
Automated System Testing Using Dynamic and
Resource Restricted Clients

Mirko Caspar, Mirko Lippmann, Wolfram Hardt
Technische Universität Chemnitz

Faculty of Computer Science
09111 Chemnitz, Germany

Email: mirko.caspar | mirko.lippmann | hardt @ cs.tu-chemnitz.de

Abstract—Testing on system level using a static and homo-
geneous architecture of clients is common practice. This paper
introduces a new approach to use a heterogeneous and dynamic
set of resource restricted test clients for automated testing. Due
to changing resources and availability of the clients, the test
case distribution needs to be recalculated dynamically during
the test execution. All necessary conditions and parameters are
represented by a formal model. It is shown that the algorithmic
problem of DYNAMIC TESTPARTITIONING can be solved in
polynomial time by a heuristic recursive algorithm. A testbench
architecture is introduced and by simulation it is shown that
the testbench can execute the test requirements within a small
variation using a number of several hundred clients. The system
can react dynamically on changing resources and availability of
the test clients within several seconds. The approach is generic
and can be adapted to a huge number of systems.

I. INTRODUCTION

In this paper, a new concept and realisation for automated
testing by the usage of heterogeneous, dynamic, and resource
restricted clients is introduced. It can be used for any kind
of system under test (SUT) where the functionalities can be
encapsulated as services. With this abstract black box view,
the structure of the SUT is not important. An embedded Wifi-
router can also be tested like a complete cellular mobile net-
work consisting of many complex and interacting subsystems.

The principal operation is to define a time dependent load
for every service of the SUT. These loads have to be partitioned
to individual test tasks and mapped to the clients by a central
testbench [1]. The clients are able to generate the according
load by executing the test task and accessing the SUT services.
If a task is finished or interrupted, the testbench is informed so
that it can recalculate the load distribution among the clients.

The basic challenge is the indeterministic behaviour of the
clients during the test runtime. It can happen that clients are
not available for testing due to missing resources or even due
to missing communication or energy (empty battery). Thus, it
is necessary to calculate the usage of the different clients for
the test tasks online during the test run.

The algorithmic solution of partitioning and mapping the
loads to the clients is the important and challenging problem.
It is shown that the according algorithmic problem, called
DYNAMIC TESTPARTITIONING, is a non-linear, discrete
optimisation problem. A heuristic algorithm is introduced to
solve the problem in polynomial runtime. A testbench system
was developed and used to validate the approach by measured
results about accuracy and performance.

978-3-9815370-2-4/DATE14/ c©2014 EDAA

II. RELATED WORK

Especially in the area of software testing, many concepts
and tools exist. Test robots (a.k.a. Capture & Replay tools)
are the simplest approach. Parameterised tests and scripting
languages allow the adaptation to more dynamic systems (e.g.
session based systems) and the distribution of different kinds of
tests to different clients. Several test suites are available for this
kind of automated test systems as well [2] [3]. Additionally,
optimisations of these approaches to special SUTs have been
published [4].

In opposite to these functional tests, non-functional per-
formance tests aim to prove the performance, scalability and
resource usage of system. It is necessary to generate many
parallel requests to the system under test. The automation
helps to coordinate the clients that execute the requests.
Adaptations to the different concepts of the SUTs leads to
different approaches for the automation tools and processes
[5] [6] [7].

Special approaches for the performance test of grid systems
are DiPerf [8] and ServMark [9]. The idea to abstract the
distributed and heterogeneous grid system to its provided
services is similar to the concept of this paper.

All mentioned concepts are not able to handle dynamic
client sets that base up on heterogeneous, resource restricted
platforms. Additionally, the automation systems use dedicated
remote technologies (e.g. Remote Procedure Calls) or commu-
nication protocols (e.g. Hypertext Transfer Protocol).

III. MODELLING AND ALGORITHM

A SUT-independent formal model needs to be defined
representing all conditions and parameters for the automated
generation of load. Later, a dedicated test of a concrete SUT
can be derived by creating an instance of this model.

