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Abstract – Research on symmetry detection focuses on 
identifying and detecting new types of symmetry. We present an 
algorithm that is capable of detecting any type of permutation-
based symmetry, including many types for which there are no 
existing algorithms. General symmetry detection is library-based, 
but symmetries that can be parameterized, (i.e. total, partial, 
rotational, and dihedral symmetry), can be detected without 
using libraries. In many cases it is faster than existing techniques. 
Furthermore, it is simpler than most existing techniques, and can 
easily be incorporated into existing software. 

1 Introduction 
A symmetric Boolean function is a function whose inputs can be 

rearranged in some fashion without changing the output of the 
function. The importance such functions was first recognized by 
Shannon in [1], who characterized function symmetries using 
permutations of the input variables. Virtually all existing symmetry 
detection algorithms are based on Shannon’s Theorem which detects 
symmetry by comparison of two-variable cofactors. This approach 
can detect all total and partial symmetries, but there are many types 
of symmetries that cannot be detected in this manner. As the number 
of input variables grows, these types of symmetry become more 
common than partial and total symmetry. Some progress has been 
made in detecting symmetries beyond partial and total symmetry [2-
4], but the problem of universal symmetry detection has remained 
open since 1949. 

Our experiments with standard benchmarks [5] show that such 
symmetries are common. Ignoring such symmetries can cause major 
failures in layout verification and regression [6]. For such algorithms, 
incorrect handling of symmetry can cause many false errors, making 
it easy to miss the real errors. Correct handling of symmetry is also 
important when attempting to match design specifications to an 
existing library of functions [7]. If symmetry handling fails, functions 
may have to be created by hand even though there is an acceptable 
library function to implement it.  

In this paper, we use an entirely new approach which, 
effectively, considers all inputs simultaneously instead of in pairs. 
This approach allows us to detect virtually any type of symmetry, 
including some types that go beyond permutations. For small 
numbers of inputs (<8) our approach is faster than using cofactors. In 
addition, the coding is simpler. We provide pseudo code in Section 4, 
which can easily be adapted for use in existing EDA algorithms. Our 
algorithm also is somewhat easier to parallelize than the conventional 
algorithm, because it does not require the accumulation of results to 
completely characterize a gate. 

2 Basic Principles 
Symmetries can be categorized into total symmetry, partial 

symmetry, and strong symmetry. Total symmetry permits the inputs 
of a function to be rearranged arbitrarily without changing the output 
of the function. Partial symmetry is similar to total symmetry in that 
it permits one or more subsets of inputs to be rearranged arbitrarily. 

Strong symmetry is a catch-all term that includes every type of 
symmetry that is neither total nor partial. The function a b c d    
is totally symmetric and the function abc d  is partially symmetric. 
The functions a b c d   and ab cd  are strongly symmetric. In 
a b c d  no single variable can be exchanged with any other single 

variable, but the set { , }a b  can be exchanged with the set { , }c d . 
Most existing algorithms will detect two partial symmetries 
in ab cd  but ignore the fact that the set { , }a b  can be exchanged 

with the set { , }c d . Strong symmetry is not detectable using two-
variable cofactors. 

There are many more kinds of strong symmetry than partial and 
total symmetry [8]. Various sub-categories of strong of symmetry 
have been discovered, and algorithms have been created to detect and 
exploit some of these symmetries [7]. Examples of such symmetries 
are hierarchical symmetry, rotational symmetry and dihedral 
symmetry [9]. 

The primary tool for categorizing symmetry is the permutation 
group [10]. Let X  be a finite set of objects. A permutation is a one-
to-one function from X  to itself. The set of all permutations of a set 
X  is called the symmetric group on X  and is written XS .The only 

thing that affects the structure of XS  is the size of X . If X  and Y  

are two sets of the same size, then XS  and YS  are identical. If 

Xp S , and the size of X is n  then we say that n  is the degree of 

p . If {1,2,..., }X n  we write XS  as nS . 

