
Synthesis Algorithm of Parallel Index Generation
Units

Yusuke Matsunaga
Department of Advanced Information Technology,

Graduate School of Information Science and Electrical Engineering,
Kyushu University

Email: matsunaga@ait.kyushu-u.ac.jp

Abstract—The index generation function is a multi-valued
logic function which checks if the given input vector is a registered
or not, and returns its index value if the vector is registered. If the
latency of the operation is critical, dedicated hardware is used for
implementing the index generation functions. This paper proposes
a method implementing the index generation functions using
parallel index generation units. A novel and efficient algorithm
called ‘conflict free partitioning’ is proposed to synthesis parallel
index generation units. Experimental results show the proposed
method outperforms other existing methods.

Keywords—index generation function, logic synthesis

I. INTRODUCTION

The index generation function is a multi-valued logic func-
tion which checks if the given input vector is a registered or
not, and returns its index value if the vector is registered. If the
latency of the operation is critical, dedicated hardware is used
for implementing the index generation functions. Examples of
such a case are address tables in the internet, terminal access
controllers for local area networks, databases, memory patch
circuits, electronic dictionaries, password lists, etc.[6], [9].

Sasao proposed index generation units (IGUs) to imple-
ment the index generation functions. However, a single IGU
is not efficient in the sense of total memory size. So, couple
of extensions are proposed. One of the methods is ‘parallel
sieve method’[4], which uses multiple IGUs in parallel to
reduce the total memory size. Though it is efficient than single
IGU, no effective algorithms that partition vectors into each
IGU are known. This paper proposes a novel algorithm to
partition vectors such that in each IGU, no vectors do not
conflict with each other. This algorithm employs maximum
bipartite matching, so it is scalable against the data size.
The experimental results show that the proposed method can
synthesize the parallel index generation units more efficiently
than existing methods.

The rest of the paper is organized as follows: In Section II,
preliminaries and the existing methods are described. Sec-
tion III proposes the new method — conflict free partitioning
—, SectionIV describes other related works and Section V
shows the experimental results comparing with other methods.
Finally, Section VI concludes the paper.

978-3-9815370-2-4/DATE14/ c⃝2014 EDAA

II. PRELIMINARIES

A. The Index generation functions

Definition 1: Consider a set of k binary vectors of n-bits
R, i.e. R ⊆ {0, 1}n, |R| = k. Suppose that each vector vi ∈
R, (0 < i ≤ k) corresponds to an integer value i. The index
generation function F is a multi-valued logic function with n
binary inputs and an output of range 0 to k, such that if the
input vector is equal to vi then it returns i, otherwise it returns
0. A set of vectors R is called ‘the registered vectors’ of F .
The number of the registered vectors (k) is called ’the weight’
of the index generation function. 2

Example 1: Table I shows an example of registered vec-
tors and those indices. The index generation function F

TABLE I. AN EXAMPLE OF REGISTERED VECTOR TABLE

Vector Index
x1 x2 x3 x4

0 1 1 0 1
0 0 1 0 2
1 1 0 1 3
0 1 1 1 4

corresponding to the registered vector table of Table I returns
1 if (0, 1, 1, 0) is given as an input, and returns 0 if (0, 1, 0, 1)
is given since (0, 1, 0, 1) is not a registered vector. 2

B. Previous methods to implement the index generation func-
tions

Since the index generation functions are just logic functions
with n inputs and ⌈log2(k + 1)⌉ outputs. Recall that the
special valueof ‘0’ should be included in the output values.
We might use ordinal logic synthesis methods. However, this
is not realistic for a couple of reasons. First, normal logic
synthesis method is not good for random functions. Second,
from the application point of view, the registered vectors may
change, and fixed gate circuits do not handle that situation.
Reconfigurable circuits such as FPGAs could handle, though
they have overheads of resynthesizing the circuits.

A naive way to implement the index generation functions
is to use memory with n address lines. Of course, this also
is not a good way. In many cases, the number of registered
vectors (= k) is far less than 2n, so there would be a lot of
‘0’ entries in the memory.

