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Abstract—Current High-Level Synthesis (HLS) tools perform
excellently for the synthesis of computation kernels, but they
often don’t optimize memory bandwidth. As memory access
is a bottleneck in many algorithms, the performance of the
generated circuit will benefit substantially from memory access
optimization.

In this paper we present an automated method and a toolchain
to detect reuse of array data in loop nests and to build hardware
that exploits this data reuse. This saves memory bandwidth and
improves circuit performance. We make use of the polyhedral
representation of the source program, which makes our method
computationally easy. Our software complements the existing
HLS flows. Starting from a loop nest written in C, our tool
generates a reuse buffer and a loop controller, and preprocesses
the loop body for synthesis with an existing HLS tool. Our
automated tool produces designs from unoptimized source code
that are as efficient as those generated by a commercial HLS tool
from manually-optimized source code.

I. INTRODUCTION

High-level Synthesis (HLS) is a recent step in the design
flow of a digital electronic circuit, moving the design effort to
higher abstraction levels [1], [2]. HLS translates a behavioral
description of an algorithm at the algorithmic abstraction level
into a design at the Register Transfer Level (RTL). Ref. [3]
shows that some of these tools generate excellent RTL designs
for computation kernels, sometimes outperforming handcrafted
RTL design in terms of speed, chip area and power consump-
tion. Most existing HLS tools don’t optimize memory accesses
though, leaving a lot of potential for circuit performance
optimization untapped. This is particularly unfortunate because
the communication between processor cores and memory is a
well-known bottleneck that limits performance.

We present an automatic method for generating data reuse
buffers during HLS. This should lead to a more optimal
design than a general-purpose memory system with caches
and scratchpad memories. We focus on array accesses in loop
nests, because that is where the most gain can be obtained.
We ensure that every array location is read and/or written
only once during the execution of the loop nest. This is
known as communication coalescing and leads to a reduction
of the data traffic to and from memory, improving circuit
performance and alleviating the memory bottleneck. Our tool
produces RTL code for reuse buffers and the loop controller,
and preprocessed C code of the loop body for the generation
of a datapath using an existing HLS tool. Experiments reveal
that the performance of designs generated using our automated
flow with unoptimized source code match that of traditional
HLS using hand-optimized code. The main contributions of
this work are:

• An automated method which harnesses the polyhedral
representation of the source program to discover data
reuse in an algorithm.

• A method for efficiently exploiting data reuse using
data reuse buffers, alleviating the memory bottleneck.
The use of the polyhedral representation leads to an
elegant design with linear memory access patterns.

• An automated design flow to implement said reuse
buffers in hardware in the form of an RTL design,
together with a controller that synchronizes memory
accesses, the reuse buffer and the datapath.

II. THE POLYHEDRAL MODEL

The polyhedral model is an instrument to represent the
execution of a computer program in a geometric way. Its
computational simplicity makes it very suitable for automatic
optimization in compilers [4], [5]. Each statement of the
program is characterized by its iteration domain, the access
functions of written and read data, and its schedule.

Paramount for our work is that while access functions in
the polyhedral model express array indices as functions of
loop variables and parameters, they also map the points of
the iteration domain to array elements, i.e. they define a trans-
formation from the iteration domain to the data domain. These
transformations are affine projections. The access functions can
be split into two parts: the loop variables dependent part (called
motion vector) and the constant part (called offset).

III. POLYHEDRAL REUSE BUFFER DESIGN FLOW

Our design flow is depicted in Fig. 1. Starting from a loop
nest, we analyze array references for data reuse (section III-A).
We organize array references that share data into reuse chains
(section III-B), which will be mapped onto a chain of FIFO
buffers. For each reuse chain we calculate the fetch domain
(section III-C) and the buffer size (section III-D). Finally,
an RTL design is generated (section III-E). For polyhedral
calculations, we use Jolylib [6] and the Barvinok library [7].

