
Scenario-aware Data Placement and Memory Area
Allocation for Multi-Processor System-on-Chips

with Reconfigurable 3D-stacked SRAMs

Meng-Ling Tsai, Yi-Jung Chen, Yi-Ting Chen, and Ru-Hua Chang
Department of Computer Science and Information Engineering

National Chi Nan University
Nantou County, Taiwan

Email: { s100321501, yjchen, s99321030, s99321035}@ncnu.edu.tw

Abstract—Integrating Multi-Processor System-on-Chips (MP-
SoCs) with 3D-stacked reconfigurable SRAM tiles has been
proposed for embedded systems with high memory demands. At
runtime, the SRAM tiles are configured into several memory
areas, which can be reconfigured according to the dynamic
behavior of the system. Targeting this architecture, in this
paper, we propose a data placement and memory area allocation
algorithm. The goal of the proposed algorithm is to optimize the
performance of the memory system by minimizing the on-chip
memory access latency, the number of off-chip memory accesses,
and the number of reconfigurations. Since the behavior of an
embedded system can be described by a set of scenarios, where
each scenario specifies a set of applications that would execute
concurrently, the proposed algorithm synthesizes data placements
and the memory area allocation for each scenario. Not only
the data access patterns within the scenario but also among
all scenarios are considered for data placement. We evaluate
the proposed algorithm on a set of synthetic and real-world
applications. The experimental results show that, compared to
the existing data placement method designed for MPSoCs with
distributed memory modules, the proposed algorithm achieves up
to 11.72% of data access latency reduction.

I. INTRODUCTION

Integrating memory modules and the multi-core proces-
sors by the low-latency and high-density Through-Silicon
Vias (TSVs) in the third dimension has been considered as
a promising way to alleviate the memory bandwidth prob-
lem of a multi-core system [11], [14], [18]. Among various
3D-enabled processor-memory integrated architectures, Multi-
Processor System-on-Chip (MPSoC) with 3D-stacked recon-
figurable SRAMs proposed in [18] provides a special capabil-
ity of dynamic reconfiguration of the stacked memories. Fig. 1
shows the architecture proposed in [18]. In this architecture,
the SRAM layer is stacked on top of the logic layer that is
composed of IP cores. The SRAM layer is composed of a
set of SRAM tiles interconnected by a 2D-mesh network. At
run-time, the SRAM layer is configured to several memory
areas, where each of the memory area is composed of a set of
contiguous SRAM tiles and is accessed by an individual core
in the logic layer [18]. The configuration of memory areas
can be dynamically adapted according to the runtime behavior
of the system. Since the SRAM access latency is decided by
the distance between the requesting IP core and the requested
SRAM tile, the stacked memory is a Non-Uniform Memory
Access (NUMA) architecture.

Fig. 1. An MPSoC with 3D-stacked reconfigurable SRAMs.

A straightforward way to utilize the reconfigurable 3D-
stacked SRAMs is using the state-of-the-art data placement
method designed for NUMA memory architecture, e.g. the
method proposed in [3]. Since the behavior of an MPSoC can
be described by a set of system scenarios [17] [20], where
each scenario describes a set of applications that would execute
concurrently, we can utilize the methods designed for NUMA
to decide the data placement and the configuration of memory
areas for each of the scenario. However, these methods only
consider the data locality to reduce the average memory access
latency in an NUMA architecture. The interference among
memory areas is overlooked, and unnecessary reconfigurations
may be triggered, which will cause performance degradation.
Therefore, to fully exploit the advantage of the reconfigurable
3D-stacked SRAM layer, it is a must to redesign the data
placement and memory area allocation methods.

