

A Universal Symmetry Detection Algorithm
Peter M. Maurer

Dept. of Computer Science
Baylor University

Waco, Texas 76798-7356
 Waco, Texas 76798

Abstract – Research on symmetry detection focuses on
identifying and detecting new types of symmetry. We present an
algorithm that is capable of detecting any type of permutation-
based symmetry, including many types for which there are no
existing algorithms. General symmetry detection is library-based,
but symmetries that can be parameterized, (i.e. total, partial,
rotational, and dihedral symmetry), can be detected without
using libraries. In many cases it is faster than existing techniques.
Furthermore, it is simpler than most existing techniques, and can
easily be incorporated into existing software.

1 Introduction
A symmetric Boolean function is a function whose inputs can be

rearranged in some fashion without changing the output of the
function. The importance such functions was first recognized by
Shannon in [1], who characterized function symmetries using
permutations of the input variables. Virtually all existing symmetry
detection algorithms are based on Shannon’s Theorem which detects
symmetry by comparison of two-variable cofactors. This approach
can detect all total and partial symmetries, but there are many types
of symmetries that cannot be detected in this manner. As the number
of input variables grows, these types of symmetry become more
common than partial and total symmetry. Some progress has been
made in detecting symmetries beyond partial and total symmetry [2-
4], but the problem of universal symmetry detection has remained
open since 1949.

Our experiments with standard benchmarks [5] show that such
symmetries are common. Ignoring such symmetries can cause major
failures in layout verification and regression [6]. For such algorithms,
incorrect handling of symmetry can cause many false errors, making
it easy to miss the real errors. Correct handling of symmetry is also
important when attempting to match design specifications to an
existing library of functions [7]. If symmetry handling fails, functions
may have to be created by hand even though there is an acceptable
library function to implement it.

In this paper, we use an entirely new approach which,
effectively, considers all inputs simultaneously instead of in pairs.
This approach allows us to detect virtually any type of symmetry,
including some types that go beyond permutations. For small
numbers of inputs (<8) our approach is faster than using cofactors. In
addition, the coding is simpler. We provide pseudo code in Section 4,
which can easily be adapted for use in existing EDA algorithms. Our
algorithm also is somewhat easier to parallelize than the conventional
algorithm, because it does not require the accumulation of results to
completely characterize a gate.

2 Basic Principles
Symmetries can be categorized into total symmetry, partial

symmetry, and strong symmetry. Total symmetry permits the inputs
of a function to be rearranged arbitrarily without changing the output
of the function. Partial symmetry is similar to total symmetry in that
it permits one or more subsets of inputs to be rearranged arbitrarily.

Strong symmetry is a catch-all term that includes every type of
symmetry that is neither total nor partial. The function a b c d  
is totally symmetric and the function abc d is partially symmetric.
The functions a b c d  and ab cd are strongly symmetric. In
a b c d  no single variable can be exchanged with any other single

variable, but the set { , }a b can be exchanged with the set { , }c d .
Most existing algorithms will detect two partial symmetries
in ab cd but ignore the fact that the set { , }a b can be exchanged

with the set { , }c d . Strong symmetry is not detectable using two-
variable cofactors.

There are many more kinds of strong symmetry than partial and
total symmetry [8]. Various sub-categories of strong of symmetry
have been discovered, and algorithms have been created to detect and
exploit some of these symmetries [7]. Examples of such symmetries
are hierarchical symmetry, rotational symmetry and dihedral
symmetry [9].

The primary tool for categorizing symmetry is the permutation
group [10]. Let X be a finite set of objects. A permutation is a one-
to-one function from X to itself. The set of all permutations of a set
X is called the symmetric group on X and is written XS .The only

thing that affects the structure of XS is the size of X . If X and Y

are two sets of the same size, then XS and YS are identical. If

Xp S , and the size of X is n then we say that n is the degree of

p . If {1,2,..., }X n we write XS as nS .

Let p be a permutation of degree n and let f be an n-input
Boolean function. We say that p and f are compatible if using p to
rearrange the variables of f leaves the output of f unchanged. We also
say that f is invariant with respect to p. We extend this terminology in
the obvious way to subgroups of nS , and define the symmetry group

fG to be the set of all permutations that leave f invariant. Because

the identity element leaves every function invariant, fG is never

empty. Most recognized types of symmetric functions can be
characterized using symmetry groups. For example, an n-input
function f is totally symmetric, if and only if f nG S . A function

is non-symmetric if { }fG I .

