
An Efficient Manipulation Package for
Biconditional Binary Decision Diagrams

Luca Amarú, Pierre-Emmanuel Gaillardon, Giovanni De Micheli
Integrated Systems Laboratory (LSI), EPFL, Switzerland

Abstract— Biconditional Binary Decision Diagrams (BBDDs)
are a novel class of binary decision diagrams where the branching
condition, and its associated logic expansion, is biconditional on
two variables. Reduced and ordered BBDDs are remarkably
compact and unique for a given Boolean function. In order to
exploit BBDDs in Electronic Design Automation (EDA) applica-
tions, efficient manipulation algorithms must be developed and
integrated in a software package. In this paper, we present the
theory for efficient BBDD manipulation and its practical software
implementation. The key features of the proposed approach
are (i) strong canonical form pre-conditioning of stored BBDD
nodes, (ii) recursive formulation of Boolean operations in terms
of biconditional expansions, (iii) performance-oriented memory
management and (iv) dedicated BBDD re-ordering techniques.
Experimental results show that the developed BBDD package
achieves an average node count reduction of 19.48% and a
speed-up factor of 1.63x with respect to a state-of-art decision
diagram manipulation package. Employed in the synthesis of
datapath circuits, the BBDD manipulation package is capable
to advantageously restructure arithmetic operations producing
11.02% smaller and 32.29% faster circuits as compared to a
commercial synthesis flow.

I. INTRODUCTION

Efficient Boolean function representation and manipulation
is essential in Electronic Design Automation (EDA). Binary

Decision Diagrams (BDDs) [1]–[3] are a well established data
structure for this purpose. BDDs are employed in many EDA
applications, such as digital circuits synthesis [4], verification
[5], testing [6], simulation [7], and others. Original BDDs are
driven by the Shannon’s expansion to decompose a Boolean
function until the constant logic values are encountered. Re-
duced and ordered BDDs [3] are unique for a given variable
order, i.e., canonical, thus enabling efficient logic manipulation
[8], [9]. Unfortunately, there exist Boolean functions for which
BDDs are not compact or even too large to be handled [10]. In
order to improve the compactness of BDDs, and therefore the
efficiency of their applications, canonical extensions of BDDs
are proposed in literature, e.g., [11]–[14]. We refer the reader
to [15] for a more complete list of BDD extensions.

In this work, we focus on Biconditional Binary Decision

Diagrams (BBDDs), a promising class of canonical binary
decision diagrams recently introduced in [14]. While original
BDDs are based on the single-variable Shannon’s expansion,
BBDDs employ a two-variable biconditional expansion [14],
making the branching condition at each decision node depen-
dent on two variables per time. Such feature improves the
expressive power of the binary decision diagram. Moreover,
BBDDs represent also the natural and native design abstraction
for emerging technologies where the circuit primitive is a
comparator, rather than a switch [16]–[18]. The work in [14]

first introduces the concept of BBDDs but does not provide a
detailed discussion about their automated manipulation.

In this paper, we present the theory for efficient BBDD
manipulation and its practical software implementation. We do
not address here theoretical issues related to BBDDs, such as
asymptotic size bounds or other properties, but we focus on the
design of a new BBDD package to support EDA applications.
The main attributes enabling efficient BBDD manipulation are
(i) strong canonical form pre-conditioning of stored BBDD
nodes, (ii) recursive formulation of Boolean operations in
terms of biconditional expansions, (iii) performance-oriented
memory management and (iv) dedicated BBDD re-ordering
techniques. The developed BBDD package is open-source and
available online [19]. Experimental results over the MCNC
benchmark suite show that the BBDD package is 1.63x faster
than a state-of-art decision diagram package [20] and produces
19.48% smaller logic representations. In order to showcase the
interest of a BBDD package for EDA, we also propose a new
synthesis approach for datapath circuits. Standard synthesis
techniques face challenges to satisfactory handle datapaths,
that are intensive in arithmetic operations, such as comparators
and voters. Instead, BBDDs are remarkably compact for
arithmetic operations as the comparator function is inherently
embedded in a BBDD node functionality [14]. Motivated by
this consideration, we employ the BBDD package as front-
end to a commercial synthesis tool to structure arithmetic
operations in datapaths. Synthesis results show that datapaths
pre-structured by the BBDD package are 11.02% smaller and
32.29% faster than their counterparts directly designed by a
commercial synthesis flow.