A. Model and Problem Definition

The services of the SUT and the usage of these services
by clients need to be modelled. The SUT is able to provide a
set D = {d1, ..., dm} of services dj . A set S = {s1, ..., sm}
of clients si is available to use different (not necessarily all)
services of the SUT. Accordingly, the implementation for the
usage of the service dj by the client si is stated as si d̃j so
that the set of all client service implementations is given as
D̃ ⊆ (D × S). Each client implementation works in a several
operational mode kl ∈ K.

Based on this sets, the relation ”using” B can be defined:

B ⊆ ((D̃ ×K)×D)

si d̃jkl
I dj

The meaning of each element I is that client si uses its
service implementation d̃j in the operational mode kl to access
the SUT service dj .

As mentioned, it is necessary to quantify this ”using”. The
according value is called ”load” l and is assigned to each
element of B:

load : B→ N , (si d̃jkl
I dj) 7→ l

This description of services, clients, and loads are used to
derive the requirements for a concrete test. It is the aim of a
single test run to charge the different services of the SUT with
a predefined load. The load is fluctuating in time and generated
by the available clients and their according implementations.

Hence, a single test scenario F can be defined by a set of
time depending functions:

F = {f1(t), f2(t), ..., fn(t)} , fi : T → N

Each function fi describes the load that has to be generated
on the service i at the given time t.

The overall load, defined by the function set F , needs to
be generated totally by all clients. Several constraints needs to
be considered due to the mentioned restrictions of the clients.

First, a client has restricted resources and cannot generate
unlimited amounts of load for one or several services. It is
given that tls,i is the load that is generated by client s on
service i at the time t. There needs to be a maximum load
as,i describing the restrictions of the client so that at no point
in time the actual load is greater than the maximum.

Furthermore, the generation of load for one service can
restrict the usage of other services on the client. A typical
example is GPRS1 where the data link is not available during
a voice call of the device. In the worst case the client device is
not available for test execution, e.g. due to an empty battery.

To represent these aspects, a constraint matrix G is defined.
Each element maps the time t and the actual load l for each
client to 1 or 0 representing the (un)availability of it:

G =

 g1,1(t, (l1,1, ..., l1,n)) . . . g1,n(t, (l1,1, ..., l1,n))
...

. . .
...

gm,1(t, (l1,1, ..., l1,n)) . . . gm,n(t, (l1,1, ..., l1,n))

gs,i : T ×Nn → {0, 1}, (t, (ls,1, ..., ls,n)) 7→ gs,i

The automation of the test execution requires an algorithm
that separates and maps the overall load to the available clients.
The mapping needs to be as optimal as possible following
predefined rules. These rules influence the usage of the clients
in a significant way. The rules are modelled by cost functions

1General Packet Radio Service - packet based data transmission in GSM
networks

in a cost matrix C. It is similar to the constraint matrix G where
each matrix element c is now defined as:

cs,i : T ×Nn → R , (t, (ls,1, ..., ls,n)) 7→ cs,i

For each client s, the time t and the loads li of the different
services i are mapped to a cost value.

Based on these representations of client capabilities, the
algorithmic problem DYNAMIC TESTPARTITIONING can
be described as an optimisation problem. The allocation of
ls,i is sought so that the following objective function and the
condition hold:

K =
m∑
s=1

n∑
i=1

(cs,i (t, (ls,1, ...ls,n)) · gs,i (t, (ls,1, ...ls,n)))

∀i ∈ [1, n] :

∣∣∣∣∣
m∑
s=1

(ls,i · gs,i(t, (ls,1, ...ls,n)))− fi(t)

∣∣∣∣∣ < εi

εi > 0

The main problem is the non-linear and discontinuous
solution space. This results from multiplication by the discrete
value g and possibly non-linear cost functions c. Hence,
there is no common algorithm known to solve this specific
optimisation problem.

B. Heuristic Algorithm

Some constraints of the DYNAMIC TESTPARTITIONING
have been used to develop a heuristic algorithm with polyno-
mial runtime. All loads ls,i are defined as a natural number so
that the optimisation problem can be treated as a combinatorial
optimisation problem. Additionally, the algorithm is executed
on some kind of digital computer so that the time is discrete
as well.

In a typical application, the algorithm needs to be executed
every time when the wanted load or the actual load of some
clients change. In this case it is only necessary to redistribute
the relative load difference and not the absolute load. Ac-
cordingly, the absolute load ls,i of the previous statements is
substituted by a combination of actual load (tl

′

s,i) and offset
load (tl+s,i). The offset load can also have negative values.