Symmetric variable pairs are detected by comparing the
cofactors of a function [3]. A cofactor of f is found by setting one
or more input variables to constant values. For example, let
f ab cd  . Two cofactors of f are 1xx xf ab d  and 0xxxf cd .

When the unaffected variables are obvious, it is common to omit the
x’s. The pair (,)a b is a symmetric variable pair if and only

if 01 10f f . Because symmetric variable pairs are transitive, they can

be used to detect all partial and total symmetries.

978-3-9815370-2-4/DATE14/©2014

3 Orbits and Boolean Orbits
Orbits have been used for many years to analyze and categorize

permutation groups [7, 10]. Two variables ,a b X are said to be in

the same orbit of G if there is a permutation p G , such that

()p a b . Intuitively, an orbit contains all the variables that can be

exchanged with one another, so the function abc d has two orbits
{ , , }a b c and{ }d . Belonging to the same orbit is an equivalence
relation, so it breaks the set of input variables into a collection of
disjoint subsets.

Orbits can be used to distinguish total and partial symmetries,
but are not particularly effective with strong symmetries. Consider
the function ab cd , which possesses dihedral symmetry. This
function has only one orbit, { , , , }a b c d . The totally symmetric

function a b c d   also has a single orbit, { , , , }a b c d . Thus the

functions a b c d   and ab cd have the same orbits even
though their symmetries are quite different.

We have discovered a new type of orbits, called Boolean Orbits,
that permit us to deal with strong symmetries as well as partial and
total symmetries. Boolean orbits are computed with respect to the
Boolean input vectors of a function rather than with respect to the
variables. Permutations of degree n can operate on n-element
vectors by permuting the indices of the elements. This has the effect
of permuting the elements of the vector. For example, we can apply
the permutation (1,2,3) to the vector (1,1,0) to obtain the vector
(0,1,1).

Two -inputn vectors and v w are in the same Boolean orbit of

G if there is a permutation p G such that ()p v w . Like
ordinary orbits, belonging to the same Boolean Orbit is an
equivalence relation, so this relation breaks the set of

-inputn Boolean vectors into a collection of disjoint sets. If fG is

the symmetry group of a Boolean function f , then the Boolean

orbits of fG will partition the truth-table of f into disjoint sets. In

fact, the symmetry of a Boolean function is completely determined by
the Boolean orbits of its permutation group. Figure 1 shows the
symmetry groups and the Boolean orbits of the two functions
a b c d   and ab cd . Note that the Boolean orbits of the two
functions are quite different, even though the conventional orbits are
the same.

a b c d   ab cd

{ , , , }a b c d { , , , }a b c d

0000 0000
0001 0010 0100 1000 0001 0010 0100 1000
0011 0101 1001 0110 1010 1100 0011 1100
0111 1011 1101 1110 0101 0110 1001 1010
1111 0111 1011 1101 1110
 1111
Figure 1. Orbits, Symmetry Groups, and Boolean Orbits.

We can summarize the important properties of Boolean orbits in
the following theorems. Theorem 1 states that a symmetric Boolean
function must map the elements of each of its Boolean orbits to a
unique value. (Due to space limitations, we omit the proofs of our
theorems.)

Theorem 1. Let f be a Boolean function, and fG be the

symmetry group of f . If K is a Boolean orbit of fG and ,u v K ,

then () ()f u f v .

Theorem 2 is the converse of Theorem 1. It states that if the
Boolean function, f , maps the orbits of a symmetry group, G , to

unique values, then f is compatible with G .

Theorem 2. Let f be an n-input Boolean function and let

nG S be a group such that for every Boolean orbit, K , of G , and

for every pair of elements ,u v K , () ()f u f v then f is invariant

with respect to G , and fG G .

Boolean orbits have two important properties that can be useful
in some applications. The first concerns the weight, ()w v , of a vector
v , which is the number of ones in the vector.

Theorem 3. Let nK B be a Boolean orbit of some group

nG S , and let 1 2,v v K . Then 1 2() ()w v w v .