In this paper, we propose a scenario-aware data placement
and memory area allocation algorithm for MPSoCs with re-
configurable 3D-stacked SRAMs to optimize the performance
of the memory system. Due to the complexity of modern MP-
SoCs, the design space of the target synthesis problem is huge.
It has been proven that the data allocation problem alone is
NP-complete [13]. Therefore, the proposed synthesis algorithm
is a heuristic-based method. To optimize the performance of
the memory system, our algorithm considers the data access
patterns both within a scenario and among all scenarios to
perform data placement for each of the scenario. Considering
the data access patterns within a scenario helps shorten the978-3-9815370-2-4/DATE14/ c© 2014 EDAA

Fig. 2. Formation and reconfiguration of memory areas.

access latency of SRAM tiles, and reduce contentions of an
SRAM tile or a memory area so that the number of recon-
figurations can be reduced. On the other hand, considering
the data access patterns among all scenarios helps data that
are accessed by several scenarios not to be falsely replaced
during the transition of scenarios. Thus, unnecessary off-chip
memory accesses can be avoided. Compared to the existing
data placement method for MPSoCs with distributed memory
modules, the experimental results show that the algorithm gets
up to 5.88% reduction of average data access latency for a
scenario on the average. When multiple scenarios are executed
in the system, the proposed algorithm achieves up to 11.72%
of data access latency reduction when applied to a set of real-
world applications.

This paper is organized as follows. The target architecture
is introduced in Section II. The related research is reviewed
in Section III. The system model and problem formulation are
described in Section IV. Section V details the proposed algo-
rithm. The experimental results are discussed in Section VI,
and Section VII concludes the paper.

II. PROPERTIES OF THE TARGET ARCHITECTURE

The target architecture shown in Fig. 1 is composed of
a logic layer and a reconfigurable SRAM layer. The logic
layer is composed of IP cores or general purpose processing
elements (PEs), and each IP core or PE has one or more
I/O port equipped with TSVs to access the SRAM tiles that
are stacked on top of the logic layer. The SRAM layer is
composed of regular SRAM tiles that are connected by a 2D
mesh network, and shares the memory address space with the
off-chip memory. As shown in Fig. 1, each SRAM tile has an
I/O port, a switch for passing memory requests among tiles
and I/O ports, and a configuration register.

At run-time, as shown in Fig. 2, the SRAM layer is
configured to several memory areas, where each of them
is composed of one or more contiguous SRAM tile. As
mentioned in Section I, each memory area is accessed by an
individual core in the logic layer, and is operated individually.
The configuration of memory areas is indicated by the config-
uration registers of SRAM tiles. Reconfiguring memory areas
is achieved by modifying the configuration registers, which
needs 1-cycle delay. The reconfiguration can be triggered by
(1) adapting memory areas for the change of system behavior,
or (2) a core that retrieves data placed at the SRAM tile of
the remote memory area, i.e. the memory area of the other
core. For the second case, the reconfiguration is triggered to
include the target SRAM tile into the requesting core’s local
memory area. Note that only data shared among more than
one cores may cause this kind of reconfigurations. Although
it is convenient to reconfigure the memory area, too many
reconfigurations may cause serious performance degradation.
When there are data accesses to SRAM tiles in the memory
areas to be reconfigured, the reconfiguration process and the

Fig. 3. Example of memory area interferences. Data placement causes (a)
memory area interferences, and (b) no memory area interference.

new data access requests to the tiles should be halted until the
existing data accesses are completed.

Therefore, reducing the number of unnecessary recon-
figurations is critical for improving the performance of the
memory system. We observe that, the reconfigurations caused
by interferences among memory areas can be avoided by
proper data placements. As illustrated in Fig. 3, given the data
access sequence, the data placement shown in Fig. 3(a) would
cause three reconfigurations since the placement of SRAM tile
tn breaks the contiguity of the memory area used by core B.
With the data placement shown in Fig. 3(b), the number of
reconfigurations is reduced to two. Therefore, through proper
data placements, the interference of memory areas can be
reduced and so does the reconfigurations.