Sasao proposed a couple of smart methods to implement
the index generation functions[5], [12], [9], [10]. Those meth-
ods uses two blocks of memory. The first one (called ‘main
memory’ in the paper) is used for predicting the index. The
second one (called ‘AUX memory’ in the paper) is used
for checking the predicted index. Figure 1 shows the index
generation unit (IGU) described in the paper [9]. F is called

Fig. 1. The Index Generation Unit

‘input hash function’ having n inputs and p outputs. The
purpose of input hash function is to uniformly distribute
registered vectors into 2p Boolean space. However, composing
F from complex logic circuits has negative impact both on
area and delay. Generally, F is composed using wires or
XOR gates. In this paper, we assume input hash function is
composed in similar way. The main memory has p inputs and
⌈log2(k+ 1)⌉ outputs. As described above, the main memory
predicts the index corresponding to the input. If we need an
exact prediction, p would be n, that makes no sense. So some
relaxation is needed. In Sasao’s methods, the main memory
produces a correct result if an input is a registered vector, but
it produces an incorrect result if an input is not a registered
vector. The AUX memory has ⌈log2(k+1)⌉ inputs and n− p
outputs. The purpose of the AUX memory is to check the
predicted index is correct. We only need n − p bits instead
of n bits, because from the predicted value of the index, we
know the p bits part of the vector. If the input matches with
the result of the AUX memory, the predicted index is correct,
so that ‘1’ is fed into the AND gate. On the other hand, if
the input does not match with the result of the AUX memory,
the predicted index is not correct, so that ‘0’ is fed into the
AND gate, and the final output becomes ‘0’. The number p is
determined such that with p inputs, we can distinguish all the
registered vectors. Solving the minimum set covering problem,
we can derive the smallest p. More details are described in the
paper [9]. The bit size of the main memory is 2p× q, where q
stands for ⌈log2(k+1)⌉. And the bit size of the AUX memory
is 2q × (n− p). The total size is shown the Equation 1.

2p × q + 2q × (n− p) (1)

In [7], the following conjecture is presented.

Conjecture 1: [7] Consider a set of uniformly distributed
index generation functions with weight k. In most cases, an
index generation function can be represented by an IGU with
the main memory having at most p = 2⌈log2(k + 1)⌉ − 1
inputs.

That means, the memory size of single IGU increases in
O(k2), where k is the number of registered vectors. To prevent
from quadratic explosion, Nakahara et al. proposes ‘the parallel
sieve method’[4], which is shown in Figure2.

Fig. 2. Parallel sieve method

In this method, each IGU realizes a part of the registered
vectors. The output of each IGU is simply bitwised OR’ed,
since there is at most one IGU which has non-zero output
value. Partitioning the registered vectors reduces the total
memory size drastically. Originally, the size of each IGU (pi
in Fig.2) is different[4], which is complex and difficult to
implement. Later on, another version using IGUs with the
same size is proposed[13]. Eq.2 shows he total memory size
of parallel IGU (PIGU), where m stands for the number of
IGUs.

2p × (n− p+ q)×m (2)

Both of the papers do not present any concrete method to
partition the registered vectors into subgroups. Only probabilis-
tic analysis results are shown. In [8], the following theorem is
presented.

Theorem 1: [8] Consider an index generation function
with weight k. Then, more thatn 99.98% of the registered
vectors can be realized by 4 IGUs with same size, where the
number of input variables to the main memory for each IGU
is p = ⌈log2((k + 1)/3)⌉+ 1.

Notice that this is true is we partition the registered vectors
randomly without any consideration, however, with a smart
algorithm, we can reduce the total memory size further, which
is shown in the next section.

III. THE PROPOSED METHOD: CONFLICT FREE
PARTITIONING

In this section, a novel partitioning algorithm is presented.
The problem formulation is as follows.

Conflict free partitioning� �
Inputs:

• The registered vectors R to be parti-
tioned.