Theorem 3 implies that the minimum number of orbits for any
n-input function is 1n  . The next property involves the complement
v of a vector v . Let 1 2(, ,...,)nv v v v and 1 2(, ,...,)nv v v v    . If

1iv  , then 0iv  and vice-versa. We start with the following

lemma.

Lemma 1. Suppose v is an n-element Boolean vector, and that
p is a permutation of order n. If ()p v u , then ()p v u  .

Let S be a set of n-element Boolean vectors. Then
{ | }S v v S   . We can apply Lemma 1 to Boolean orbits to obtain

the following result.

Theorem 4. If K is a Boolean orbit of a group nG S , then

K  is also a Boolean orbit of G .

Theorem 5 deals with the problem of functions that have more
than one type of symmetry. As this theorem shows, if a Boolean
function f has two different types of symmetry A, and B, then f also
possesses an overarching symmetry that includes both A and B. Thus
if we are able to identify the largest symmetry group that is
compatible with f , then we are guaranteed to have discovered all of

the symmetries possessed by f .

Theorem 5. Let f be a Boolean function and let and H be two

permutation groups that are compatible with f . Then there is a

permutation group, K compatible with f such that and G and H are

both subgroups of K .

Let S be any set of -elementn Boolean vectors. The
characteristic function of S , sC is an n-input Boolean function

which is equal to 1 on every element of S , and zero elsewhere.
Figure 2 gives a set of orbits along with their characteristic functions
in truth-table form.

000 00000001
001 010 100 00010110
011 101 110 01101000
111 10000000

Figure 2. Boolean Orbits and Characteristic Functions.

For an n-input Boolean function, f , we divide the set n-element

Boolean vectors into two sets fU and fZ , which are the sets of

points where f takes the value one and the value zero respectively.

The characteristic functions of these sets are just f and f


.

Let f and g be two n-input Boolean functions. The function

f is said to imply g if () 1g v  whenever () 1f v  . Our detection
algorithm is based on implication, as Theorem 6 shows.

Theorem 6. Let nG S be a permutation group, and let f be

an n-input Boolean function. Let 1 2{ , ,..., }nK K K K be the

collection of Boolean orbits with characteristic functions

1 2{ , ,..., }kC C C . The group G leaves f invariant if and only if iC

implies either f or f


 for every i , 1 i k  .

Theorem 6 shows how to detect symmetry with respect to any
permutation group. Given a permutation group G it is
straightforward to compute the characteristic functions of its Boolean

orbits. Given f it is a straightforward task to compute f


. Once
these functions have been computed, we only need to check the
characteristic function of each orbit to determine whether f is

symmetric with respect to G .
Although most symmetry detection will be done on single-

output functions, the algorithm can be applied just as easily to
multiple-output functions.

4 The Symmetry Detection Algorithm
Figure 3 gives the pseudo code for the Universal Symmetry

Detection (USD) algorithm. It is assumed that the algorithm is being
applied to a collection of functions, and that a library of symmetries
is being used. Each library entry contains a set of characteristic
functions that correspond to the Boolean orbits of a symmetry group.
The library may be all subgroups of nS for some integer n , or some

other more specialized library. We currently have complete libraries
for 2S through 8S . When used with a complete library for nS ,

symmetry detection begins with the largest group so the algorithm
may stop as soon as a compatible group is found.

The algorithm reads each function, and compares each function
to each library entry until a compatible entry is found. If no
compatible subgroup can be found in the library, the function is
marked as non-symmetric.

Libraries are not necessary for symmetries that can be
parameterized for an arbitrary number of inputs. As yet, only a few
symmetries have been so categorized, the most well known of which
are total, symmetry, partial symmetry, rotational symmetry, dihedral
symmetry, and various types of hierarchical symmetry. The USD
algorithm has special generators for total, partial, dihedral and
rotational symmetry, which permits these types of symmetries to be
detected without having a precomputed library.

Most of our libraries contain one entry per symmetry group. For
large numbers of inputs it is not feasible to store libraries in this
fashion. We use the conjugacy relation to reduce the size of the
library for large numbers of inputs. Certain types of symmetry are
fundamentally the same, but applied to different inputs, and certain
types of symmetry are fundamentally different. For example, a 3-
input partial symmetry on the first three inputs of a function is not
fundamentally different from a three-input partial symmetry on the
last three variables. But a partial symmetry in the first three variables
is fundamentally different from a partial symmetry in the first two
variables. The conjugacy relation is used to distinguish symmetries
that are essentially the same from symmetries that are fundamentally
different.

