Effective Post-Silicon Failure Localization
Using Dynamic Program Slicing

Ophir Friedler, Wisam Kadry, Arkadiy Morgenshtein, Amir Nahir, and Vitali Sokhin
IBM Research - Haifa, Israel
Email: {ophirf,wisamk,arkadiym,nahir,vitali } @il.ibm.com

Abstract—In post-silicon functional validation, one of the most
complex and time-consuming processes is the localization of an
instruction that exposes a bug detected at system level. The task is
particularly difficult due to the silicon’s limited observability and
the long time between a failure’s occurrence and its detection.

We propose a novel method that automates the architectural
localization of post-silicon test-case failures. Our proposed tool
analyzes a failing test-case, while leveraging the information
derived from executing the test on an Instruction Set software
Simulator (ISS), to identify a set of instructions that could lead
to the faulty final state. The proposed failure localization process
comprises the creation of a resource dependency graph based on
the execution of the test-case on the ISS, determining a program
slice of instructions that influence the faulty resources, and the
reduction of the set of suspicious instructions by leveraging the
knowledge of the correct resources.

We evaluate our proposed solution through extensive experi-
ments. Experimental results show that, in over 97% of all cases,
our method was able to narrow down the list of suspicious
instructions to under 2 instructions, on average, out of over 200.
In over 59% of all cases, our method correctly reduced a test-case
to a single faulty instruction.

I. INTRODUCTION

The primary goal of the post-silicon validation effort is to
detect, analyze, and find the root cause of design functional
and electrical bugs that escaped the pre-silicon verification
effort. Despite continuous improvements in pre-silicon ver-
ification technologies, both formal and simulation-based, the
role of functional validation at the post-silicon stage continues
to grow.

Fails debugging is considered to be a major challenge in the
post-silicon validation process, and has, accordingly, received
significant attention from the research community over the
years [12], [14], [9]. The combination of two primary factors
make debug a complex problem: the limited observability into
the state of the design and the duration of time between the
origin of the fail to the first time it is observed.

The focus of this paper is the automation of the architectural
localization of post-silicon failures. Specifically, we focus on
the localization of functional data flow bugs. Such errors occur
when data is corrupted during one of the instruction execution
phases, for example, in a case in which an instruction fails to
write its results to one of its outputs.

Architectural localization is the first step in debugging a

978-3-9815370-2-4/DATE14/(©2014 EDAA

post-silicon fail', and is aimed at locating the instructions
in the test-case where incorrect DUT behavior propagated
to the architectural level. Based on the data gathered in
the architectural localization phase, i.e., the identity of the
suspicious instructions, the location of these instructions in
memory, and the operands they accesses, etc., the DUT’s
hardware debug logic can be configured to trace specific
signals [13], facilitating the root cause of the bug.

We propose to use the Instruction Set Simulation [8] (ISS,
sometimes called golden model or reference model) as a
vehicle to explore fail reasons and obtain observability into
the architectural changes triggered by the failing test-case.

Our method calls for re-running the failing test-case on the
ISS?. By running the test-case on the ISS, we can determine,
for every architectural resource, whether the value it had at the
end of the execution of the test-case on the DUT was correct
or faulty. We therefore partition all architectural resources into
two sets: correct resources and faulty resources. In addition,
based on the intermediary architectural values, as observed
on the ISS, we construct a dependency graph describing the
changes to these resources throughout the execution of the
test-case and their dependency on one another.

Leveraging dynamic slicing techniques [7] and based on
the set of faulty resources, we traverse the dependency graph
to find a subset of the test-case instructions that affect these
resources. We term this subset of the test-case the program
slice. Since the ISS models the dependencies among resources
as they are created by the instruction, the program slice is
guaranteed to hold the instruction that the DUT failed to
execute.

The program slice includes all the instructions in the test-
case that affected the faulty resources. However, these in-
structions may also affect additional resources. We propose a
heuristic that, based on our knowledge of the correct resources,
removes some suspicions instructions from the program slice.
This heuristic relies on a simple rule: if an instruction af-
fects some resource that holds a correct value at the end of
the test-case, then the instruction must have been executed
successfully. Therefore, our heuristic would remove such an
instruction from the suspicious instructions list.