Based on these simplifications the Heuristic Algorithm 1
is proposed. Basic aim is to determine and map an initial
common offset (average[i]) for each available client. This
is realised in the function InitialAllocation(). The value
depends on the needed offset[], the available clients and the
strategy. An obvious approach is to calculate the average of
each service i: offset[i]/#clients.

This initial mapping is optimised independently for each
service in the function OptimiseService(). It is tested for
each pair (i, j) of clients, if the transfer of the mapped average
from i to j leads to lower overall costs. This is tested for all
possible values of j. The average load of i is transferred to the
client j that leads to the highest cost improvement. Everything
is iterated until no improvement is achievable or a maximum
number of iterations (MAX ITERATIONS) is reached.

Algorithm 1 DYNAMIC TESTPARTITIONING

procedure TestPartitioning(offset[], recursionlevel)
recursion ← false
for all services i do

(correction[i], average[i]) ← InitialAllocation(offset[i])
if correction[i] �= 0 AND correction[i] < offset[i] then

recursion ← true
end if

end for
for all services i do

OptimiseService(average[i])
end for
if recursion = true AND recursionlevel < MAX RECURSIONS then

TestPartitioning(correction, (recursionlevel + 1))
end if
return

end procedure

In some cases it is possible that not all load units can be
mapped to a client. Typically this happens when the maximum
load a of this client and service is reached. In this case,
the difference is added to the value correction[i]. If this
value is not equal to 0 for any service, all the algorithm is
started again recursively with the array correction[] as new
offset[]. The maximum number of recursions is limited by
MAX RECURSIONS.

MAX ITERATIONS and MAX RECURSIONS
are constant values. Hence, the complexity of the algorithm
is mainly influenced by the pairwise optimisation (the number
of clients is m) in OptimiseService() and the number of
services n. On condition that the strategy for calculating
average[] has a complexity of O(1) it holds that the overall
heuristic algorithm has a complexity of O(m2 · n).

IV. ARCHITECTURE AND RESULTS

Based on the proposed algorithm, a testbench was devel-
oped allowing the automated testing of SUTs.

A. Testbench

The overall concept - especially the dynamic and hetero-
geneous client structure - leads to an testbench architecture
that is separated in 4 different modules. The first one is
the test wrapper running on each of the client devices. It
works as agent between the central modules of the testbench
and the service implementations of the according client. The
wrapper needs to be implemented on every client. There needs
to be different implementations in the case of heterogenous
platforms.

All clients are connected to the testserver module by a
communication system. The module maintains all information
about the state, the availability, and the reachability of all
clients. Furthermore, it manages the execution of all running
test tasks on each client. All messages between the clients and
the other parts of the testbench are routed by the testserver
module.

The most important component is the automation module.
Core is the dynamic testpartitioning algorithm presented in the
previous section. It uses the test scenarios (wanted load) and
information about running tests from the testserver module
(actual load) and generates the load changes for each client.
The additional testgeneration component creates according

Voice Calls

TCP Streaming Server

~V
oi

ce
 c

a
l

~H
TT

P
 d

l.

C
lie

nt
 1

HTTP Service

TCP/IP - Network

System Under Test (SUT)
(cellular mobile network)

C
lie

nt
s

...

~V
oi

ce
 c

a
l

~s
tre

am

C
lie

nt
 2

Simulator

Emulation

TCP/IP - Network

Server

Testserver Module Automat on Module Analysis Modu e

Fig. 1. Simulator Integration.

test task packets and transmits it to the testserver module.
Optionally, it adds additional parameters that are necessary
for the individual test.

B. Simulation System and Results

The presented testbench was implemented to allow the
evaluation of the concept and the system. The cellular mobile
network have been selected as an exemplary SUT. It has
a distinctive feature: the communication between the test
wrappers and the testserver module is realised by the mobile
data link (e.g. GPRS). As mentioned later, this link is one
of the services under test. The cellular network, the mobile
devices (clients), and the connections between it are realised
in a simulator. An overview about the whole system is given in
figure 1. The network simulator SimANet is used as platform
[10]. Several extensions for the resource management had to
be implemented before running the evaluation [11].