Two permutations p and q are conjugate to one another if there

is another permutation s such that 1p s qs . (Conjugacy can be best
understood by visualizing it in this way: to permute the last three
variables of a function, we move them to the first three variables

using s , then apply q to the first three variables, and then use 1s to
move the variables back where they were.) This relationship can be
extended to permutation groups in the following way:

1 1{ | }s Gs s ps p G   . If two symmetries are fundamentally the
same then their permutation groups will be conjugate to one another.

Conjugacy is an equivalence relation, so the subgroups of a
group can be partitioned into a set of conjugacy classes. In the full
libraries, we store each subgroup of the symmetric group. In reduced
libraries we store only one member of each conjugacy class.

Load Library
Sort Library into descending order by subgroup size.
For each function f
 For each subgroup G in Library
 GroupCompatible = True;
 For each orbit K of G While GroupCompatible
 OrbitCompatible = False;
 For each orbit P of f
 If KC implies PC

 OrbitCompatible = True;
 Break;
 EndIf
 EndFor
 If Not OrbitCompatible
 GroupCompatible = False;
 Break;
 EndIf
 EndFor
 If GroupCompatible
 Assign G as the symmetry group of f;
 Break;
 EndIf;
 EndFor;
 If Not GroupCompatible
 Mark f as nonsymmetric
 EndIf;
EndFor;

Figure 3. The Universal Symmetry Detection Algorithm.

To regenerate a conjugacy class, it is necessary to compute the

conjugates of each library entry. However for each subgroup G of

nS there are many pairs of permutations (,)p q such that p q , but
1 1p Gp q Gq  . To avoid duplicated work we store a set of

permutations with the library entry.
The permutations are computed when creating the library. A

group theoretic result states that “the number of conjugates of a group
is equal to the index of its normalizer [11].” The normalizer of a
group is the set of permutations that leave G unchanged with respect

to conjugacy. That is, the set 1{ | }p p Gp G  . If G is a subgroup

of nS , then its index is equal to /nS G , which is the number of right

cosets of G in nS . (A right coset of G is obtained by multiplying

every element of G by some element p of nS . It is written Gp.) Let

()N G be the normalizer of G. If p and q are members of the same

right coset of ()N G , then 1 1p Gp q Gq  . If the permutations come
from two different right cosets, then the conjugates will be different.
A set of coset representatives, which includes one permutation from
each right coset of ()N G , can be used to generate the entire
conjugacy class of G. Figure 4 gives the library entry that is used to
detect 2-variable partial symmetry in 3-input functions. The

permutations are coded in the form of a list of numbers from the set
{0,1,2}. The first permutation is the identity, I. The first line of the
entry is the name of the symmetry, the second is the number of
inputs, and the remaining lines give the orbits, one orbit per line.

For the larger symmetric groups, reconstructing all conjugacy
classes is a physical impossibility. So instead we use the set of stored
permutations to alter the function under test. Let’s suppose that g is

invariant with respect to 1p Gp . Then, there is an f which is

invariant with respect to G such that 1p f g  . If g is invariant

with respect to 1p Gp , then pg is invariant with respect to G .

5 Sub-Symmetries
For functions with many inputs, it may be more useful to detect

smaller, more manageable symmetries on a subset of inputs. We call
such symmetries Sub-Symmetries. The procedure alters the functions
under test, and is based on the following theorem.

Theorem 7. Let R be a symmetry rule of degree k , and let f

be a function of n k inputs. Let S be a subset of k inputs taken
from the n inputs of f . If f possesses R symmetry in the set of

k variables, then every cofactor obtained by fixing the n k
variables to constant values must possess R symmetry.

There are 2n k such cofactors for each set of k inputs. When
testing an n-input function using a symmetry rule of degree k n ,
the USD algorithm begins by generating all combinations of n
inputs taken k at a time. For each combination, the USD algorithm

generates all 2n k cofactors, and tests each one for R symmetry. It
generates an ascending sequence of k numbers taken from the set
{0,1,..., 1}n  .