'We coined the term architectural localization referring to instructions in
the test-case, as the basic term localization often refers to the process of
finding the faulty unit in the design [19], [18].

2Some industrial ISSs run sufficiently fast to enable re-running a very long
test [1], while other tools rely on sophisticated seed generation techniques to
provide that capability [4].

To minimize errors when analyzing instructions that write
to multiple resources, we propose two flavors of our heuristic.
Our first version, the basic version of the heuristic, would
apply the above rule if at least one resource exists that was
affected by the instruction and that is correct at the end of
the test-case. The second version, the conditional version, of
the heuristic would determine that an instruction is no longer
suspicious only if all affected resources are correct at the end
of the test-case.

We validated our approach through error injection experi-
ments. Our results indicate that in over 59% of all cases, our
method was able to single out the problem, that is, to correctly
reduce a test-case of over 200 instructions to a single faulty
instruction. In over 97% of all cases, our method was able
to narrow down the list of suspicious instructions to under 2
instructions, on average, out of over 200.

Contributions. We propose an automated architectural lo-
calization analysis of post-silicon test-cases by building a
dependency graph based on running the failing test-case on an
ISS. We describe an algorithm for identification of suspicious
instructions, by performing dynamic slicing of the dependency
graph based on the list of faulty resources at the end of
the test-case. We present a heuristic for reducing the set of
suspicious instructions leveraging the list of correct resources,
while retaining high accuracy of error localization. We present
extensive simulation results that demonstrate the effectiveness
of the proposed localization technique, based on error injection
in hundreds of randomly generated test-cases. We used a
PowerPC™ 1SS to implement and validate the proposed
algorithms.

The rest of the paper is organized as follows: In Section II
we review related work. We describe our method of localizing
architectural level failures in Section III. We present our
experimental results in Section IV. In Section V, we conclude
the paper and present future work.

II. RELATED WORK

Post-Silicon validation is an extensively researched topic,
and much like this paper, the majority of work focuses on
different aspects of debugging fails. Most of the prior work
focused on constructing different mechanisms in the form of
added logic to the design to collect data to enable a more
efficient debug process. Our proposed solution is a “pure
software” one, such that we assume nothing about the structure
and internals of the design under test.

In [12], the authors propose a technique with which the
validation engineer can reconstruct a long trace of the design
through repeated execution. In [18], the authors suggest a
mechanism tailored for processors that, once dumped from
the design, enables a good understanding of what occurred in
the pipeline when the processor triggered a fail. Multiple other
papers, such as [16], [22] and [6] are of a similar nature and
propose signal-selection techniques, debug logic structures,
and analysis methods to assist the post-silicon debug process.

Some works, such as [14], [2] and [10], take this approach
a step further and augment the design with logic that has

RO R1 R2 R3 0xB
s 5] [[[£] [

11: RO <-R1-R2
12: R2<-R0 + 6
13: R3 <- 0xB

14: M(R3) <- R2
15: R2 <-R1-0xC

Correct
Corrupted ﬂ
Final state

Fig. 1: Test-case example

checking capabilities.

In [15] and [17], the authors propose a variety of techniques
of mutating test-cases, without any change to the logic of the
design under test, to localize the fail and ease the debug efforts.
We have a similar goal, namely architectural localization.
However, our method requires neither changing the test-case
nor running it (or mutated versions of it) on the buggy
hardware.

Finally, dynamic slicing techniques were initially suggested
30 years ago [23], [5] and are continuously being refined
and improved to date [7]. However, these methods have
been in use for the purpose of localizing errors in software
development, assuming the underlying hardware works well.
Similar techniques have been proposed to assist in the hard-
ware development process [20], [21]. These, however, refer to
slicing of the RTL code while we propose to conduct dynamic
slicing of the test-case. This is the first time these methods are
put to use to assist the post-silicon debug process.

III. LOCALIZATION ALGORITHM

This paper focuses on the localization of data flow errors.
Data flow errors occur when data is corrupted during one of the
instruction execution phases. Some examples of the data flow
error are: an instruction reading a wrong value from one of its
inputs, an instruction failing to compute the right output, or an
instruction writing a wrong value into one of its outputs. The
faulty data may propagate and contaminate other resources
along the test-case execution flow, making the manual error
localization process difficult and time consuming.