The remainder of this paper is organized as follows. Section
II provides a background on traditional binary decision dia-
grams and existing software packages. In Section III, BBDDs
are introduced with their basic definitions for reference. Sec-
tion IV presents the BBDD manipulation theory and discusses
the software package results. Section V presents the applica-
tion of the BBDD package as front-end for datapath design
and discusses the synthesis results. The paper is concluded in
Section VI.

II. BACKGROUND AND MOTIVATION

This section provides a background on traditional binary
decision diagrams and related logic manipulation packages.

A. Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are data structures rep-
resenting Boolean functions. The general concept of BDDs is
first introduced by Lee [1] and Akers [2], but later popularized
by Bryant in [3], where it is shown that, under ordering and
reduction rules, BDDs are a canonical representation form.978-3-9815370-2-4/DATE14/ c©2014 EDAA

We refer the reader to [15] for a review about terminology
and fundamentals of BDDs. The common adoption of BDDs
in EDA [4]–[7] is driven by efficient BDD manipulation
algorithms [8], [9] and related software implementations [20].
A BDD manipulation package can be used as a general-
purpose software for manipulating Boolean functions, task at
the core of EDA. We discuss hereafter the main features of a
state-of-art BDD package.

B. State-of-art BDD Package Implementation

Contemporary BDD packages, such as CUDD [20], are
designed to be memory-efficient and to have fast runtime.
Memory efficiency is achieved by the use of hash-tables and
caches. A global hash-table, commonly called the unique

table, stores the nodes of the BDDs in a strong canonical

form, which is a form of data pre-conditioning to reduce the
complexity of equivalence test [8]. A global cache, commonly
called the computed table, is used to temporarily store per-
formed Boolean operations in case of later use. Fast BDD ma-
nipulation is achieved by a recursive formulation of Boolean
operations between existing decision diagrams [8]. Addition-
ally, variable re-ordering algorithms [9] are commonly used
to minimize the number of stored nodes and maximize the
package performance.

Many BDD extensions improve the expressive power of
binary decision diagrams. However, only a limited number
of them are supported by an efficient manipulation theory and
even fewer of them by a practical software implementation.

In this work, we present the manipulation theory and
efficient software implementation for a promising class of
decision diagrams [14], based on a novel equality/inequality
switching paradigm.

III. BICONDITIONAL BDD OVERVIEW

In this section, we review Biconditional Binary Decision

Diagrams (BBDDs) [14], a canonical class of binary decision
diagrams where the branching condition, and its associated
logic expansion, acts as a two-variable comparator function.

A. BBDD Fundamentals

A BBDD is a Direct Acyclic Graph (DAG) representing a
Boolean function f(v, w, .., z). A BBDD is uniquely identified
by its root, the set of internal nodes, the set of edges and
the 1/0-sink nodes. Each internal node (Fig. 1) in a BBDD

PV=v

f(v,w,..,z)

f(w’,w,..,z) f(w,w,..,z)

SV=w

PV=SVPV=SV

Fig. 1: BBDD internal node.

is labeled by two Boolean variables: v, the Primary Variable

(PV), and w, the Secondary Variable (SV), and has two out-
edges labeled PV 6= SV and PV = SV . Each internal node
represents the biconditional expansion with respect to v, w:

f(v, w, .., z) = (v⊕w)· f(w′, w, .., z) + (v⊕w)· f(w,w, .., z)
(1)

where the symbol ⊕ represents the XOR operator and w′ is
the complement of w.