• Input hash functions F1, F2, . . . , Fm.
Outputs:

• Partitioned vectors
R1, R2, . . . , Rm such that
∀k ∈ {1, 2, . . .m}, ∀vi, vj ∈
Rk(vi ̸= vj), Fk(vi) ̸= Fk(vj).� �

To solve the problem, at first we build a bipartite graph G
in the following way. In the graph, one group of vertices (say
V1) corresponds to the registered vectors, and the other group
of vertices (say V2) corresponds to the values of inputs hash
functions. The edge of the graph corresponds to the relation
between a vector and the related value of a input hash function.
For example, let di be one of the registered vectors, and Fj

be one of the input hash functions, and s = Fj(di). There is
an edge between a vertex corresponding to di and a vertex
corresponding to s. Notice that the values of different input
hash functions are to be distinguished, i.e. there is a vertex for
each input hash function even if the value is the same.

The entire algorithm is in the following.

1) Construct the bipartite graph G from R and
F1, F2, . . . , Fm.

2) Find the maximum matching of G.
3) If the size of the matching is equal to the size of the vector

set, then we have a partition. Otherwise, these vectors
cannot be partitioned.

4) Assign each vector d into subgroup according to the
matching edge.

Each vertex of V1 has m edges. If there is a matching
whose size is equal to |V1|, Each vertex of V1 has exactly
one edge which is contained in the match. This edge show
the assignment to which group the vector should belong. The
maximum matching of bipartite graph is known to be solved
in polynomial time, so this algorithm is very efficient. Notice
that each vertex in V1 has exactly m edges, where m is the
number of IGUs. Usually, m is very small, that means this
bipartite graph is very sparse.

Example 2: Let d1, d2, . . . , d7 be the registered vectors,
and F1, F2 be the input hash functions whose truth tables are
shown in Table II.

TABLE II. THE TRUTH TABLE OF F1 AND F2

F1 F2

d1 1 1
d2 2 2
d3 3 3
d4 4 3
d5 2 4
d6 2 1
d7 4 1

Neither F1 nor F2 cannot distinguish all the registered
vectors alone. Furthermore, there are triple conflicts in F1

for d2, d5 and d6 and in F2 for d1, d6, and d7. But, if

we partition the vectors into two groups, {d3, d6, d7} and
{d1, d2, d4, d5}(Tab.III), F1 can distinguish the former group,
and F2 can distinguish the later group.

TABLE III. PARTITION RESULTS

F1

d3 3
d6 2
d7 4

F2

d1 1
d2 2
d4 3
d5 4

To solve this problem systematically, first we build a
bipartite graph in the way described above. The graph is shown
in Fig. 3. In the graph, we have the maximum matching with
size 7 (thick line), which is equal to the size of the vectors. And
the matching tells the partitioning. For example, the edge in the
matching connected to d1 is also connected to F2 : 1, which
means d1 goes into the group related to F2. The matching
guarantees that only one edge is selected for each vertex in
V2, that means there are no conflicts of output value of the
input hash functions. 2

Fig. 3. Bipartite graph of the example

IV. RELATED WORK

A. Minimum perfect hash function

In the area of software algorithms, there is a similar concept
called, the minimum perfect hash function (MPHF) [3], [2],
[1]. The idea of perfect hashing can be applied to hardware
implementation. Fig.4 shows the architecture using MPHF. In
the figure, Fi(i = 1, 2, . . . ,m) is called ‘input hash function’
and to be realized by simple wires (i.e. choosing p inputs out of
n). Gi(i = 1, 2, . . . ,m) is called ‘mapping function’ and to be
realized by look-up table memory. Notice that the figure shows
only a prediction part of IGU. Realizing the complete index
generator requires AUX memory and comparator in addition.

MPHF construction problem is somehow resembles to
conflict free partitioning problem.

Fig. 4. The architecture of IGU using minimum perfect hash function

Minimum perfect hash function� �
Inputs:

• The registered vectors R to be parti-
tioned.