Let p be a permutation of degree n and let f be an n-input 
Boolean function. We say that p and f are compatible if using p to 
rearrange the variables of f  leaves the output of f unchanged. We also 
say that f is invariant with respect to p. We extend this terminology in 
the obvious way to subgroups of nS , and define the symmetry group 

fG  to be the set of all permutations that leave f invariant. Because 

the identity element leaves every function invariant, fG  is never 

empty.  Most recognized types of symmetric functions can be 
characterized using symmetry groups. For example, an n-input 
function f  is totally symmetric, if and only if f nG S . A function 

is non-symmetric if { }fG I . 

Symmetric variable pairs are detected by comparing the 
cofactors of a function [3]. A cofactor of f  is found by setting one 
or more input variables to constant values. For example, let 
f ab cd  . Two cofactors of f  are 1xx xf ab d   and 0xxxf cd . 

When the unaffected variables are obvious, it is common to omit the 
x’s. The pair ( , )a b  is a symmetric variable pair if and only 

if 01 10f f . Because symmetric variable pairs are transitive, they can 

be used to detect all partial and total symmetries. 
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3 Orbits and Boolean Orbits 
Orbits have been used for many years to analyze and categorize 

permutation groups [7, 10]. Two variables ,a b X  are said to be in 

the same orbit of G if there is a permutation p G , such that 

( )p a b . Intuitively, an orbit contains all the variables that can be 

exchanged with one another, so the function abc d  has two orbits 
{ , , }a b c  and{ }d .  Belonging to the same orbit is an equivalence 
relation, so it breaks the set of input variables into a collection of 
disjoint subsets. 

Orbits can be used to distinguish total and partial symmetries, 
but are not particularly effective with strong symmetries. Consider 
the function ab cd , which possesses dihedral symmetry. This 
function has only one orbit, { , , , }a b c d . The totally symmetric 

function a b c d    also has a single orbit, { , , , }a b c d . Thus the 

functions a b c d    and ab cd  have the same orbits even 
though their symmetries are quite different. 

We have discovered a new type of orbits, called Boolean Orbits, 
that permit us to deal with strong symmetries as well as partial and 
total symmetries. Boolean orbits are computed with respect to the 
Boolean input vectors of a function rather than with respect to the 
variables. Permutations of degree n  can operate on n-element 
vectors by permuting the indices of the elements. This has the effect 
of permuting the elements of the vector. For example, we can apply 
the permutation (1,2,3) to the vector (1,1,0) to obtain the vector 
(0,1,1). 

Two -inputn  vectors  and v w  are in the same Boolean orbit of 

G  if there is a permutation p G  such that ( )p v w . Like 
ordinary orbits, belonging to the same Boolean Orbit is an 
equivalence relation, so this relation breaks the set of 

-inputn Boolean vectors into a collection of disjoint sets.  If fG  is 

the symmetry group of a Boolean function f , then the Boolean 

orbits of fG  will partition the truth-table of f  into disjoint sets. In 

fact, the symmetry of a Boolean function is completely determined by 
the Boolean orbits of its permutation group. Figure 1 shows the 
symmetry groups and the Boolean orbits of the two functions 
a b c d    and ab cd . Note that the Boolean orbits of the two 
functions are quite different, even though the conventional orbits are 
the same. 

a b c d    ab cd  
 
{ , , , }a b c d  { , , , }a b c d  
 
0000 0000 
0001 0010 0100 1000 0001 0010 0100 1000 
0011 0101 1001 0110 1010 1100 0011 1100 
0111 1011 1101 1110 0101 0110 1001 1010 
1111 0111 1011 1101 1110 
 1111 
Figure 1. Orbits, Symmetry Groups, and Boolean Orbits. 

We can summarize the important properties of Boolean orbits in 
the following theorems. Theorem 1 states that a symmetric Boolean 
function must map the elements of each of its Boolean orbits to a 
unique value. (Due to space limitations, we omit the proofs of our 
theorems.) 

 

Theorem 1. Let f  be a Boolean function, and fG  be the 

symmetry group of f . If K  is a Boolean orbit of fG  and ,u v K , 

then ( ) ( )f u f v . 
 

Theorem 2 is the converse of Theorem 1. It states that if the 
Boolean function, f , maps the orbits of a symmetry group, G , to 

unique values, then f is compatible with G . 
 