The PV 6= SV and PV = SV edges connect to
f(w′, w, .., z) and f(w,w, .., z) functions, respectively. For
the sake of simplicity, we refer hereafter to f(w′, w, .., z) and
f(w,w, .., z) as to fv 6=w and fv=w, respectively. Functions
of a single variable v cannot be directly decomposed by the
biconditional expansion in Eq. 1. In such a condition, v is as-
signed to the PV and a fictitious variable w = 1 is introduced
and assigned to the SV , collapsing the biconditional expansion
into a Shannon’s expansion. With this boundary condition, any
Boolean function can be fully decomposed and represented
with a BBDD.

B. BBDD Ordering

Constraining the order of variable appearance in every
root to sink path is one of the requirements to achieve
canonicity in BBDDs. For this purpose, the Chain Variable

Order (CVO), introduced in [14], imposes a variable order
on all root to sink paths for PV s and a rule for the adjacent
SV s. Given a Boolean function f and an input variable order
π = (π0, π1, .., πn−1), the CVO assigns PV s and SV s by
levels as:
{

PVi = πi

SVi = πi+1

with i = 0, 1, .., n− 2;

{

PVn−1 = πn−1

SVn−1 = 1
(2)

CVO Example: From π = (a, b, c), the corresponding CVO
is obtained following Eq. 2. The consecutive ordering by
couples (PVi, SVi) is thus ((a, b), (b, c), (c, 1)).

Note that the size of an ordered BBDD depends on the
particular variable order π assigned through the CVO. Ded-
icated re-ordering techniques are presented in Section IV-A4
to handle this issue.

C. BBDD Reduction

In order to improve the representation efficiency, BBDDs
can be reduced according to a set of rules [14]. A BBDD is
said reduced when it respects the following rules:

R1) It contains no two nodes, root of isomorphic subgraphs.
R2) It contains no nodes with identical children.
R3) It contains no empty levels.
R4) Subgraphs representing single variable functions degen-

erates into a single node with SV=1, i.e., a BDD node.
Note that rules R1-2 are the straightforward extension of

BDD [3] reduction rules. Then, rules R3-4 derive from the
enhanced expressive power of the biconditional expansion
[14].

D. Reduced and Ordered BBDD Canonicity

Reduced and ordered BBDDs are canonical, i.e., unique
for a given input variable order π = (π0, π1, .., πn−1) and
corresponding CVO. Canonicity is preserved if a complement
attribute is enabled at PV 6= SV edges and only the 1 sink
node is permitted. Formal proofs about BBDD canonicity are
given in [14]. Unless specified otherwise, we refer hereafter
to BBDDs as to ordered and reduced BBDDs.

BBDDs improve the expressive power of binary decision
diagrams while remaining a canonical representation form.
In order to fully harness such opportunity in EDA, a BBDD
package is presented in the following section.

IV. BBDD MANIPULATION PACKAGE

This section presents an efficient manipulation theory for
BBDDs and its practical software implementation [19]. Ex-
perimental results for the developed BBDD package are given
and compared to a state-of-art BDD package.

A. Efficient Manipulation of BBDDs

Nowadays, one fundamental reason to keep decision dia-
grams small is not just to successfully fit them into the mem-
ory, that in a modern server could store up to 1 billion nodes,
but more to maximize their manipulation performance. Follow-
ing this trend, we design the BBDD manipulation algorithms
and data structures aiming to minimize the runtime while
keeping under control the memory footprint. The key concepts
unlocking such target are (i) unique table to store BBDD
nodes in a strong canonical form, (ii) recursive formulation of
Boolean operations in terms of biconditional expansions with
relative computed table, (iii) memory management to speed up
computation and (iv) chain variable re-ordering to minimize
the BBDD size. We discuss in details each point hereafter.