The cellular network related services ”voice call”, ”TCP-
stream” and ”HTTP-download” are used for evaluation. All 3
services were evaluated independently. The scenario defines a
wanted load between 0 and 17 load units. It is increased every
10 seconds. After the maximum is reached, it is decreased to
0 again. In the first and the last step the load is increased or
decreased by 5 or 6 units. 20 clients are available during all
the runtime. Each client can run only 1 voice call per time
(as,1 = 1). The maximum loads for the other services and
each client are selected randomly for each client in predefined
limits.

The results of the test for the voice call and the TCP-
stream service are shown in figure 2. The actual load in 2(a)
follows the wanted load besides some lower peaks. The peaks
results from the delay between a finished and reported voice
call of a client and the recalculation by the automation module.
Additionally, there is a delay at the end of the test run. It results
from the fact, that running voice calls cannot be stopped by
the automation module.

Unlike voice calls, the TCP-stream service allows the
setting of exact streaming rates of each client. As visualised in
figure 2(b), the actual load corresponds better with the wanted
load. The small differences are caused by inaccuracies of the
streaming rates. The 2 main peaks are a result of a not clarified
anomaly in the TCP-stack of the underlying operating system
(MS Windows) hosting the simulation.

0

2

6

8

10

12

1

16

18

0 50000 100000 150000 200000 250000 300000 350000

Lo
ad

 (C
al

ls
)

T me (ms)

Actual Load (Simulator)

Wanted Load (Scenar o)

(a) Voice call service.

0
1000
2000
3000

000
5000
6000
7000
8000
9000

10000

0 50000 100000 150000 200000 250000 300000 350000

Lo
ad

 (B
yt

e/
s)

Time (ms)

Ac ual Load (Simulator)
Wanted Load (Scenario)

(b) TCP-streaming service.

Fig. 2. Comparison of wanted and actual load.

0
20000

0000
60000
80000

100000
120000
1 0000
160000
180000
200000

0 50000 100000 150000 200000 250000 300000 350000

Lo
ad

 (B
yt

e/
s)

Time (ms)

Actual Load (Simula or)
Wanted Load (Scenario)

(a) Different file sizes > 100kByte.

0
20000

0000
60000
80000

100000
120000
1 0000
160000
180000
200000

0 50000 100000 150000 200000 250000 300000 350000

Lo
ad

 (B
yt

e/
s)

T me (ms)

Actual Load (S mulator)

Wanted Load (Scenario)

(b) Different file sizes < 100kByte.

Fig. 3. Comparison of wanted and actual load of HTTP-download service.

The analytical evaluation of the measured values shows
that the ratio of actual load and wanted load is 0.913 for
the voice call service and 1.01 for the streaming service.
The average delay between changes of the wanted and the
according adaptation of actual load is 0.8s respectively 2.1s.

The load generation of the HTTP-download service is
depending on the file sizes. It is clearly observable that the
differences of wanted and actual load are higher in the case of
lower file sizes. The wanted load cannot even be reached for
higher loads. The main reason is that the delays for starting
new downloads are higher than the time to finish the download
of small files. This kind of combination is a worse case for this
kind of automated test concept and the presented architecture.

The analytical evaluation shows a relation of actual and
wanted load for the small files of 0.8 and for the big files of
0.95. The delays for one step of load increasing are 5.1s and
2.2s. In the first case it is higher since more clients have to be
ordered for creating new loads.

One main requirement for this work is the capability to
handle clients dynamically. The previous results base up on a
fixed number of clients. In contrast, results for the adaptation
to a changing number of clients can be found in figure 4. The
initial number of clients is increased to 40. In the first case,
15 randomly selected clients are removed from the network
after 300s of test runtime. The according behaviour can be
seen in the figure 4(a). The actual load decreases due to the
missing clients. After around 90s the testserver module and
the automation module react and generate new load by the
existing clients. The reason for the relatively long delay is the
missing report of the deactivated clients. Immediately after the
communication between clients and testserver module is timed
out (light, dotted curve), the automation module adapts to the
changes and generates new load by available clients.

The second measurement introduces a movement simula-
tion for the nodes. During the runtime the nodes might leave
the simulated mobile network so that the communication with
the testserver module is not possible anymore. In this case,
the dynamics are much smoother. Accordingly, the differences
between wanted and actual load are not as high as in the first
case. The behaviour is similar to the previous case.

