 26 min 32 min

TABLE II
IMPLEMENTATIONMETRICS OF LTE CASE STUDY

We have run our case study six times, three for each

scenario. For the first run, any feasible solution is valid,

whereas for the second and third run, we use our two dif-
ferent optimization criteria, i.e. minimizing the maximal load

and minimizing the maximal used memory. A performance



evaluation of individual parts of the implementation for the
six different executions of the case study are given in Table II

to get an overview of the scale of our case study. In the

second column, we show the combined time for calculating
the groups, building the architecture and time expanded graph

and for the construction of the MILP model. For our case
study, this means calculating 4654 groups, constructing the

architecture graph consisting of 167 nodes and 171 edges and

constructing the time expanded graph consisting of 2.916.974
nodes and 183.417.566 edges. Additionally, the time for the

Gurobi Optimizer to solve the model is presented in the third

column. All runs were performed on a host personal computer
using 4 Intel(R) Xeon(R) CPU cores running at 3.33 GHz

each. The available memory of the machine is 145 GB. Note

that the time neccessary to solve the model using the first
optimization criterion takes much longer. This is the expected

behavior, as the amount of edges in our graph is considerably

larger than the amount of memories. Also note that for the two
optimizing executions of scenario 2, the results of scenario 1

were taken as initial values to improve the execution time.

Application λ1 λ2

Scenario 1 Feasible 1.52 1.28
Scenario 1 Load 2.45 1.22
Scenario 1 Memory 1.04 1.50
Scenario 2 Feasible 1.02 1.07
Scenario 2 Load 3.02 1.09
Scenario 2 Memory 1.02 1.63

TABLE III
MILP RESULTS

Table III presents the resulting variables. For each execution,

we present λ1 and λ2 to be able to compare the different
solutions (Note that we also obtain the allocation of buffers

and assigned routing from the variables of our MILP model).

It can be seen nicely how the resulting λ1,2 values reflect
the chosen scenario and the selected optimization criterion.

For example, the largest λ1 corresponds to the load optimized
execution for the second scenario. As there is more freedom

for the second scenario to shift around the demands during

the time points, we expect a higher λ1 compared to the first
scenario (and longer runtime).
Comparing the result obtained from our tooling is difficult,

as no other approach or an heuristic guaranteeing a feasible

solution exists. We therefore implemented a second approach

using a simple heuristic for the first scenario. This allows
to compare the resulting λ1,2 values with our solution based

on the full MILP model. The heuristic starts by putting all

buffers which are accessed only from one processor into
its corresponding local memory (if its capacity is not yet

exceeded). As a second step, each remaining logical buffer is

put into the least-loaded shared memory. This heuristic leads to
a reduced MILP model (i.e., with a fixed memory allocation)

which is solved finding the best solution according to our first

optimization criterion. The results are presented in Table IV.

Application Runtime λ1 λ2

Scenario 1 36 min 1.02 1.21

TABLE IV
HEURISTIC RESULTS

As expected, the simple heuristic yields considerably worse

values for λ1 and λ2 than the full MILP approach. It is neither
optimized for potential peaks of a demand nor able to save

physical memory. Especially note that this simple approach

does not guarantee a valid solution, even though in this case
a feasible solution was found.

VI. CONCLUSION

In this paper, we introduced the problem of static allocation
of logical buffers to physical memories. This has become a

challenging task due to new abundant possibilities resulting

from advanced MPSoC and memory architectures. We pre-
sented a problem formulation, MILP model and associated,

retargetable tooling to solve the buffer allocation problem

while taking memory footprint and bandwidth requirements
into account. A solution was found completely automated in

a considerable amount of time even for a large number of
flows. We considered two different optimization criteria and

two different interpretations of a demand. A case study using

test data from the LTE standard showed the applicability of
our approach.

In the future, we plan to extend the existing framework

by adding caches and DMA to the architecture as well as
supporting latency constraints for flows. Additionally, we will

look into extending the buffer allocation problem to generate

an optimized architecture for a given set of flows.

ACKNOWLEDGMENT

This work has been supported by the UMIC Research

Centre, RWTH Aachen University.

REFERENCES

[1] “C6670 Multicore Fixed and Floating-Point Digital Signal Processor,”
[Online] Available http://www.ti.com/product/tms320c6670 (accessed
02/2013).

[2] “Freescale Multicore Starcore DSP,” [Online] Available
http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=
MULTICORE DS%P (accessed 09/2013).

[3] “JEDEC: 3D-ICs,” [Online] Available http://www.jedec.org/category/
technology-focus-area/3d-ics-0 (accessed 09/2013).

[4] “Hybrid Memory Cube Consortium,” [Online] Available http://www.
hybridmemorycube.org (accessed 09/2013).

[5] L. R. Ford et al., “A suggested computation for maximal multi-
commodity network flows,” Management Science, vol. 5, no. 1, pp. 97–
101, 1958.

[6] K. Seo et al., “Allocation of Multiport Memories in ASIC Data Path
Synthesis,” in International Symposium on Circuits and Systems, vol. 1,
1994, pp. 49–52.

[7] J.-M. Jou et al., “Multiport Memory based Data Path Allocation focus-
ing on Interconnection Optimization,” in International Symposium on
Circuits and Systems, vol. 1, 1994, pp. 45–48.

[8] S. Meftali et al., “An Optimal Memory Allocation for Application-
specific Multiprocessor System-on-Chip,” in Proceedings of the 14th
International Symposium on System Synthesis, 2001, pp. 19–24.

[9] O. Ozturk et al., “An Integer Linear Programming based Approach to
Simultaneous Memory Space Partitioning and Data Allocation for Chip
Multiprocessors,” in Computer Society Annual Symposium on Emerging
VLSI Technologies and Architectures, 2006.

[10] S. Even et al., “On the Complexity of Time Table and Multi-commodity
Flow Problems,” in 16th Annual Symposium on Foundations of Com-
puter Science, 1975, pp. 184–193.

[11] C. Barnhart et al., “Integer Multicommodity Flow Problems,” in Integer
Programming and Combinatorial Optimization. Springer, 1996, pp.
58–71.

[12] L. R. Ford et al., “Constructing Maximal Dynamic Flows from Static
Flows,” vol. 6, no. 3. INFORMS, 1958, pp. 419–433.

[13] I. Gurobi Optimization, “Gurobi Optimizer Reference Manual,” 2013.
[Online]: http://www.gurobi.com