III. RELATED WORKS

Several memory resource allocation and data placement
methods have been proposed for both traditional 2D and
emerging 3D MPSoCs [1], [3], [4], [9], [10], [15]. For tra-
ditional 2D MPSoCs, Meyer et al. [15] proposed a synthesis
tool to drive simultaneous data mapping, memory allocation,
and bus synthesis. Chen et al. [4] proposed a algorithm for
synthesizing the allocation of processing elements and memory
modules of a resource constrained MPSoC. For 2D Chip-
Multiprocessors (CMPs) with NUMA architecture, Chen et
al. [3] proposed a data mapping method that minimizes average
access latency. Kandemir et al. [10] proposed a dynamic thread
and data mapping scheme that utilizes a data mapping method
similar to [3] to map data for each phase. For 3D architecture,
Hsieh et al. [9] proposed a data mapping method for the
3D-stacked DRAMs to reduce system temperature. Ancajas
et al. [1] proposed a dynamic memory re-locator for CMPs
with 3D-stacked DRAMs and distributed memory controllers
so that the utilization of high speed vertical interconnect can be
increased. To the best of our knowledge, none of the existing
research works are designed for the architecture discussed in
this paper.

IV. SYSTEM SPECIFICATION AND PROBLEM
FORMULATION

In this section, we present the data structures and models
that represent the software behavior and hardware configura-
tion of the target system. Then, we formulate the synthesis
problem discussed in this paper.

TABLE I. NOTATIONS USED IN THE SYSTEM MODELS.

Software Model
SG SG = (VS , ES) indicates scenario graph
VS VS = {vsi

, ...} is the set of vertices (scenarios)
ES ES = {esk , ...} is the set of directed edges
vsi

vsi
= {TG1, TG2, ...TGn} represents the set of applications

that are executed currently in scenario vsi
p(vsi

) Execution probability of vsi
TGi TGi =< VTi

, ETi
> indicates task graph

VTi
VTi

= {vTi j
, ...} is the set of vertices (tasks)

ETi
ETi

= {eTi j
, ...} is the set of directed edges

D D = {di, ...} is the set of data blocks used in the system
size(di) Size (in bits) of di

c(vTi
) Execution cycles that task vTi

executes on IP core IP (vTi
)

d(eTk
) The ID of the data block transferring by eTk

Hardware Model
P P = {p0, ..., pl} indicates the set of IP cores
T T = {t1, ..., tm×n} indicates the set of SRAM tiles

io(ti) The ID of IP core connecting to tile ti
io(pi) The ID of SRAM tile connecting to IP core pi

size(SRAM) Capacity of each tile

A. Software Model

The software model utilizes a hierarchical graph to capture
the behavior within a scenario and among all scenarios. To
represent all the scenarios executed in the system and the
relation among the scenarios, we use a directed graph, called
scenario graph SG = (VS , ES), to represent the scenarios.
VS is the set of vertices, and every vertex vsi ∈ VS represents
a scenario. A scenario vsi is also associated with p(vsi) to
indicate the execution probability of vsi [20]. ES is the set
of directed edges. Each edge esk , where esk ∈ ES and
esk = {vsi , vsj}, represents there is a possibility that scenario
vsi is executed right after vsj . A scenario vsi is composed
by a set applications, that is, vsi = {TG1, TG2, ...TGn},
where TGi represents the task graph of an application. For
each application Ti, we use a task graph TGi = (VTi

, ETi
) to

represent its control and data flow. VTi
is the set of vertices

that represent the tasks or kernel functions executed in the
application, and ETi

is the set of directed edges to indicate
the control flow among tasks. Each edge eTi j

∈ ETi
is

associated with d(eTi j
) to denote the ID of the data block

that is transferred over the edge. Data blocks are collections
of scalars or arrays [16]. We assume that D is the set of data
blocks used in the system, and each di ∈ D is associated with
size(di) to indicate the size (in bits) of di. Each task graph
has the following properties:

• Each vTi j
∈ VTi

is associated with the ID of the IP
core that executes vTi j

, and c(vTi j
) to indicate the

execution time of vTi j
in cycles.

• Each eTi k
= {vTi x

, vTi y
} indicates vTi x

stores
d(eTi k

) to the memory first, and vTi y
retrieves

d(eTi k
) from the memory subsequently. If vTi x

∈ ∅
or vTi y

∈ ∅, it indicates storing d(eTi k
) to the

memory or retrieving d(eTi k
) from the memory only.