1) Unique Table: BBDD nodes must be stored in an
efficient form, allowing fast lookup and insertion. Thanks
to canonicity, BBDD nodes are uniquely labeled by a tuple
{CVO-level, 6=-child, 6=-attribute, =-child}. A unique table
maps each tuple {CVO-level, 6=-child, 6=-attribute, =-child}
to its corresponding BBDD node via a hash-function. Hence,
each BBDD node has a distinct entry in the unique table
pointed by its hash-function, enabling a strong canonical form

representation for BBDDs.

Exploiting the strong canonical form, equivalence test be-
tween two BBDD nodes corresponds to a simple pointer
comparison. Thus, lookup and insertion operations in the
unique table are efficient. Before a new node is added to the
BBDD, a lookup checks if its corresponding tuple {CVO-level,
6=-child, 6=-attribute, =-child} already exists in the unique

table and, if so, its pointed node is returned. Otherwise, a
new entry for the node is created in the unique table.

2) Boolean Operations between BBDDs: The capability to
apply Boolean operations between two BBDDs is essential to
represent and manipulate large functions of interest in EDA.
Consequently, an efficient algorithm to compute f ⊗ g, where
⊗ is any Boolean function of two operands and {f, g} are two
existing BBDDs, is mandatory in the manipulation package.
A recursive formulation of f ⊗ g, in terms of biconditional

expansions, allows us to take advantage of the information
stored in the existing BBDDs and hence reduce the computa-
tion complexity. Algorithm 1 shows the outline of the recursive
implementation for f ⊗ g. The input of the algorithm are the
BBDDs for {f, g} and the two-operand Boolean function ⊗
that has to be computed between them. If f and g are identical,
or one of them is the sink 1 node, the operation f ⊗g reaches
a terminal condition. In this case, the result is retrieved from a
pre-defined list of trivial operations and returned immediately
(Alg.1α). When a terminal condition is not encountered, the
presence of {f, g,⊗} is first checked in a computed table,
where previously performed operations are stored in case
of later use. In the case of positive outcome, the result is
retrieved from the computed table and returned immediately
(Alg.1β). Otherwise, f ⊗ g has to be explicitly computed

Algorithm 1 f ⊗ g

INPUT: BBDDs for {f, g} and Boolean operation ⊗.
OUTPUT: BBDD for f ⊗ g, edge attribute (Attr) for f ⊗ g.

if (terminal case)||(f == g) then

{R,Attr} = identical terminal({f, g,⊗});
return {R,Attr};

else if computed table has entry {f, g,⊗} then

{R,Attr} = lookup computed table({f, g,⊗});
return {R,Attr};

else

i = maxlevel{f, g};
{v, w} = {PV, SV }@(level = i);
if (|supp(f)| == 1)||(|supp(g)| == 1) then

chain-transform(f, g);
end if

{E,E → Attr} = fv=w ⊗ gv=w;
⊗D = updateop(⊗, fv 6=w → Attr, gv 6=w → Attr);
{D,D → Attr} = fv 6=w ⊗D gv 6=w;
if reduction rule R4 applies then

R =BDD-node @(level = i);
else if {E,E → Attr} == {D,D → Attr} then

R = E;
else

D → Attr = updateattr(E → Attr,D → Attr);
R = lookup insert(i,D,D → Attr, E);

end if

insert computed table ({f, g,⊗}, R,E → Attr);
return {R,E → Attr};

end if

α

β

γ

(Alg.1γ). The top level in the CVO for f ⊗ g is determined
as i = maxlevel{f, g} with its {PVi = v, SVi = w}. The
root node for f ⊗ g is placed at such level i and its children
computed recursively. Before proceeding in this way, we need
to ensure that the two-variable biconditional expansion is well
defined for both f and g, particularly if they are single variable
functions. To address this case, single variable functions
are prolonged down to minlevel{f, g} through a chain of
consecutive BBDD nodes. This temporarily, and locally, may
violate reduction rule R4 to guarantee consistent 6=- and =-
edges. However, rule R4 is enforced before the end of the
algorithm. Provided such handling strategy, the following
recursive formulation, in terms of biconditional expansions,
is key to efficiently compute the children for f ⊗ g:

f ⊗ g = (v ⊕ w)(fv 6=w ⊗ gv 6=w) + (v⊕w)(fv=w ⊗ gv=w)
(3)