Theorem 2. Let f  be an n-input Boolean function and let 

nG S  be a group such that for every Boolean orbit, K , of G , and 

for every pair of elements ,u v K , ( ) ( )f u f v  then f  is invariant 

with respect to G , and fG G . 
 

Boolean orbits have two important properties that can be useful 
in some applications. The first concerns the weight, ( )w v , of a vector 
v , which is the number of ones in the vector. 

 

Theorem 3. Let nK B  be a Boolean orbit of some group 

nG S , and let 1 2,v v K . Then 1 2( ) ( )w v w v . 
 

Theorem 3 implies that the minimum number of orbits for any 
n-input function is 1n  . The next property involves the complement 
v  of a vector v . Let 1 2( , ,..., )nv v v v  and 1 2( , ,..., )nv v v v    . If 

1iv  , then 0iv   and vice-versa. We start with the following 

lemma. 
 

Lemma 1. Suppose v  is an n-element Boolean vector, and that 
p  is a permutation of order n. If ( )p v u , then ( )p v u  . 

 

Let S  be a set of n-element Boolean vectors. Then 
{ | }S v v S   . We can apply Lemma 1 to Boolean orbits to obtain 

the following result. 
 

Theorem 4. If K  is a Boolean orbit of a group nG S , then 

K   is also a Boolean orbit of G . 
 

Theorem 5 deals with the problem of functions that have more 
than one type of symmetry. As this theorem shows, if a Boolean 
function f has two different types of symmetry A, and B, then f also 
possesses an overarching symmetry that includes both A and B. Thus 
if we are able to identify the largest symmetry group that is 
compatible with f , then we are guaranteed to have discovered all of 

the symmetries possessed by f . 
 

Theorem 5. Let f  be a Boolean function and let and H be two 

permutation groups that are compatible with f . Then there is a 

permutation group, K  compatible with f such that and G and H are 

both subgroups of K . 
 

Let S  be any set of -elementn  Boolean vectors. The 
characteristic function of S , sC  is an n-input Boolean function 

which is equal to 1 on every element of S , and zero elsewhere. 
Figure 2 gives a set of orbits along with their characteristic functions 
in truth-table form. 

 

000 00000001 
001 010 100 00010110 
011 101 110 01101000 
111 10000000 

Figure 2. Boolean Orbits and Characteristic Functions. 
 

For an n-input Boolean function, f , we divide the set n-element 

Boolean vectors into two sets fU  and fZ , which are the sets of 

points where f  takes the value one and the value zero respectively. 

The characteristic functions of these sets are just f  and f


.  



  

Let f  and g  be two n-input Boolean functions. The function 

f  is said to imply g  if ( ) 1g v   whenever ( ) 1f v  . Our detection 
algorithm is based on implication, as Theorem 6 shows. 

 

Theorem 6. Let nG S  be a permutation group, and let f  be 

an n-input Boolean function. Let 1 2{ , ,..., }nK K K K  be the 

collection of Boolean orbits with characteristic functions 

1 2{ , ,..., }kC C C . The group G  leaves f  invariant if and only if iC  

implies either  f  or f


 for every i , 1 i k  . 
 

Theorem 6 shows how to detect symmetry with respect to any 
permutation group. Given a permutation group G  it is 
straightforward to compute the characteristic functions of its Boolean 

orbits. Given f  it is a straightforward task to compute f


. Once 
these functions have been computed, we only need to check the 
characteristic function of each orbit to determine whether f  is 

symmetric with respect to G . 
Although most symmetry detection will be done on single-

output functions, the algorithm can be applied just as easily to 
multiple-output functions. 

4 The Symmetry Detection Algorithm 
Figure 3 gives the pseudo code for the Universal Symmetry 

Detection (USD) algorithm. It is assumed that the algorithm is being 
applied to a collection of functions, and that a library of symmetries 
is being used. Each library entry contains a set of characteristic 
functions that correspond to the Boolean orbits of a symmetry group. 
The library may be all subgroups of nS  for some integer n , or some 

other more specialized library. We currently have complete libraries 
for 2S  through 8S . When used with a complete library for nS , 

symmetry detection begins with the largest group so the algorithm 
may stop as soon as a compatible group is found. 