B. Hardware Model

The hardware model captures the configurations of the
logic layer and the 3D-stacked SRAM layer as shown in Fig. 1.
We utilize T = {t1,, tm×n} to represent the set of m×n
SRAM tiles at the SRAM layer. Each ti ∈ T is associated
with io(ti). If io(ti) ∈ ∅, it indicates tile ti does not connect
with logic layer. Else, io(ti) is set to the ID of the IP core that
ti is connected to. The size of an SRAM tile is denoted by
size(SRAM). For the logic layer, we use P = {p0, ..., pl} to
indicate the set of IP cores, and each pi is associated with

Fig. 4. Flow of the scenario-aware data placement and memory area allocation
algorithm.

io(pi) to identify the tile position of its I/O port. All the
notations used in our models are listed in Table I.

C. Problem Formulation
Given Scenario graph SG, task graphs TGi, data block

library D, IP cores P , the set of SRAM tiles T and capacity
of each tile size(SRAM).

Synthesis target Data placement θ : D → T and SRAM
tile allocation ω : T → P for each scenario vsi ∈ VS .

• Data placement Map each di ∈ D to one of the
SRAM tile ti ∈ T or the off-chip memory. We use
the function θ : D → T to represent the operation.

• Memory area allocation Allocate each SRAM tile ti
to one of the IP core’s local memory area. We use the
function ω : T → P to represent this step.

Goal Minimizing the average data access latency.

V. SCENARIO-AWARE DATA PLACEMENT AND MEMORY
AREA ALLOCATION ALGORITHM

The execution flow of the proposed synthesis framework is
shown in Fig. 4. At the off-line phase, the proposed algorithm
synthesizes the data placement and memory area allocation for
each of the scenarios. At the on-line phase, the synthesized
configurations are adopted based on the scenario in execution.

We adopt a heuristic-based method. The goal of the pro-
posed method is improving memory system performance by
reducing the number of the reconfigurations, average on-chip
data access latency, and the number of off-chip accesses. As
shown in Fig. 4, our algorithm is composed of three major
steps; virtual tile generation, tile mapping, and scenario-aware
optimization. In the virtual tile generation step, the algorithm
first finds the set of data blocks that should be placed in the
same on-chip SRAM tile. The goal of this step is to reduce
the number of reconfigurations by minimizing the contention
for an SRAM tile, and to maximize the number of on-chip
memory accesses by increasing the locality of an SRAM tile.
With the set of virtual tiles (VTs) formed in the first step, the
tile mapping step allocates each VT to a physical SRAM tile
position to minimize the average on-chip data access latency
and the interference among memory areas. Finally, we perform
scenario-aware optimization to fine-tune the data allocation so
that the data that are utilized in several scenarios are kept in
on-chip SRAMs. The initial memory area allocation for each
IP core in a scenario is then decided once the data placement
is done. Details of each synthesis step are presented in the
following sections.

Virtual tile generation
Input: number of SRAM tiles m × n, and D = {d1, ..., dn}
Output: a set of virtual tiles vt[]
1 for each dk used in the scenario
2 classify DBs by user();
3 for each category
4 while(there exists a DB not assigned to a VTC)
5 VTC forming by knapsack();
6 sorting VTV by access frequency(V TCs);
7 choose the V TCs within the top m × n grades as VTs;

Fig. 5. Pseudo code of virtual tile generation.

A. Virtual Tiles Generation
As mentioned earlier, the goal of this step is to select the

data blocks that are placed in the same SRAM tile so the
contention for the SRAM tile is minimized and the number
of on-chip memory accesses is maximized. To reduce the
contention for an SRAM tile, the number of cores that access
data blocks placed in it should be minimized. Therefore, we
first classify the data blocks accessed in a scenario according
to the cores that would access them. To avoid unnecessary
contention for an SRAM tile, only the data blocks of the same
category can be placed in the same SRAM tile.