The term (fv 6=w⊗gv 6=w) represents the 6=-child for the root of
f⊗g while the term (fv=w⊗gv=w) represents the =-child. In
(fv 6=w ⊗ gv 6=w), the Boolean operation ⊗ needs to be updated
according to the regular/complemented attributes appearing in
the edges connecting to fv 6=w and gv 6=w. After the recursive
calls for (fv=w⊗gv=w) and (fv 6=w⊗gv 6=w) return their results,
reduction rule R4 is applied. Finally, the tuple {top-level, 6=-
child, 6=-attribute, =-child} is found or added in the unique

table and its result updated in the computed table.
Observe that the maximum number of recursions in Eq. 3

is determined by all possible combination of nodes between

N
w=x=y=z

N
w=x=y≠z

N
w≠x≠y≠z

N
w≠x≠y=z

N
w≠x=y=z

N
w≠x=y≠z

N
w=x≠y≠z

N
w=x≠y=z

N
w=y=x=z

N
w=y=x≠z

N
w=y≠x=z

N
w=y≠x≠z

N
w≠y=x=z

N
w≠y=x≠z

N
w≠y≠x=z

N
w≠y≠x≠z

N
w=x=y=z

N
w=x=y≠z

N
w=x≠y=z

N
w=x≠y≠z

=

=≠

w
x

x
y

≠

N

y
z

=≠

y
z

=≠

N
w≠x=y=z

N
w≠x=y≠z

N
w≠x≠y=z

N
w≠x≠y≠z

=

x
y

≠

y
z

=≠

y
z

=≠

=

=≠

w
y

y
x

≠

N

x
z

=≠

x
z

=≠

=

y
x

≠

x
z

=≠

x
z

=≠

≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡

N
x=y=z

N
x=y≠z

N
x≠y≠z

N
x≠y=z

N
x≠y≠z

N
x=y=z

N
x=y≠z

N
x≠y=z

≠

x
y

y
z

y
z

=

= =≠≠

N

N
y≠x≠z

N
y=x=z

N
y=x≠z

N
y≠x=z

≠

y
x

x
z

x
z

=

= =≠≠

N

≡ ≡ ≡ ≡

N
y=z

N
y≠z

N
y≠z

N
y=z

N
y=z

N
y≠z

x
y

y
z

=≠

N
y≠x≠z

N
y=x=z

N
y=x≠z

N
y≠x=z

≠

y
x

x
z

x
z

=

= =≠≠

N

≡ ≡ ≡ ≡

N

a)

b)

c)

before swap before swap

before swap
after swap

after swap

after swap

i+2

i+1 i+1

i+2

i i i i

i i i i i i i

i i i i

i+1 i+1

i+1 i+1

i+1

Fig. 2: Variable swap i ⇋ i+1 involving the CVO levels (PVi+2 = w, SVi+2 = x), (PVi+1 = x, SVi+1 = y) and (PVi = y,
SVi = z). Effect on nodes at level i+ 2 (a) i+ 1 (b) and i (c).

the BBDDs for f and g. Assuming constant time lookup
in the unique and computed tables, it follows that the time
complexity for Algorithm 1 is O(|f |· |g|), where |f | and |g| are
the number of nodes of the BBDDs of f and g, respectively.

3) Memory Management: The software implementation of
data-structures for unique and computed tables is essential
to control the memory footprint but also to speed-up com-
putation. In traditional logic manipulation packages [20], the
unique and computed tables are implemented by a hash-table
and a cache, respectively. We follow this approach in the
BBDD package, but we add some specific additional technique
to further speed-up computation. Informally, we minimize the
access time to stored nodes and operations by dynamically
changing the data-structure size and hashing function, on the
basis of a {size×access-time} quality metric.