20

30

0

50

60

70

80

0

2

6

8

10

12

0 100000 200000 300000 00000 500000 600000

C

lie
nt

s

Lo
ad

 (C
al

ls
)

Time (ms)

Actual Load (Simula or)
Wanted Load (Scenar o)
A a lable Clients (Automation Module)

(a) Reference.

20

30

0

50

60

70

80

0

2

6

8

10

12

0 100000 200000 300000 00000 500000 600000

C

lie
nt

s

Lo
ad

 (C
al

ls
)

Time (ms)

Actual Load (S mulator)
Wanted Load (Scenario)
A ailable Clients (Automation Module)

(b) Random.

Fig. 4. Dynamic adaptation to changing client availability.

V. CONCLUSION AND OUTLOOK

A solution for automated testing of service providing
systems was introduced. It supports the usage of dynamic and
heterogenous sets of clients. A test is executed by defining
abstract loads that have to be generated by the clients on the
services of the SUT. A testbench architecture was presented.
It allows the maintaining of the client sets and the automatic
partitioning and mapping of service loads to the clients.
An adapted heuristic algorithm was introduced. It allows
the solution of the DYNAMIC TESTPARTITIONING - an
optimisation problem - in polynomial runtime. The testbench
and the algorithm were evaluated using a simulation platform.
It was shown, that it is possible to match the wanted loads with
overall differences of 5 to 10% (worst case: 20%) and delays
of maximal several seconds. The algorithm is able to handle
several hundreds of clients. Presently, there are still problems
about the delays for detecting missing clients. TCP timeouts
are currently used. This concepts is communication platform
dependent and results in too long delays.

REFERENCES

[1] M. Caspar, M. Vodel, and W. Hardt, “System level test of service-based
systems by automated and dynamic load partitioning and distribution,”
in Proceedings of the 10th International Conference on Innovative
Internet Community Systems (I2CS2010), ACM Press. Bangkok,
Thailand: ACM Press, June 2010.

[2] C. Rankin, “The software testing automation framework,” IBM Syst. J.,
vol. 41, no. 1, pp. 126–139, Jan. 2002.

[3] R. P. Singh, “Managing software testing automation framework with
rational quality manager,” IBM, Tech. Rep., August 2012.

[4] S. Dustdar and S. Haslinger, “Testing of service-oriented architectures
- a practical approach,” in Net.ObjectDays, 2004, pp. 97–109.

[5] D. Krishnamurthy, J. A. Rolia, and S. Majumdar, “A synthetic workload
generation technique for stress testing session-based systems,” IEEE
Trans. Softw. Eng., vol. 32, pp. 868–882, November 2006.

[6] S. Gaisbauer, J. Kirschnick, N. Edwards, and J. Rolia, “Vats:
Virtualized-aware automated test service,” in QEST, 2008, pp. 93–102.

[7] J. Zhang, “A mobile agent-based tool supporting web services testing,”
Wirel. Pers. Commun., vol. 56, no. 1, pp. 147–172, Jan. 2011.

[8] M. I. Andreica, N. Tapus, C. Dumitrescu, A. Iosup, D. Epema, I. Raicu,
I. Foster, and M. Ripeanu, “Towards ServMark, an Architecture for
Testing Grid Services,” Technical University of Delft - Technical Report,
Jul. 2006.

[9] C. Dumitrescu, I. Raicu, M. Ripeanu, and I. Foster, “Diperf: An
automated distributed performance testing framework,” in Proceedings
of the 5th IEEE/ACM International Workshop on Grid Computing, ser.
GRID ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp.
289–296.

[10] M. Vodel, M. Sauppe, M. Caspar, and W. Hardt, “The simanet
framework,” in Proceedings of the 1st International Conference on
M4D: Mobile Communication Technology For Development. Karlstad,
Schweden: Karlstad University, December 2008, pp. 88–97.

[11] M. Caspar, Lastgetriebene Validierung Dienstbereitstellender Systeme,
ser. Eingebette, Selbstorganisierende Systeme, W. Hardt, Ed. Univer-
sitätverlag Chemnitz, 2013, vol. 11.