Let us consider the test-case example shown in Figure 1.
The test-case includes five instructions (/1...15) that use four
registers (R0...R3) and one memory location at address 0z 5.
Running the test-case with the initial state of R0 = 020, R1 =
0zC,R2 = 0zA,R3 = 0zF,0eB = 0zFE on a bug-free
processor should always produce the correct final state of
RO = 022, R1 = 0zC, R2 = 020, R3 = 0zB,0xB = 0z8.
However, let us assume that /2 erroneously writes the value
13 instead of the value 8 to R2 during the test-case execution.
In this case, the wrong value will propagate until it will be
written in memory at address Oz B and will appear at the final
state of a test-case run.

The correct final state can be obtained by running the same
test-case on an ISS. In our example, the memory resource 0z B
will be identified as faulty based on the comparison of the final
states of original test-case run on hardware and the ISS run. In
this work, we propose a tool that analyzes a failing test-case
while leveraging the information derived from comparison of
DUT and ISS runs, to identify a set of instructions that could
lead to the faulty final state.

The proposed failure localization process consists of three
major steps. First, we build a resource dependency graph
based on execution of the test-case on the Instruction Set
Simulator. Next, we determine a program slice of instructions
that influence the faulty resources. Finally, we leverage the
knowledge of the correct resources to reduce the set of suspi-
cious instructions. This is done by traversing the dependency
graph and marking the instructions that are related to the
correct resources.

Figure 2 depicts a resource dependency graph built by
running the test-case in Figure 1 on the ISS. Nodes in the graph
are grouped in layers, with each layer representing a consistent
architectural machine state. The first layer represents the
initial state, S0, and the last layer represent the final state.
Execution of each instruction moves the processor to the next
architectural state. For example, execution of 12 moves the
machine from S1 to S2. For the sake of clarity, at intermediate
states we depict only the resources that were modified by the
related instruction.

Resource B is dependent on resource A if an instruction 1
exists with input A and output B. We represent dependencies
as edges between resources at two different layers of the
dependency graph. For example, since /2 reads from R0 and
writes to 2, R2 depends on RO.

The dependency graph is built based on the test-case execu-
tion on the ISS. The ISS eliminates any loops initially present
in a test-case by unrolling the loops into a series of instructions
per iteration. Hence, by construction, the dependency graph
does not contain any loops.

In the second stage, we create a program slice of instruc-
tions that affect the faulty resources. The faulty architectural
resources are determined by running the test-case on the
ISS and comparing values of architectural resources with the
execution of the test-case on the DUT. To build a program
slice, we traverse the dependency graph using Depth First
Search (DFS) [11], starting from each faulty resource node
at the final state (bottom layer). During the traversal we mark
all the visited nodes at the intermediate states, as suspicious.
A program slice is a set of all instructions that have at
least one output resource marked as suspicious. Figure 3
depicts such graph traversal. The traversal starts at the final
state of memory located at address OxB. All marked nodes
are shown in red (dark). The corresponding program slice
consists of I1,712,13, andl4. As shown, the set of suspicious
instructions contains the faulty instruction I2. Our results,
described in Section IV, show that building a dynamic program
slice substantially reduces the search space as compared to the
complete test-case.

Initial state S0
11: RO <- R1 - R2
S1
12: R2 <-RO + 6
S2
13: R3 <- OxB
S3
14: M(R3) <- R2
S4

I15: R2 <= R1 - 0xC

S5

st e (2] [€] [o] [o]]

Fig. 2: Resource dependency graph: each layer represents a
machine state with edges showing the resource dependency
according to inputs and outputs of related instructions

RO R1
Initial state IZI

11: RO <-R1-R2--

R2 R3 0xB
A [[E]

S1

12:R2 <-RO + 6
S2
13: R3 <- OxB -
S3
14: M(R3) <- R2 -
S4
15: R2 <= R1 - OxC

S5

st e [2] €] [o] [o]

Fig. 3: Dynamic slice: suspicious nodes are marked during the
DFS traversal from faulty resources in the final state

The dynamic program slice includes all the instructions in
the test-case that affected the faulty resources. However, these
instructions may also affect additional resources. In the third
stage, we leverage the knowledge of the correct resources from
the ISS run by employing a justification heuristic that further
reduces the set of suspicious instructions.