• Input hash functions F1, F2, . . . , Fm.
Outputs:

• Truth tables of the mapping functions
Gi which produces conflict free (per-
fect) hash function.� �

To solve this problem, a hyper-graph called ‘random graph’
is constructed. A vertex of the graph corresponds to the value
of each input hash function Fj with a registered vector di. A
hyper-edge among vertices corresponds to a registered vector
di. If the random graph is ‘simple’ and ‘acyclic’ in the sense
of graph theory, then we can construct MPHF with the given
vectors and input hash functions. For details, please refer[3],
[2], [1].

Eq.3 shows the total memory size of IGU using MPHF.

2p × q ×m+ 2q × n (3)

Where n is the input bit width, p is the input size of the main
memory, q = ⌈log2(k+1)⌉, and m is the multiplexity. Notice
that this equation is a little bit different from Eq.2. The bit
width of the AUX memory is n, not (n− p), which leads the
increase of memory size if p becomes large, as we see more
detail in the experimental results.

B. Row-shift decomposition

This method also generates the index value from multiple
look-up table memory. Fig.5 show the architecture using row-
shift decomposition[11]. This is also not an entire IGU, but
only a prediction part. After the output of this circuit, AUX
memory and comparator are needed. Like MPHF, Fi is an
input hash function, which is realized by wires or simple logic
gates. G and H are realized by look-up table memory. Unlike
MPHF, the output of one memory (H) is fed into the input of
another memory (G) through ADDER∗. In [11], the method
deriving row-shift decomposition is described. Realizing row-
shift decomposition circuits, there are many choices for bit

∗Actually, it is not necessary to use ADDER, but XOR gates are enough.

Fig. 5. The architecture of IGU using row-shift decomposition

width of each wire. For simplicity, we assume n3 = nr = q,
and n1 = n2 = p. Eq.4 show the total memory size of IGU
using row-shift decomposition.

2p × q + 2q × (q + n) (4)

In [11], the size of AUX memory is ignored in the discussion
of total memory size, which is not fair to compare other types
of IGUs like parallel IGUs. So, in this paper, the size of AUX
is included. The output bit width of AUX memory is also n,
not (n − p), since we cannot identify the p bits part of the
input vector.

V. EXPERIMENTAL RESULTS

To evaluate the total memory size of each method (conflict
free partitioning, minimum perfect hash function, and row
shift decomposition). Experiments using randomly generated
vectors have been done. Conflict free partitioning requires a
set of input hash functions, and before generating input hash
functions, p has to be fixed. However, there are no way to
determine the optimal value of p. So, we start p with some
proper value, and iterate to try conflict free partitioning with
randomly generated input hash functions until it succeed or
it reaches to the loop count limit. If it fails (i.e. reaches
to the limit), increase p by one and redo the iteration. For
minimum perfect hash function and row shift decomposition,
the procedures are the same.

In this experiments, a set of registered vectors of 20 bits
whose sizes are from 1000 to 10000 is prepared. There are 20
data for each same size and the average size is reported. The
following methods are compared.

• Normal AUX memory size (= 2q × n) (AUX)

• Conflict free partitioning with m = 2 (CFP2).

• Conflict free partitioning with m = 3 (CFP3).

• Conflict free partitioning with m = 4 (CFP4).

• Minimum perfect hash function with m = 2 (MPH2).

• Minimum perfect hash function with m = 3 (MPH3).

• Minimum perfect hash function with m = 4 (MPH4).

• Row shift decomposition (RSD2).

• Parallel sieve method with m = 4 (PS4)

Fig.6 shows the results of the experiments. X axis stands
for the size of the vectors. Y axis stands for the total memory
size (in bits). In this experiments, area occupied by logic gates
and wires is ignored.