The algorithm reads each function, and compares each function 
to each library entry until a compatible entry is found. If no 
compatible subgroup can be found in the library, the function is 
marked as non-symmetric.  

Libraries are not necessary for symmetries that can be 
parameterized for an arbitrary number of inputs. As yet, only a few 
symmetries have been so categorized, the most well known of which 
are total, symmetry, partial symmetry, rotational symmetry, dihedral 
symmetry, and various types of hierarchical symmetry. The USD 
algorithm has special generators for total, partial, dihedral and 
rotational symmetry, which permits these types of symmetries to be 
detected without having a precomputed library. 

Most of our libraries contain one entry per symmetry group. For 
large numbers of inputs it is not feasible to store libraries in this 
fashion. We use the conjugacy relation to reduce the size of the 
library for large numbers of inputs. Certain types of symmetry are 
fundamentally the same, but applied to different inputs, and certain 
types of symmetry are fundamentally different. For example, a 3-
input partial symmetry on the first three inputs of a function is not 
fundamentally different from a three-input partial symmetry on the 
last three variables. But a partial symmetry in the first three variables 
is fundamentally different from a partial symmetry in the first two 
variables. The conjugacy relation is used to distinguish symmetries 
that are essentially the same from symmetries that are fundamentally 
different. 

Two permutations p and q are conjugate to one another if there 

is another permutation s such that 1p s qs . (Conjugacy can be best 
understood by visualizing it in this way: to permute the last three 
variables of a function, we move them to the first three variables 

using s , then apply q  to the first three variables, and then use 1s  to 
move the variables back where they were.) This relationship can be 
extended to permutation groups in the following way: 

1 1{ | }s Gs s ps p G   . If two symmetries are fundamentally the 
same then their permutation groups will be conjugate to one another. 

Conjugacy is an equivalence relation, so the subgroups of a 
group can be partitioned into a set of conjugacy classes. In the full 
libraries, we store each subgroup of the symmetric group. In reduced 
libraries we store only one member of each conjugacy class. 

 
Load Library 
Sort Library into descending order by subgroup size. 
For each function f 
 For each subgroup G in Library 
  GroupCompatible = True; 
  For each orbit K of G While GroupCompatible 
   OrbitCompatible = False; 
   For each orbit P of f 
    If KC  implies PC  

     OrbitCompatible = True; 
     Break; 
    EndIf 
   EndFor 
   If Not OrbitCompatible 
    GroupCompatible = False; 
    Break; 
   EndIf 
  EndFor 
  If GroupCompatible 
   Assign G as the symmetry group of f; 
   Break; 
  EndIf; 
 EndFor; 
 If Not GroupCompatible 
  Mark f as nonsymmetric 
 EndIf; 
EndFor; 

Figure 3. The Universal Symmetry Detection Algorithm. 
 
To regenerate a conjugacy class, it is necessary to compute the 

conjugates of each library entry. However for each subgroup G  of 

nS  there are many pairs of permutations ( , )p q  such that p q , but 
1 1p Gp q Gq  . To avoid duplicated work we store a set of 

permutations with the library entry. 
The permutations are computed when creating the library. A 

group theoretic result states that “the number of conjugates of a group 
is equal to the index of its normalizer [11].” The normalizer of a 
group is the set of permutations that leave G unchanged with respect 

to conjugacy. That is, the set 1{ | }p p Gp G  . If G is a subgroup 

of nS , then its index is equal to /nS G , which is the number of right 

cosets of G in nS . (A right coset of G is obtained by multiplying 

every element of G by some element p of nS . It is written Gp.) Let 

( )N G  be the normalizer of G. If p and q are members of the same 

right coset of ( )N G , then 1 1p Gp q Gq  . If the permutations come 
from two different right cosets, then the conjugates will be different. 
A set of coset representatives, which includes one permutation from 
each right coset of ( )N G , can be used to generate the entire 
conjugacy class of G. Figure 4 gives the library entry that is used to 
detect 2-variable partial symmetry in 3-input functions. The 



  

permutations are coded in the form of a list of numbers from the set 
{0,1,2}. The first permutation is the identity, I. The first line of the 
entry is the name of the symmetry, the second is the number of 
inputs, and the remaining lines give the orbits, one orbit per line. 