Consider I3 from the example above. At the end of our
slicing stage, I3 is part of the dynamic slice. However, had
the DUT erred in executing /3, we expect that R3, the output
of 13, would have remained corrupt until the end of the test-
case. Since we know R3 holds a correct value at the end of the
test-case, we can remove I3 from our suspicious instructions
list.

We implement this heuristic by running DFS from each
correct resource at the final state. We mark each node reached
by the DFS traversal. If all resources associated with an
instruction were marked, we remove this instruction from the
suspicious instructions list.

RO R1 R2 R3 OxB
Initial state Iz‘ IE‘
11: RO <- R1 - R2 l -
s1
12:R2 <-RO + 6
S2
13: R3 <- OxB
S3
14: M(R3) <- R2
S4
15: R2 <- R1 - 0xC

S5

Final state

Fig. 4: Justification heuristic: some of the instructions are
cleared during the traversal from correct resources in the final
state

][]

Figure 4 presents the dependency graph with nodes marked
by the justification traversal shown in the original yellow
color. Now the reduced set of suspicious instructions contains
only I and I. The remainder of the previously suspected
instructions are cleared by the justification traversal from the
correct resources R0 and R3. Note that the faulty instruction
I is still in the final suspicious list.

All modern architectures include instructions that write to
multiple outputs. When such an instruction is badly executed
by the DUT, the nature of error propagation heavily depends
on the nature of the bug. For example, the DUT may err in
reading a value from memory, and the error may propagate to
all of the instruction’s output. On the other hand, a case may
occur in which the DUT errs in writing to one or more of the
instruction’s outputs, but not to all. We assume that the data
we have does not contain any knowledge of the nature of the
bug in the DUT. Thus, we propose two flavors of justification
heuristic, in which instructions are cleared based on analysis
of correct output resources.

The basic justification heuristic, as shown in Figure 4,
assumes that errors propagate to all instruction outputs. There-
fore, if at least one of the instruction outputs is not suspicious,
the instruction is removed from the suspicious instructions list.
This, however, may lead to excessive reduction of the program
slice and to the erroneous clearance of faulty instruction in
which only part of the outputs are corrupted.

The conditional version of the heuristic assumes that an
error may propagate to some but not all of the instruction’s
outputs. Therefore, only if all of the instruction’s outputs are
not suspicious, the instruction is removed from the suspicious
instructions list.

The conditional justification heuristic allows us to efficiently
reduce the size of the program slice, without compromising
the failure localization accuracy. Note that in cases of single-
output instructions, the definitions of the two versions of the
heuristic converge, and they provide the same output.

In this section, we formally describe our approach. Let [=

(lo, I, I, ...,I,,) be an ordered set of instructions executed
on machine M. Let R = {Ry, ..., R,} be a set of resources
of machine M, in which each resource R; is either a register
or a memory location.

Algorithm 1 Generation of dependency graph

cInput: I = (Iy, ..., Im), R ={Ro, ..., Rn}
i+ 1
V + {R}jo,r|} b initial state
E«+0

: while ¢ < |I] do

ISS.EXECUTE([;)

RD <« ISS.READ(I;)

WR < ISS.WRITE(I;)

V + VUWR

for all R,, € WR do
for all R, € RD do

E + EU (R, R,)

end for

end for

: 141+ 1

: end while

> all resources read by I;
> all resources written by I;
> addition of new nodes

AR oORIR U W=

We define a resource dependency graph G = (V,E) as
follows. Let { Rl} be a set of resources written by instruction
I,. Then the set of nodes V' contains a node {R!} for each
resource written by instructions belonging to /. Note that we
assume that I is an initialization instruction that updates all
resources R. E is a set of ordered pairs (R! , RL), in which
Rl and R are resources written and read by instruction
I;. We present a formal description of the dependency graph
generation in Algorithm 1.