To maximize the number of on-chip data accesses, the
access frequency of each on-chip SRAM tile should be maxi-
mized. So, for each category of data blocks, we select the set
of data blocks that have total size no more than size(SRAM)
and maximum data access frequency to form a virtual tile
candidate (VTC). Taking the size of each data block as its
weight, the access frequency as its value and the SRAM tile
size as the limit, we can reduce the problem of forming VTC
to the Knapsack Problem. The VTC forming process repeats
until all the data blocks in a category are selected to a VTC.

The access frequency, or the value, of each data block d
in scenario s, denoted by U(s, d), can be defined as

U(s, d) =
∑
pj∈P

Fs(pj , d), (1)

where Fs(pj , d) is the total number of bits that IP core pj
accesses data block d in scenario s. Fs(pj , d) is calculate by

Fs(pj , d) = size(d)× accesss(pj , d), (2)

where accesss(pj , d) is the number of times that data block
d is accessed by pj in scenario s. We use the dynamic
programming approach to solve the Knapsack problem.

After the forming of VTCs, the m × n VTCs with the
highest access frequencies are selected as the virtual tiles (VTs)
for the T ileMapping step. The access frequency of each VTC
in scenario s, denoted by T (s, V TC), is defined as

T (s, V TC) =
∑

∀dj accessed in s

U(s, dj). (3)

The VTs accessed by only one core are called as private virtual
tiles (PVTs), and the VTs accessed by more than one core are
called as shared virtual tiles (SVTs). The pseudo code of this
step is shown in Fig. 5.
B. Tile Mapping

This step maps the VTs selected from the previous step
to physical SRAM tile positions. The goal is minimizing
the average on-chip data access latency is minimized, and
reducing the interference among memory areas as mentioned
in Section II. The first priority of the Tile Mapping step is
minimizing the average on-chip data access latency. So, for

Tile mapping
Input: T = {t1, ..., tm×n}, D = {d1, ..., dn}, and virtual tiles vt[]
Output: Tile mapping function ϕ
1 sorting(vt[]); // according to their T (s, V TC)
2 for i = 1 to m × n
3 for each physical tile pt[j] ∈ T
4 vt[i].cost[j] = cost(vt[i], pt[j]);
5 set candidates();

set physical tiles with least costs to vt[i]’s candidates
6 cal distance();

//calculate the d(ϕ(vt)) for each vt[i]
7 sorting(vt[i].pt candidate[]); //sorting vt[i].pt candidate[] from

maximum to minimum according to their distance
8 if (vt[i] is PVT)
9 move candidates with I/Os to first position of vt[i].pt candidate[];
10 if (vt[i] is SVT)
11 move candidates with I/Os to last position of vt[i].pt candidate[];
12 for r = 1 to num pt candidate of vt[i]
13 if(vt[i].pt candidate[r] is free)
14 Map vt[i] to vt[i].pt candidate[r];
15 else //vt[i].pt candidate[r] has been allocated to vt[u]
16 if (vt[u].pt candidate[] has next candidate)
17 Re-map vt[u] to next PT candidate;
18 Map vt[i] to vt[i].pt candidate[r];
19 else if (r! = vt[i].pt candidate[].size() r + +;

Fig. 6. Pseudo code of tile mapping.

each scenario, starting from the VT with the highest access
frequency, we map each VT to the free physical tile with the
least access cost. The access cost of mapping a VT vt to a
physical tile ϕ(vt) is quantified by the function cost(ϕ(vt)),
which is defined as

cost(ϕ(vt)) =
∑
d∈vt

∑
p∈Puser

| io(p)− ϕ(vt) | F (p, d). (4)

In the function, Puser denotes the set of IP cores that would
access data stored in vt, and | io(p) − ϕ(vt) | denotes the
Manhattan distance between the I/O port of p and the physical
SRAM tile ϕ(vt) [3].