The algorithm then tests for a sub-symmetry in the k variables
selected by the combination. Each such test requires
computing 2n k cofactors. These cofactors are computed by setting
the variables not selected by the permutation to every possible
combination of zeros and ones. The procedure continues until a sub-
symmetry is found, or until all combinations have been exhausted

S3.S2
3
CSR: (0,1,2), (0,2,1), (2,1,0)
000
001
010 100
011 101
110
111
Figure 4. A Reduced Library Entry.

6 Experimental Data
The USD algorithm was designed to be used with a variety of

Boolean function implementations. The only requirement for the
algorithm to function correctly is the ability to compute the
implication relation. For compressed libraries and sub-symmetries it
is also necessary to compute cofactors and the product of a
permutation with a function.

We ran all experiments on modest hardware: a Dell laptop
containing an Intel P9500 Core 2 Duo 2.53Ghz CPU with 3.48
Gigabytes of RAM and Windows XP Professional with Service Pack
3. We measured the amount of real time required to determine the
symmetry of 1,000,000 functions. The results are reported in Figure
5. For three and four input functions, it was necessary to test the same

functions repeatedly. For five, six and seven inputs, the first
1,000,000 functions were tested, treating the truth tables of the
functions as 32-bit and 64-bit integers respectively.

We ran tests on a number of standard benchmark circuits:
ISCAS85, LGSynth89, and LGSynth91. For the ISCAS85
benchmarks, we clustered the circuit into fanout-free networks,
partitioned each network into 6 input (or less) functions. The other
benchmarks were used without modification. We found many
functions with symmetries that are undetectable by other methods,
including some whose symmetries are almost too complicated to
describe. The run-time for the benchmark circuits was too small to be
measured.

Number of Inputs USD Conventional
3 08.268 124.736
4 12.464 258.660
5 30.420 433.378
6 246.751 640.029
7 3189.840 893.361

Figure 5. Seconds per 1,000,000 Functions.

7 Conclusion
The USD algorithm is a simple, yet powerful and efficient

algorithm for detecting virtually any type of symmetry. It is our belief
that many types of symmetry could be exploited if there were
methods to detect them. Because the USD algorithm makes these
types of symmetry accessible, we expect to see significantly more
exploitation of symmetry in the future. The USD is a powerful tool
that can be used in many different contexts.

8 References
[1] C. E. Shannon, "The synthesis of two-terminal switching

circuits," Bell System Technical Journal, vol. 28, pp. 59-98,
1949.

[2] C. C. Tsai and M. Marek-Sadowska, "Boolean matching using
generalized reed-muller forms," in Proceedings of the 31st
Annual Design Automation Conference, 1994, pp. 339-344.

[3] M. Chrzanowska-Jeske, "Generalized symmetric variables," in
The 8th IEEE International Conference on Electronics, Circuits
and Systems, 2001, pp. 1147-1150.

[4] V. N. Kravets and K. A. Sakallah, "Generalized symmetries in
boolean functions," in IEEE International Conference on
Computer Aided Design, 2000, pp. 526-532.

[5] F. Brglez, P. Pownall and R. Hum. Accelerated ATPG and fault
grading via testability analysis. Presented at Proceedings of
IEEE Int. Symposium on Circuits and Systems. 1985, .

[6] P. M. Maurer and A. D. Schapira, "A Logic-to-Logic
Comparator for VLSI Layout Verification," IEEE Transactions
on Computer-Aided Design, vol. 7, pp. 897-907, 1988.

[7] J. Mohnke, P. Molitor and S. Malik, "Limits of using signatures
for permutation independent Boolean comparison," Formal
Methods Syst. Des., vol. 21, pp. 167-191, 2002.

[8] D. F. Holt. Enumerating subgroups of the symmetric group.
Computational Group Theory and the Theory of Groups, II pp.
33-37. 2010.

[9] V. N. Kravets and K. A. Sakallah, "Generalized symmetries in
boolean functions," Advanced Computer Architecture
Laboratory Department of Electrical Engineering and Computer
Science, The University of Michigan, Ann Arbor, MI 48109,
2002.

[10] D. S. Passman, Permutation Groups. New York: W. A.
Benjamin, 1968.

[11] D. Robinson, A Course in the Theory of Groups. New York:
Springer, 1995.