The core hashing-function for all BBDD tables is the Cantor
pairing function between two integer numbers [21]:

C(i, j) = 0.5· (i+ j)· (i+ j + 1) + i (4)

which is a bijection from N0 ×N0 to N0 and hence a perfect

hashing function [21]. In order to fit the memory capacity
of computers, modulo operations are applied after the Cantor
pairing function allowing collisions to occur. To limit the
frequency of collisions, a first modulo operation is performed
with a large prime number m, e.g., m = 15485863, for
statistical reasons. Then, a final modulo operation resizes the
result to the current size of the table.

Hashing functions for unique and computed tables are ob-
taining by nested Cantor pairings between the tuple elements
with successive modulo operations.

Collisions are handled in the unique table by a linked list for
each hash-value, while, in the computed table, the cache-like
approach overwrites an entry when collision occurs.

Keeping low the frequency of collisions in the unique and
computed table is of paramount importance to the BBDD
package performance. Traditional garbage collection and dy-
namic table resizing [20] are used to address this task. When
the benefit deriving by these techniques is limited or not
satisfactory, the hash-function is automatically modified to re-
arrange the elements in the table. Standard modifications of
the hash-function consist of nested Cantor pairings re-ordering
and re-sizing of the prime number m.

4) Chain Variable Re-ordering: The chain variable order
for a BBDD influences the representation size and therefore
its manipulation complexity. Automated chain variable re-
ordering assists the BBDD package to boost the performance
and reduce the memory requirements. Among traditional vari-
able re-ordering techniques for binary decision diagrams, we
extend Rudell’s sifting algorithm [9]. Thanks to its general
formulation, the sifting algorithm [9] can be directly extended
to BBDDs, but a new swap theory handling the chain variable
order is needed.

Variable swap in the CVO exchanges the PV s of two
adjacent levels i and i + 1 and updates the neighbor SV s
accordingly. The effect on the original variable order π, from
which the CVO is derived as per Eq. 2, is a direct swap of
variables πi and πi+1. Note that all the nodes/functions con-
cerned during a CVO swap are overwritten (hence maintaining
the same pointer) with the new tuple generated at the end of
the operation. In this way, the effect of the CVO swap remains
local, as the edges of the above portion of the BBDD still point

TABLE I: Experimental Results for the BBDD Manipulation Package
Benchmarks Inputs Outputs BBDD Package (this work) BDD Package (CUDD)

Node Count Build time (s) Sift time (s) Node Count Build time (s) Sift time (s)
C1355 41 32 54225 0.23 0.11 74056 0.06 0.59
C1908 33 25 14918 0.06 0.23 17980 0.09 0.34
C499 41 32 135784 1.56 3.21 160691 3.04 4.28
seq 41 35 4554 0.07 0.33 5607 0.14 0.44

my adder 33 17 166 0.13 0.15 1006 0.15 0.14
frg1 28 3 284 <0.01 <0.01 296 <0.01 <0.01

misex3 14 14 745 0.02 <0.01 885 0.03 0.02
misex1 8 7 51 <0.01 <0.01 68 <0.01 <0.01
comp 32 3 97 <0.01 <0.01 330 0.23 0.67
count 35 16 328 <0.01 <0.01 342 <0.01 0.01
cordic 23 2 54 <0.01 <0.01 80 <0.01 0.01
alu4 14 8 1076 <0.01 <0.01 897 <0.01 <0.01
C17 5 2 15 <0.01 <0.01 13 <0.01 <0.01

9symml 9 1 19 <0.01 <0.01 25 <0.01 <0.01
z4ml 7 4 21 <0.01 <0.01 37 <0.01 <0.01
decod 5 16 46 <0.01 <0.01 96 <0.01 <0.01
parity 16 1 9 <0.01 <0.01 17 <0.01 <0.01

Average 22.64 12.82 1.24e04 0.12 0.24 1.54e04 0.22 0.37

to the same logical function.