Fig. 6. Total memory size

Throughout the experiments, CFP3 and CFP4 performs
well, especially when k is large. Their results are about half of
others. Even when k is small, CFP3 and CFP4 are better than
others. It is interesting that there is a case CFP3 is smaller than
AUX. That is because the output width of the AUX memory of
parallel IGU is (n−p), not n, so inversion occurs according the
value of p and m. Also, CFP4 is almost always very closer to
AUX. Other methods, like MPH and RSD require n bits at the
output of AUX memory, so they never beat when p becomes
large. As described above, the current implementation of row-
shift decomposition is a little bit simplified, so there are some
room of improvement for the results of RSD2. However, it
requires at least normal AUX memory size, so the possibility
of synthesizing smaller circuits than CFP3 or CFP4 is very
low. For PS4, the equation calculating the total memory size
is the same with CFP4, but it requires much more memory than
CFP4, which means the effect of conflict free partitioning is
significant.

VI. CONCLUSION

A novel and effective algorithm to synthesis parallel index
generation units are presented. The algorithm is based on

maximum matching of bipartite graph, which is solved in
polynomial time and very efficient. The experimental results
show that the proposed conflict free partitioning with the
multiplexity 3 or 4 performs very well. Their results are about
half of other existing methods in the sense of the total memory
size, and they are very closer or even smaller to the size of
AUX memory only. This means that conflict free partitioning
is the most robust and effective method to implement index
generation functions.

Future topic includes generation of input hash functions,
and extension to more complex random functions, for example,
to handle with vectors having don’t cares.

ACKNOWLEDGMENT

This research is partially supported by NEC corporation.

REFERENCES

[1] CZECH, Z. J., HAVAS, G., AND MAJEWSKI, B. S. An optimal
algorithm for generating minimal perfect hash functions. Information
Processing Letters 43, 5 (1992), 257 – 264.

[2] FOX, E. A., HEATH, L. S., CHEN, Q. F., AND DAOUD, A. M. Practical
minimal perfect hash functions for large databases. Commun. ACM 35,
1 (Jan. 1992), 105–121.

[3] MAJEWSKI, B. S., WORMALD, N. C., HAVAS, G., AND CZECH, Z. J.
A family of perfect hashing methods. The Computer Journal 39, 6
(1996), 547–554.

[4] NAKAHARA, H., SASAO, T., MATSUURA, M., AND KAWAMURA, Y.
The parallel sieve method for a virus scanning engine. In 12th
EUROMICRO Conference on Digital System Design, Architectures,
Method and Tools (DSD-2009) (2009), pp. 809–816.

[5] SASAO, T. A Design Method of Address Generators Using Hash
Memories. In IWLS-2006 (June 2006), pp. 102–109.

[6] SASAO, T. Design Methods for Multiple-Valued Input Address Gener-
ators. In International Symposium on Multiple-Valued Logic (ISMVL-
2006) (May 2006).

[7] SASAO, T. On the numbers of variables to represent sparse logic func-
tions. In Proceedings of the 2008 IEEE/ACM International Conference
on Computer-Aided Design (2008), ICCAD ’08, IEEE Press, pp. 45–51.

[8] SASAO, T. On the numbers of variables to represent multi-valued in-
completely specified functions. In Digital System Design: Architectures,
Methods and Tools (DSD), 2010 13th Euromicro Conference on (2010),
pp. 420–423.

[9] SASAO, T. Index generation functions: Recent developments. In the
41st IEEE International Symposium on Multiple-Valued Logic (2011),
pp. 1–9.

[10] SASAO, T. Linear decomposition of index generation functions. In
Proceedings of Asia and South Pacific Design Automation Conference
2012 (2012), pp. 781–788.

[11] SASAO, T. Row-shift decompositions for index generation functions.
In Design, Automation Test in Europe Conference Exhibition (DATE),
2012 (2012), pp. 1585–1590.

[12] SASAO, T., AND MATSUURA, M. An implementation of an Address
Generator using Hash Memories. In 10th EUROMICRO Conference on
Digital System Design, Architectures, Method and Tools (DSD-2007)
(Aug. 2007), pp. 69–76.

[13] SASAO, T., MATSUURA, M., AND NAKAHARA, H. A realization of
index generation functions using modules of uniform sizes. In 19th
International Workshop on Logic and Synthesis (IWLS-2010) (June
2010), pp. 201–208.