Since there may be more than one physical SRAM tile with
the minimum access cost, we select the tile position for PVTs
and SVTs separately. For PVTs, to prevent interference among
memory areas, the tile with the I/O port of the PVT’s only user
has the highest priority. The tiles with I/O ports of other IPs
have the least priority. For SVTs, the tiles with I/O ports should
have the least priority. For the candidate tiles without I/O ports,
we set the tile that is close to the I/O port of the PVT’s user and
far from the I/O ports of the other IPs has the highest priority.
This design is for keeping the contiguity of the memory area
and minimizing the interference of memory areas. We define
d(ϕ(vt)) to calculate the difference between the distance of vt
to its user IP, and the distance of vt to its non-user IPs when
allocation ϕ(vt) is utilized. The candidate physical tile with
the largest d(ϕ(vt)) value is selected. d(ϕ(vt)) is defined as

d(ϕ(vt)) =

⎛
⎝ ∑

pj∈Pnon user

| io(pj)− ϕ(vt) |
⎞
⎠

−
⎛
⎝ ∑

pi∈Puser

| io(pi)− ϕ(vt) |
⎞
⎠ .

(5)

After the above mapping, we can obtain the memory area
allocation for each IP core. However, we find that, some SVTs
are more frequently accessed by an IP core compared to other
IP users, and mapping these SVTs based on its total data
access frequency may not achieve a good result. To avoid

this, we fine tune the mapping by swapping two adjacent tiles.
For each physical tile, we evaluate if swapping the tile and
one of its adjacent tile would result in better results than the
original mapping. The swapping is quantified by the function
totalcost(ϕ), which is defined as

totalcost(ϕ) = cost(ϕ(vt1)) + cost(ϕ(vt2)). (6)

If totalcost of swapping is smaller than the original mapping,
we perform the swapping. The process repeats until there is
no better mapping. Note that the swapping are not performed
on physical tiles with I/O ports to avoid causing extra recon-
figuration overhead as mentioned previously. The pseudo code
of the Tile Mapping process is shown in Fig. 6.

C. Scenario-aware Optimization

Without considering the data access behavior among sce-
narios, the data accessed by several scenarios may be falsely
moved to the off-chip memory when there is a change of
scenario. So, off-chip memory accesses would be needed for
the future use of the data. To prevent this, we keep the data
that are utilized in several scenarios in on-chip SRAM tiles
even if the new scenario does not access the data. For each
data block d, we calculate its expected value of being accessed
(denoted by G(d)) in the system by

G(d) =
∑
si∈S

p(vsi)× U(si, d). (7)

Data blocks with high G(d) values are more likely to be stored
in on-chip SRAMs across all scenarios. In this paper, the data
blocks with the G(d) values at top 20% of all the data blocks
are selected to be stored in on-chip memory permanently. Once
a data block dp is selected to be stored in the on-chip SRAM
permanently, for each scenario si, if dp is not accessed by si,
we choose data block d that has comparable data block size
and the least U(si, d), and is in the same category of dp to be
replaced by dp.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the proposed scenario-aware data placement
and memory area allocation algorithm, we construct a sim-
ulation platform that based on HORNET [8], which is a
configurable and cycle accurate network-on-chip simulator. We
simulate the performance of the target architecture when the
synthesis results of our algorithm are utilized at run-time.
The proposed algorithm is evaluated with a set of synthetic
workload and a set of real-world workload, respectively. The
synthetic applications are generated by Task Graphs For Free
(TGFF) [5], and the forming of system scenarios and the
execution probability of each scenario are randomly generated.
The real-world applications are selected from E3S [6], which
is a set of task graphs of EEMBC [7] workloads. The sys-
tem scenarios and their execution probabilities are obtained
from [19]. The properties of the task sets and scenarios are
listed in Table II and Table III, respectively. In our experiments,
we assume the logic layer is composed of a dual core Cortex
A9 [2], a video/audio processor, and an image processor [12].
The SRAM layer is composed of 4 × 4 regular tiles, where
each SRAM tile is of 64KB capacity. We assume the on-chip
network utilize the wormhole routing [3]. The detailed system
configuration is listed in Table IV.