A variable swap i ⇋ i + 1 involves three CVO levels
(PVi+2 = w, SVi+2 = x), (PVi+1 = x, SVi+1 = y) and
(PVi = y, SVi = z). The level i + 2 must be considered as
it contains in SV the variable x, which is the PV swapped
at level i + 1. If no level i + 2 exists (i + 1 is the top level)
the related operations are simply skipped. In the most general
case, each node at level i + 2, i + 1 and i has 8, 4 and 2
possible children on the portion of BBDD below level i. Some
of them may be identical, following to reduction rules R1-4,
or complemented, deriving by the 6=-edges attributes in their
path. Fig. 2 depicts the different cases for a general node N
located at level i+2, i+1 or i, with all their possible children.
After the swap i ⇋ i+1, the order of comparisons w⋆x⋆y⋆z
is changed to w ⋆ y ⋆ x ⋆ z and the children of N must be
rearranged consequently (⋆ ∈ {=, 6=}). Using the transitive

property of equality and congruence in the binary domain, it
is possible to remap w ⋆ x ⋆ y ⋆ z into w ⋆ y ⋆ x ⋆ z as:

⋆ ∈ {=, 6=}, ⋆ : {=, 6=} → {6=,=}
(w ⋆i+2 x = y ⋆i z) → (w ⋆i+2 y = x ⋆i z)
(w ⋆i+2 x 6= y ⋆i z) → (w ⋆i+2 y 6= x ⋆i z)

(5)

Following remapping rules in Eq. 5, the children for N can
be repositioned coherently with the variable swap. In Fig.2,
the actual children rearrangement after variable swap is shown.
In a bottom-up approach, it is possible to assemble back the
swapped levels, while intrinsically respecting reduction rules
R1-4, thanks to the unique table strong canonical form.

Based on this CVO swap theory, the BBDD re-ordering
(sifting) algorithm is derived from [9] and works as follows.
Let n be the number of variables in the initial order π. Each
variable πi is considered in succession and the influence of
the other variables is locally neglected. Swap operations are
performed to move πi in all n potential positions in the CVO.
The best BBDD size encountered is remembered and its πi

position in the CVO is restored at the end of the variable
processing. This procedure is repeated for all variables. It
follows that BBDD sifting requires O(n2) swap operations.

B. BBDD Results

We have developed a BBDD package in C language imple-
menting the techniques described in this work. The package is
available online at [19] and consists of about 4k lines of code.
For the sake of comparison, we considered the latest release of
CUDD [20], the state-of-art manipulation package for BDDs.
BDDs [20] and BBDDs [19] packages run on a Xeon X5650
24-GB RAM machine. The benchmarks considered are taken
from the traditional MCNC suite.

CUDD [20] receives as input a BLIF format description of
a combinational logic network. BDDs are first built using the
initial order provided in the BLIF file and later sifted [9].

The BBDD package [19] receives as input a Verilog de-
scription of a combinational logic network, flattened onto
primitive Boolean operations (XOR, AND, OR, INV, BUF).
Then, it provides as output a Verilog description for the built
BBDD together with its log information. As for the BDD-
based counterpart, BBDDs are first built using the initial order
provided in the Verilog file and later sifted.

Table I shows experimental results for the BBDD package
[19] and CUDD package [20]. On average, BBDDs built and
sifted by the package developed in this work are 19.48%
smaller, in terms of node count, with respect to BDDs built
and sifted by CUDD [20]. This is thanks to the expressive
power of BBDDs, where the branching decision at each node
is biconditional on two variables per time, rather than only one
as in standard BDDs. Moreover, the building and sifting time
are faster for BBDDs than for BDDs, achieving an overall
speed-up factor of 1.63x as compared to CUDD [20]. The
reason for such speed-up is twofold. On the one hand, BBDDs
have fewer nodes than BDDs so the number of operations
required is directly reduced. On the other hand, the BBDD-
package [19] has a memory management strategy expressly
targeting low collision frequency, further boosting the package
performance.