We illustrate our flow using Sobel edge detection, an image
processing algorithm that detects edges in images from the
horizontal and vertical brightness gradients in a 3x3 window.
Pseudocode is shown in Fig. 2. From each 3x3 window, 8
pixels are used in the calculation. Conversely, pixel values are
used 8 times (or reused 7 times) in the calculations. Array
references and corresponding access functions are shown in
columns 1 and 2 of table I. Rows in the access functions
represent index dimensions. The left two columns of the matrix
represent the motion vector, the right column the offsets.978-3-9815370-2-4/DATE14/ c©2014 EDAA
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Figure 1. Polyhedral reuse buffer design flow

unsigned char pixel_in[cols][rows]
for (r : 1..rows-1)
for (c : 1..cols-1)
gradX = pixel_in[c-1,r-1] + 2*pixel_in[c-1,r]

+ pixel_in[c-1,r+1] - pixel_in[c+1,r-1]
- 2*pixel_in[c+1,r] - pixel_in[c+1,r+1]

gradY = pixel_in[c-1,r-1] + 2*pixel_in[c,r-1]
+ pixel_in[c+1,r-1] - pixel_in[c-1,r+1]
- 2*pixel_in[c,r+1] - pixel_in[c+1,r+1]

grad = abs(gradX) + abs(gradY)
if (grad>255) grad = 255
pixel_out[c,r] = 255 - grad

Figure 2. Sobel edge detection: pseudocode

Our method works on a loop nest with references to array
data. For the polyhedral representation to be applicable, loop
bounds and array indices need to be affine expressions of loop
variables and parameters. Benchmarks studied in [8] show that
these categories comprise between 83% and 100% of the array
indices. Support for additional categories is future work.

A. Reuse analysis

Reuse of array elements may appear in 3 different ways.

1) When two array references in the loop body have the
same access function. In our example, this is the case
for a.o. pixel in[c-1,r-1] which occurs twice.

2) When an array subscript is invariant for a certain
combination of loop variables. E.g. A[i-j] will
access the same element of A whenever i− j attains
the same value. A special case is when an access
function is independent of a loop variable.

3) When two different access functions attain the same
value for different combinations of loop variables.
E.g. A[i+1] and A[i] will access the same array
element in iterations i = n and i = n+1, respectively.

This work focuses on cases 1 and 3, i.e. reuse between
different array references. At this stage, support is limited
to rectangular data domains, and array indices that depend
on one loop variable only. The access functions define a
transformation from the iteration domain to the array elements.
For each array reference, we calculate its data domain by
transforming the iteration domain of the statement in which
the array reference occurs with the transformation defined by
the access function. The intersection of two such data domains
is the set of array elements that are accessed by both array
references. In other words, reuse occurs if the data domains
of different array references overlap.

Table I. ACCESS FUNCTIONS, DATA DOMAINS AND REUSE DISTANCES

Index expression Access function Data domain Reuse buffer size

pixel in[c-1][r-1]
[
1 0 −1
0 1 −1

]
1 ≤ c ≤ cols − 2
1 ≤ r ≤ rows − 2

1

pixel in[c][r-1]
[
1 0 0
0 1 −1

]
2 ≤ c ≤ cols − 1
1 ≤ r ≤ rows − 2

1

pixel in[c+1][r-1]
[
1 0 1
0 1 −1

]
3 ≤ c ≤ cols
1 ≤ r ≤ rows − 2

cols − 2

pixel in[c-1][r]
[
1 0 −1
0 1 0

]
1 ≤ c ≤ cols − 2
2 ≤ r ≤ rows − 1

2

pixel in[c+1][r]
[
1 0 1
0 1 0

]
3 ≤ c ≤ cols
2 ≤ r ≤ rows − 1

cols − 2

pixel in[c-1][r+1]
[
1 0 −1
0 1 1

]
1 ≤ c ≤ cols − 2
3 ≤ r ≤ rows

1

pixel in[c][r+1]
[
1 0 0
0 1 1

]
2 ≤ c ≤ cols − 1
3 ≤ r ≤ rows

1

pixel in[c+1][r+1]
[
1 0 1
0 1 1

]
3 ≤ c ≤ cols
3 ≤ r ≤ rows

The set of references to an array can be partitioned into
subsets that have (fully or partly) overlapping data domains.
We call these subsets reuse sets. The data domain of the reuse
set is the union of the data domains of the array references
in the reuse set. The third column of table I shows the data
domain of each array reference in the Sobel edge example. In
this case, all array accesses form a single reuse set.

B. Reuse chain

We now describe how to order these reuse sets into reuse
chains. This ordering is based on the access functions. At this
stage, our work is limited to reuse sets of array references that
have the same motion vector, corresponding to sliding window
access patterns, but other patterns can be added (handled as
future work).