TABLE II. PROPERTIES OF TASK SETS.
Task set Memory footprint

t1 532KB
t2 288KB

Synthetic t3 440KB
workload t4 472KB

t5 392KB
telecom 2KB

Real-world MPEG2 95KB
workload consumer 1099KB

office automation 97KB

TABLE III. PROPERTIES OF SCENARIOS.
Scenario Task sets p(vsi

)
s1 t1, t2, t4, t5 0.1

Synthetic s2 t1 0.5
workload s3 t2, t3, t4 0.3

s4 t1, t3, t4 0.1
Phone call telecom 0.4

Real-world In room MPEG2 0.1
workload In office officeautomation, consumer 0.2

On train telecom, consumer 0.3

B. Analysis of the Experimental Results
In this set of experiments, we compare the proposed syn-

thesis algorithm to the data placement method proposed in [3],
which is designed for traditional 2D CMPs with distributed on-
chip memories. We first discuss the performance improvement
achieved within a synthetic scenario. Fig. 7 shows the average
on-chip data access latency of each data flit achieved by
the proposed method and the one proposed in [3]. We can
see that, the proposed algorithm achieves up to 14.94% of
data access latency reduction. The performance improvement
mainly comes from the reduction of contentions for the same
SRAM and memory area interference. Moreover, since our
algorithm would allocate tiles that would be accessed by
several IPs (tiles that would cause many reconfigurations) at
the boundary of the memory area to avoid interference, tiles
that are more likely to be accessed by a specific IP core
can be placed closer to the I/O port of the IP core and thus
reduce the average on-chip memory access latency. Fig. 7
shows the percentage of reconfiguration reduction achieved by
our method when compared to [3]. Our method successfully
reduces the number of reconfigurations and achieves up to
43.33% of reconfiguration reduction compared to the method
proposed in [3].

From the above results, we observe that, our algorithm
achieves obvious performance gain due to reducing the con-
tention of SRAM tiles, especially for workloads with shared
data. To understand how the amount of shared data affect the
performance results achieves by the proposed algorithm, we
create synthetic workloads that have the same control and
data flow graph, and memory footprint, but various amount
of shared data. Fig. 8 shows the average data access latency
per flit and the percentage of reconfiguration reduction for this
set of experiments. The results show that, when the amount of
shared data increase from 37% to 48%, our algorithm does
show a great performance improvement. However, with 61%
shared data workloads, since the high percentage of shared data

TABLE IV. PARAMETER OF THE SYSTEM CONFIGURATION.
Parameter Value

Total die area 8mm2

SRAM layer dimension 4 × 4
Cores Dual core Cortex A9, Audio/video processor,

image processor
flit size 32 bits

TSV width 256 bits
SRAM size 64KB / tile

On-chip memory access latency 1 cycle
Off-chip memory access latency 100 cycles

Fig. 7. Average data access latency per flit for various scenarios.

Fig. 8. Average data access latency per flit of task graphs with different
percentage of shared data.

makes the contention for an SRAM tile unavoidable, for our
algorithm, the percentage of reconfiguration reduction drops
significantly and the amount of data access latency reduction
diminishes. However, even in this case, our algorithm still
achieves up to 33% reduction in average data access latency.

To evaluate the performance gain obtained from consid-
ering the behavior both within a scenario and among all
scenarios, we performance experiments on a sequence of thirty
scenarios, where the proposed algorithms with and without
the scenario-aware optimization are applied. The experimen-
tal results show that, with scenario-aware optimization, the
performance average data access latency is further reduced
by 9.72% when compared to the one without scenario-aware
optimization.

For the real-world applications, our algorithm achieves up
to 15.40% of average data access latency reduction when
compared to the method proposed in [3] for single scenario
execution. When executing a sequence of thirty scenarios, the
average data access latency reduction achieves up to 11.72%
when the proposed algorithm is applied.