Algorithm 2 Dependency graph traversal

1: Input: G = (V, E),C = {Re¢1, ..., Ren }

2: for all R, € C do

3: DFS(G, R.)

4: end for

5:

6: procedure DFS(G, R,)

7: VISIT(R,.)

8: B + {Ry3(R,, Ry) € E}

9: if B = () then

10: return

11: end if

12: for all R, € B do

13: DFS(G, Ry)

14: end for

{g: end procedure

17: procedure VISIT(G, R,)

18: if mode = basic then

19: MARK(R,.)

20: return

21: else

22: if mode = conditional then

23: F «+ {RfH(Rf, R7-) € E}
> check if all output resources were cleared

24: for all Ry € F do

25: if Ry ¢ marked then

26: return

27: end if

28: end for

29: MARK(R,-)

30: end if

31: end if

32: end procedure

Let C C R be a subset of resources of machine M.
Algorithm 2 describes the creation of a program slice given a
set of faulty resources C' as an input. The same algorithm
is also used for the justification heuristic. In that case the
algorithm gets a set of correct resources C' as its input.

The difference between the basic and conditional versions
of the justification heuristic is embedded in the implementation

localized? Number of | Program Reduced

(reduced slice | scenarios slice slice

size) average average
size size

yes (1) 172 7.29 1

yes (>1) 91 9.34 3.00

no (0) 1 19.00 0

no (>0) 7 13.86 2.71

TABLE I: Experimental results - failure localization with basic
justification heuristic

localized? Number of | Program Reduced

(reduced slice | scenarios slice slice

size) average average
size size

yes (1) 160 7.52 1

yes (>1) 108 8.87 3.16

no (0) 1 19.00 0

no (>0) 2 20.5 1.50

TABLE II: Experimental results - failure localization with
conditional justification heuristic

of the VISIT function in Algorithm 2. During the traversal from
a correct resource in the conditional heuristic, for each visited
node we check if any remaining suspicious output resources
exist that depend on it. The visited node will only be marked
as cleared if it has no dependent suspicious output resources.

IV. RESULTS

We evaluated the effectiveness of our method by a series
of experiments in which a single random error was injected
into a test-case generated by the Threadmill exerciser [3].
We configured Threadmill to generate and run test-cases with
about 220 random instructions. We executed these test-cases
on a PowerPC ISS [8].

For each test-case, we created various error scenarios by
selecting one instruction and altering its result. In each error
scenario, we corrupted one modified resource after the instruc-
tion execution. This repeatedly caused Threadmill to stop and
report the corrupted resources. The reports were then passed
to our tool for analysis.

We generated a total of 271 error scenarios with a mani-
fested data corruption at the final state. For each test-case, a
dependency graph was created and dynamic program slicing
was performed to identify the initial set of suspected instruc-
tions. Then, the two versions of justification heuristics were
applied to reduce the slice size, and the final results were
analyzed and compared. The tool was run on a single Intel
Xeon Linux server operating at 2.4GHz with 16GB of RAM.
The average run time of the entire analysis was less than one
minute.

Our experimental results are reported in Table I and Table II.
The data, divided into four categories, is presented in the order
of the localization success. The first two categories represent
successful localization of the failure. In the first category, the
failure is precisely localized to a single-instruction set. In the
second category, the faulty instruction is successfully localized
into a limited set of suspicious instructions. The last two types

represent unsuccessful localization cases. In one category, no
suspicious instructions exist in the reduced set. In such a case,
we expect the person driving the localization work to rely on
the instructions in the program slice. In the last category, the
reduced set contains some suspicious instructions, but none of
those is the faulty one. Such a result is highly undesired, as
it may mislead and increase the debug time.

As the results show, both heuristics provided highly efficient
and accurate results. The basic heuristic provided precise
failure localization in 97% of all cases, while in 63.5% of
scenarios, the faulty instruction was the only instruction in the
reduced set. The conditional heuristic successfully localized
the failure in 99% of cases, while in 59% of scenarios, the
heuristic accurately localized the suspicious instructions list
to the single corrupted instruction. Although the average size
of a reduced slice is smaller in the basic heuristic, a higher
number of false results is observed when using this method.
As explained in the previous section, this is due to the fact
that the basic heuristic may lead to an erroneous clearance
of faulty multi-output instructions in which only part of the
outputs are corrupted. The reduced instruction set in the basic
and conditional heuristics contained an average of 1.7 and 1.9
instructions, respectively.