 

For the larger symmetric groups, reconstructing all conjugacy 
classes is a physical impossibility. So instead we use the set of stored 
permutations to alter the function under test. Let’s suppose that g  is 

invariant with respect to 1p Gp . Then, there is an f  which is 

invariant with respect to G  such that 1p f g  . If g  is invariant 

with respect to 1p Gp , then pg  is invariant with respect to G . 

5 Sub-Symmetries 
For functions with many inputs, it may be more useful to detect 

smaller, more manageable symmetries on a subset of inputs. We call 
such symmetries Sub-Symmetries. The procedure alters the functions 
under test, and is based on the following theorem. 

 

Theorem 7. Let R  be a symmetry rule of degree k , and let f  

be a function of n k  inputs. Let S  be a subset of k  inputs taken 
from the n  inputs of f . If f  possesses R  symmetry in the set of 

k  variables, then every cofactor obtained by fixing the n k  
variables to constant values must possess R  symmetry. 

 

There are 2n k  such cofactors for each set of k  inputs. When 
testing an n-input function using a symmetry rule of degree k n , 
the USD algorithm begins by generating all combinations of n  
inputs taken k  at a time. For each combination, the USD algorithm 

generates all 2n k  cofactors, and tests each one for R  symmetry. It 
generates an ascending sequence of k  numbers taken from the set 
{0,1,..., 1}n  . 

The algorithm then tests for a sub-symmetry in the k  variables 
selected by the combination. Each such test requires 
computing 2n k cofactors. These cofactors are computed by setting 
the variables not selected by the permutation to every possible 
combination of zeros and ones. The procedure continues until a sub-
symmetry is found, or until all combinations have been exhausted 

 

 
S3.S2 
3 
CSR: (0,1,2), (0,2,1), (2,1,0) 
000 
001 
010 100 
011 101 
110 
111 
Figure 4. A Reduced Library Entry. 
 
 

6 Experimental Data 
The USD algorithm was designed to be used with a variety of 

Boolean function implementations. The only requirement for the 
algorithm to function correctly is the ability to compute the 
implication relation. For compressed libraries and sub-symmetries it 
is also necessary to compute cofactors and the product of a 
permutation with a function. 

We ran all experiments on modest hardware: a Dell laptop 
containing an Intel P9500 Core 2 Duo 2.53Ghz CPU with 3.48 
Gigabytes of RAM and Windows XP Professional with Service Pack 
3. We measured the amount of real time required to determine the 
symmetry of 1,000,000 functions. The results are reported in Figure 
5. For three and four input functions, it was necessary to test the same 

functions repeatedly. For five, six and seven inputs, the first 
1,000,000 functions were tested, treating the truth tables of the 
functions as 32-bit and 64-bit integers respectively. 

We ran tests on a number of standard benchmark circuits: 
ISCAS85, LGSynth89, and LGSynth91. For the ISCAS85 
benchmarks, we clustered the circuit into fanout-free networks, 
partitioned each network into 6 input (or less) functions. The other 
benchmarks were used without modification. We found many 
functions with symmetries that are undetectable by other methods, 
including some whose symmetries are almost too complicated to 
describe. The run-time for the benchmark circuits was too small to be 
measured. 

 

Number of Inputs USD Conventional 
3 08.268 124.736 
4 12.464 258.660 
5 30.420 433.378 
6 246.751 640.029 
7 3189.840 893.361 

Figure 5. Seconds per 1,000,000 Functions. 

7 Conclusion 
The USD algorithm is a simple, yet powerful and efficient 

algorithm for detecting virtually any type of symmetry. It is our belief 
that many types of symmetry could be exploited if there were 
methods to detect them. Because the USD algorithm makes these 
types of symmetry accessible, we expect to see significantly more 
exploitation of symmetry in the future. The USD is a powerful tool 
that can be used in many different contexts. 
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