The implementation overheads of the proposed synthesis
algorithm is the memory space for storing the placements of
DBs of each type of the scenario. For each DB, we use one
word to specify its starting address. In our experiments, we
need no more than 2KB memory space for storing the data
placement results.

VII. CONCLUSION

In this paper, we propose a scenario-aware data placement
and memory allocation method for MPSoCs with reconfig-
urable 3D-stacked SRAMs. The proposed algorithm takes
the data access patterns both within a scenario and among

all scenarios into consideration. The heuristic-based method
synthesizes data placements so that the number of reconfigura-
tions, the average on-chip data access latency, and the number
of off-chip memory accesses can be reduced. The experimental
results show that, when performing on a set of real-world
applications, the proposed algorithm achieves up to 11.72%
reduction in average data access latency when compared to
the method proposed for 2D CMPs with NUMA memory
architecture.

ACKNOWLEDGMENT

This work is supported in part by research grants from
NSC 102-2221-E-260-030-, and 101-2221-E-260-037-. We
thank Professor Takeshi Tokuyama from Graduate School
of Information Sciences, Tohoku University, for his valuable
comments and suggestions.

REFERENCES

[1] D. M. Ancajas et al. Dmr3d: dynamic memory relocation in 3d
multicore systems. In Proc. DAC ’13, pages 291–294, 2010.

[2] ARM. Processors. http://www.arm.com/zh/products/processors/cortex-
a/cortex-a9.php.

[3] G. Chen et al. Application mapping for chip multiprocessors. In Proc.
DAC ’08, pages 620–625, 2008.

[4] Y.-J. Chen et al. Pm-cosyn: Pe and memory co-synthesis for mpsocs.
In Proc. DATE ’10, page 157, 2013.

[5] R. P. Dick et al. Tgff: Task graphs for free. In Proc. international
workshop on CODES ’98, pages 97–101, 1998.

[6] E3S. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/ dickrp/e3s/.

[7] EEMBC. Embedded microprocessor benchmark consortium.
http://www.eembc.org/home.php.

[8] HORNET. Hornet-1.0 online available at.
http://csg.csail.mit.edu/hornet/.

[9] A.-C. Hsieh et al. Thermal-aware memory mapping in 3d designs. ACM
TECS, 13(1), 2013.

[10] M. Kandemir et al. Dynamic thread and data mapping for noc based
cmps. In Proc. DAC ’09, pages 852–857, 2009.

[11] T. Kgil et al. Picoserver: Using 3d stacking technology to enable a
compact energy efficient chip heterogeneous multiprocessors. In Proc.
ASPLOS ’06, 2006.

[12] Y. Kitasho et al. Development of low power and high performance
application processor (t6g) for multimedia mobile applications. In Proc.
ASPDAC ’11, 2011.

[13] Y. K. Kwok et al. Benchmarking and comparison of the task graph
scheduling algorithms. JPDC, 59(3):381–422, 1999.

[14] G. H. Loh. 3d-stacked memory architectures for multi-core processors.
In Proc. ISCA ’04, page 453464, 2008.

[15] B. H. Meyer et al. Simultaneous synthesis of buses, data mapping and
memory allocation for mpsoc. In Proc. CODES+ISSS ’07, 2007.

[16] S. Pasricha et al. Cosmeca: Application specific co-synthesis of memory
and communication. architectures for mpsoc. In Proc. DATE ’06, pages
700–705, 2006.

[17] J. M. Paul et al. Benchmark-based design strategies for single chip
heterogeneous multiprocessors. In Proc. CODES+ISSS ’04, 2004.

[18] H. Saito et al. A chip-stacked memory for on-chip sram-rich socs and
processors. IEEE JSSC, 45(1):15–22, 2010.

[19] L. Schor et al. Scenario-based design flow for mapping streaming
applications onto on-chip many-core systems. In Proc. CASES ’12,
2012.

[20] A. Schranzhofer et al. Dynamic power-aware mapping of applications
onto heterogeneous mpsoc platforms. IEEE TII, 6(4):692–707, 2010.