In all the cases, the program slice, resulting from the
execution of Algorithm 2, included the faulty instruction. This
is attributed to the correct modeling of the architectural data
propagation by the reference model.

In a single scenario, the final reduced instruction set ended
up empty. In this case, the program slice before the justification
phase contained 19 instructions. Finally, in two to seven
scenarios, the suspicious instruction set was not empty, yet
the faulty instruction was not contained in it.

A simple example of a faulty instruction that may be
removed during the justification phase is in the case of the
execution of a division instruction with a corrupted non-zero
denominator, and a zero numerator. The result of such an
instruction is 0, regardless of the numerator value and even
though it used corrupted data. In such a case, nothing indicates
that the instruction used a corrupted resource, and Algorithm 2
will continue to acquit preceding instructions (including the
faulty one). This issue may be addressed in the future by
having the ISS provide more accurate data regarding the
dependency of the outputs on the inputs. For example in the
example above, the output of the division instruction depends
only on the numerator.

The detailed plots of sizes of initial and reduced slices are
shown in Figure 5 and Figure 6 for all the analyzed failure
scenarios. The graphs show the distribution of the slice sizes,
as functions of the error location within the test-case. The
results are divided according to the error origin memory
or register. As shown, in all the cases the program slice is
efficiently reduced to a small number of instructions (never ex-
ceeding 10 instructions). The overall efficiency of the method
is particularly manifested in cases of big program slices, with
up to 49 instructions. Gathering such a set of suspicious
instructions would be a complex and time-consuming manual

50
45 1 A Program slice size

O Reduced slice size
40 A
354

30 4

i% A £ PN
3 25 A A
2 a a
7 a,A
20 A A a N
A
151 a N A
IV
109 4 A, N o N o
m S om m I A
o a V'S a
54 o = 28 A A
A a a a o a
Oufaﬂﬂj]'% so o 5 Bo g0 @ oTAR o T g alai. B
0 50 100 150 200

Error Location

Fig. 5: Slice sizes as function of error location: errors appear-
ing at registers

50

A Program slice size
o Reduced slice size

45

40 A

35 4

30 4

o
N
@ 251 a
2 I S
@ 204 R & s
A
15 4 N N
10 1 R 4
AA A AAA AAA A
®] IS & o A AAA AAA Aﬁ AAA é IS
o P Bvh oy ePoBom ot 0% obockm & ° 8° Bmon @ m
0 50 100 150 200

Error Location

Fig. 6: Slice sizes as function of error location: errors appear-
ing in memory

task and would significantly gain from the process automation.
Moreover, all the program slices are successfully reduced to
smaller sets by the justification heuristics, regardless of the
original size of the program slice.

A specific trend can be observed in cases of error injection
in memory resources (Figure 6). The plot shows a direct
dependency between the error location and the size of the
program slice. Errors injected in registers do not show such a
trend. This effect can be explained by the fact that a relatively
high number of memory resources are used by the test-cases
as compared to the limited number of registers, as defined by
the architecture. As a result, the chance of error propagation
from a faulty memory resource to resources of following
instructions is significantly lower than in the case of registers,
regardless of the memory error location. On the other hand,
any error appearing early in the test will have fewer preceding
instructions that the slicing algorithm may mark as suspicious.

V. CONCLUSION AND FUTURE WORK

We presented a novel method for the effective localization
of post-silicon failures detected by consistency checking. Our
method relies on the reference model of a design under test and
utilizes dynamic program slicing. We also presented heuristics
for the reduction of the set of suspicious instructions by
leveraging the knowledge of the correct resources.

The experimental results demonstrate the effectiveness of
our method. In over 97% of all cases, our method was able
to narrow down the list of suspicious instructions to under
2 instructions, on average, out of over 200. In over 59% of
all cases, our method correctly reduced a test-case to a single
faulty instruction.