We order the array references into a reuse chain according
to the time (iteration) in which they access the array elements.
The array reference at the head of the reuse chain is the first
one to access array elements. If it is a read, the array element
has to be fetched from memory. The array element is then
passed to the next references in the reuse chain where it is
accessed in a later iteration, until at the end of the chain the
element is no longer used. If there is a write operation in the
chain, the array element needs to be written back to memory
after the last write access in the chain. For the Sobel edge
detection example, the rows of table I are ordered in reuse
chain order from tail to head.

Reuse chains can be used to create reuse buffers. Between
read accesses, or between a write and successive reads, the
reuse buffer is a FIFO. Between any operation and a successive
write, no buffering is needed as the existing data will be
overwritten. If the head of the reuse chain is a read access,
the array element needs to be fetched from memory. If there
is a write operation in the chain, the array element needs to
be written back to memory after the last write access in the
chain.



for (I in extended iteration domain) {
if (I in fetch domain)
FETCH_ARRAY_DATA_INTO_REUSE_BUFFER(I);

if (I in original iteration domain)
EXEC_LOOP_BODY_WITH_REUSE_BUFFER(I);

if (I in store domain)
STORE_ARRAY_DATA_INTO_MAIN_MEMORY(I);

}

Figure 3. Code fragment with reuse buffers

C. Fetch, execute and store domains

Using a reuse buffer, the loop nest looks as in Fig. 3: new
data is fetched into the reuse buffer, the loop body is executed
with data in the reuse buffer, and data is stored back into
memory. Generally, only one new array element at the head
of the reuse buffer needs to be fetched for each iteration. The
rest is taken from the reuse buffer. Additional data fetches
are needed to fetch all necessary data, e.g. to pre-fill the reuse
buffer before the first execution of the loop body. We solve this
by extending the iteration domain with fetch-only iterations.
We call the iteration domain of all fetch operations the fetch
domain. All fetches use the same array indices, namely those
of the head of the reuse chain.

Now we calculate the fetch domain. The data domain of an
array reference is the transformation of its iteration domain by
the access function. Inverting these transformations is trivial
as they are bijective. Transforming the data domain of a reuse
chain back to the iteration domain, a new iteration domain is
obtained. Choosing the inverse access function of the head of
the reuse chain for back transformation, we obtain the fetch
domain. Similarly, the store domain can be found using the
array reference at the end of the reuse chain. With the original
iteration domain of the loop and the fetch and store domains,
we can build a new loop nest as in Fig. 3. The extended
iteration domain is the union of the original iteration domain
of the loop and the fetch and store domains.

In Sobel Edge, we find the data domain of the reuse chain
as the union of the data domains of all accesses of array A
(see table I), i.e. 1 ≤ i1 ≤ cols, 1 ≤ i2 ≤ rows. The head of
the reuse chain is pixel in[c+ 1][r+ 1]. The fetch domain is
the inverse transformed data domain by the access function of
the reuse chain head: −1 ≤ c ≤ cols−1,−1 ≤ r ≤ rows−1.

D. Reuse buffer size

For each pair of successive array references in the reuse
chain, we calculate how many array elements the data domain
contains between them. Consider a point of the iteration
domain representing a present iteration. It is trivial to split
up the iteration space into present (the chosen point), past and
future. Fig. 4a shows a graphical interpretation. Consider two
successive array references of the reuse chain, A[index1] and
A[index2], with the latter access reusing data from the former.
The reuse buffer needs to store the array elements that are
accessed after the former and before the latter array access.
Transforming the past iteration space with the first access
function and intersecting the result with the data domain of the
reuse chain, we find the data points that have been accessed
in the past by the first array reference (Fig. 4b). Similarly,
transforming the future iteration domain with the second access
function leads to data points that will be accessed in the
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Figure 4. Determining the size of the reuse buffer
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Figure 5. The overall RTL design

future by the second array reference (Fig. 4c). The intersection
(Fig. 4d) is the set of data points between both array references.
The reuse buffer needs to store one additional data element,
namely the present element. Using this method, the buffer sizes
for Sobel Edge are as shown in column 4 of table I.

In case of a long reuse distance, the size of the reuse
buffer may exceed available on-chip resources. In such case,
the excessively long buffer should be left out, splitting the
reuse chain in two separate chains and requiring an additional
fetch from memory.