We plan to extend our method to assist in the localization of
fails originating from multi-threaded test-cases and investigate
heuristics that can explain control flow errors.

REFERENCES

[1] ARM - fast model tools user guide. http://www.arm.com/products/tools/
models/fast-models/index.php. Accessed: 2013-09-01.

[2] Abramovici et al. A reconfigurable design-for-debug infrastructure for
socs. In DAC, pages 7-12, 2006.

[3] A. Adir et al. Threadmill: a post-silicon exerciser for multi-threaded
processors. In DAC, pages 860-865, 2011.

[4] A. Adir, A. Nahir, and A. Ziv. Concurrent generation of concurrent
programs for post-silicon validation. IEEE Trans. on CAD of Integrated
Circuits and Systems, 31(8):1297-1302, 2012.

[5] H. Agrawal, R. A. Demillo, and E. H. Spafford. Debugging with
dynamic slicing and backtracking. Software Practice and Experience,
23:589-616, 1993.

[6] E. Anis and N. Nicolici. On using lossless compression of debug data
in embedded logic analysis. In ITC, pages 1-10, 2007.

[7]1 R. Bloem et al. FOREnSiC- an automatic debugging environment for ¢
programs. In Haifa Verification Conference, pages 260-265, 2012.

[8] P. Bohrer et al. Mambo: a full system simulator for the powerpc
architecture. SIGMETRICS Perform. Eval. Rev., 31(4):8-12, Mar. 2004.

[9]1 K. Chen, S. Malik, and P. Patra. Runtime validation of memory ordering
using constraint graph checking. In HPCA, pages 415-426, 2008.

[10] K. Chen, S. Malik, and P. Patra. Runtime validation of memory ordering
using constraint graph checking. In HPCA, pages 415-426, 2008.

[11] T. Corman, C. Leiserson, and R. Rivest. Introduction to Algorithms.
Cambridge MA. The MIT Press, 1990.

[12] F. M. de Paula, M. Gort, A. J. Hu, S. J. E. Wilton, and J. Yang.
Backspace: Formal analysis for post-silicon debug. In FMCAD, pages
1-10, 2008.

[13] F. M. de Paula, A. Nahir, Z. Nevo, A. Orni, and A. J. Hu. Tab-backspace:
unlimited-length trace buffers with zero additional on-chip overhead. In
DAC, pages 411-416, 2011.

[14] A. DeOrio, J. Li, and V. Bertacco. Bridging pre- and post-silicon
debugging with BiPeD. In ICCAD, pages 95-100, 2012.

[15] T. Hong et al. QED: Quick error detection tests for effective post-silicon
validation. In ITC, pages 154-163, 2010.

[16] H. FE. Ko and N. Nicolici. Automated trace signals identification and
state restoration for improving observability in post-silicon validation.
In DATE, DATE 08, pages 1298-1303, New York, NY, USA, 2008.
ACM.

[17] D. Lin, T. Hong, F. Fallah, N. Hakim, and S. Mitra. Quick detection
of difficult bugs for effective post-silicon validation. In DAC, pages
561-566, 2012.

[18] S.-B. Park and S. Mitra. Post-silicon bug localization for processors
using IFRA. Commun. ACM, 53(2):106-113, Feb. 2010.

[19] Z. Poulos, Y.-S. Yang, and A. Veneris. A failure triage engine based on
error trace signature extraction. In On-Line Testing Symposium (IOLTS),
2013 IEEE 19th International, 2013.

[20] S. Vasudevan, E. A. Emerson, and J. A. Abraham. Improved verification
of hardware designs through antecedent conditioned slicing. STTT,
9(1):89-101, 2007.

[21] V. M. Vedula, W. J. Townsend, and J. A. Abraham. Program slicing for
ATPG-based property checking. In VLSI Design, pages 591-596, 2004.

[22] 1. Wagner and V. Bertacco. Reversi: Post-silicon validation system for
modern microprocessors. In ICCD, pages 307-314, 2008.

[23] M. Weiser. Programmers use slices when debugging. Commun. ACM,
25(7):446-452, July 1982.