E. Building the RTL design

With the elements from the previous sections, we au-
tomatically generate an RTL design that exploits the data
reuse. The RTL design consists of 4 parts as in Fig. 5.
The datapath implements the data statements. It gets array
data from and writes array data back to the reuse buffer(s).
The loop controller controls the execution of the loop nest,
firing datapath and reuse buffer operations and calculating loop
variables and array indices. The memory interface handles the
communication between the memory and the reuse buffer(s).

The datapath can be generated with any HLS tool. To this
end, our tool rewrites the loop body, replacing array references
with variables that are the ports of the reuse buffer, as shown
in Fig. 6. Generating the reuse buffer from the reuse chain
and reuse buffer sizes is straightforward. Between each pair
of accesses, a FIFO is instantiated with the appropriate length.
So far our tool generates the RTL code of reuse buffers with
only read operations. The loop controller generator builds on
[9], with extensions for array index calculation and firing of
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Figure 6. Reuse buffer and datapath
Table II. EXPERIMENTAL RESULTS

Latency LUTs FFs RAM
(cycles) (reuse buffer)

Our tool, unoptimized code 39,602 365 156 2 (8-bit wide)
HLS, unoptimized code 105,745 290 231 none
HLS, optimized code 39,701 364 313 1 (16-bit wide)

HLS, optimized code, pipelined 10,397 417 404 1 (16-bit wide)

memory operations. The memory interface is a generic piece
of RTL that asserts read / write signals as required. The VHDL
code for the top level was written by hand. Correct operation
of the reuse buffer was verified in simulation.

IV. EXPERIMENTAL RESULTS

We compare our approach to two alternatives that all use
HLS to synthesize the Sobel Edge detector, one using the same
unoptimized code as with our tool, and one, in which we have
hand-optimized the source code so that HLS would produce
a reuse buffer. Calypto’s Catapult C was used in all cases.
The image size was 100 × 100 pixels. The bandwidth of the
input and output image buffers was 1 pixel per clock cycle,
i.e. at least 10,000 cycles are needed to transfer all data. RTL
synthesis was run for area estimation, targeting a Xilinx Virtex-
5 FPGA. The results are in table II. The area is given in lookup
table, flip-flop and RAM counts.

Without pipelining, our generated circuit greatly outper-
forms the circuit generated using HLS from the same source
code in terms of latency, and is slightly better than the one
with HLS and hand-optimized code. The area is in the same
range for all circuits. The latency is still considerably worse
than the theoretical optimum of slightly more than 10,000
cycles. With pipelining, which our tool doesn’t do yet, HLS
gets rather close to this figure. From these experiments, we
conclude that our automated method performs equally well as
manual optimization combined with traditional HLS. Adding
pipelining to our method will further improve latency.

V. RELATED WORK

ROCCC is one of the few HLS tools that does memory
access optimization. ROCCC introduces the concept of smart
buffers [10] for input data reuse. Unfortunately ROCCC has
very stringent requirements on the input C code, and the
generated RTL doesn’t scale well with the reuse distance [3].

Two papers discuss the generation of an application specific
memory architecture similar to what we do. Ref. [11] presents
methods to optimize local data storage and transfers to main
memory. The authors tackle both the problem of optimizing
the loop nest for the available memory resources and the
generation of fitting cyclic reuse buffers through HLS. Their
method for reuse buffer length calculation is more complex
than ours. In [12], a method is presented to use on-chip buffers

for data reuse. The authors use the polyhedral model as well as
the transformation aspect of access functions. However, they
don’t use the reverse transformation as we do, resulting in
a more complex algorithm for code generation. Their work is
also limited to data reuse in consecutive iterations, which is not
a limitation in our work. In both papers, the reuse buffers are
introduced in C, and RTL generation is left to the HLS tool.
This makes the integration of the reuse buffer and datapath
easier at the expense of less control from the designer on the
reuse buffer hardware design.

VI. CONCLUSION

In this paper we have presented a method to automate the
generation of data reuse buffers for HLS. It uses the polyhedral
model and more specifically the fact that array access functions
are affine transformations between the iteration and the data
space. This leads to a powerful method to analyze potential
data reuse, as well as an elegant means of streamlining data
fetching, processing and storing in a loop nest. Though not
fully integrated yet, our toolflow is able to generate all major
parts for building a functional circuit. Our automated method
and flow produce circuits that perform equally well as circuits
generated with HLS from manually optimized C code.
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