V. CASE STUDY: DATAPATH SYNTHESIS FRONT-END

This section showcases the interest of the BBDD package
in the automated design of datapath circuits. A BBDD-based

TABLE II: Experimental Results for the BBDD-based Datapath Synthesis
Benchmarks Inputs Outputs BBDD Package + Commercial Synthesis Flow Commercial Synthesis Flow

Area (µm2) Delay (ns) Gate Count Area (µm2) Delay (ns) Gate Count
Adder 32 64 33 41.01 2.17 186 45.98 3.42 216
Adder 64 128 65 83.05 4.46 380 93.02 7.01 440

Equality 32 64 1 17.78 0.11 63 18.27 0.18 72
Equality 64 128 1 35.57 0.13 119 36.18 0.20 136

Magnitude 32 64 1 13.65 0.82 41 21.77 1.16 186
Magnitude 64 128 1 29.44 1.64 102 44.17 2.30 378

Barrel 32 39 32 71.68 0.50 545 76.44 0.50 569
Barrel 64 70 64 165.42 0.58 1255 178.50 0.60 1320

Average 85.62 24.75 57.20 1.30 336.38 64.29 1.92 414.62

synthesis methodology is proposed and compared to a com-
mercial synthesis flow, for a 22nm CMOS technology.

A. Re-writing Datapaths with BBDDs

Datapath circuits are essential components in today’s inte-
grated circuits. Standard synthesis techniques face challenges
to optimize datapaths, as they are dominated by arithmetic op-
erations which are not natively supported by conventional logic
representation forms. Differently, BBDD nodes inherently act
as two-variable comparators, a basis function for arithmetic
operations. This feature enables datapaths to be efficiently
represented with BBDDs. Nevertheless, the BBDD represen-
tation efficiency is not just limited to datapaths. Motivated by
this consideration, we employ the BBDD package as front-end
to a commercial synthesis tool to pre-structure datapaths and
facilitate their synthesis.

B. Synthesis Results

Adder, comparator and shifter datapaths are considered,
in operand 32 and 64 bit-widths, as synthesis benchmarks.
They are written in Verilog language. A standard cell library
consisting of MAJ-3, XOR-2, XNOR-2, NAND-2, NOR-2 and
INV logic gates is characterized in CMOS 22 nm technology
[22] and used to support the synthesis flow. When employed
stand-alone, the commercial synthesis tool identifies arithmetic
building blocks in datapaths and optimizes their corresponding
implementation. We use the BBDD package to rewrite data-
paths prior to the synthesis with the commercial tool. In this
approach, such synthesis tool may be precluded to identify
arithmetic operations but forced to ordinarily synthesize the
restructured circuit, making the BBDD representation the main
responsible for the quality of the designed datapath.

Table II shows synthesis results. On average, datapath de-
signed by BBDD re-writing followed by the standard synthesis
tool are 11.02% smaller and 32.29% faster as compared to the
same circuits designed by the standard synthesis tool alone.
BBDD representation is capable to evidence advantageous
logic structures in datapath, not apparent with traditional
synthesis techniques.

VI. CONCLUSIONS

We presented the theory, and software implementation,
for efficient manipulation of Biconditional Binary Decision

Diagrams (BBDDs), a novel class of decision diagrams based
on an equality/inequality switching paradigm. As compared
to a state-of-art decision diagram manipulation package, the
developed BBDD software achieves an average node count
reduction of 19.48% and a speed-up factor of 1.63x, measured

over a standard set of logic benchmarks. The key factors
enabling such improvements are (i) strong canonical form pre-
conditioning of stored BBDD nodes, (ii) recursive formulation
of Boolean operations in terms of biconditional expansions,
(iii) performance-oriented memory management and (iv) ded-
icated BBDD re-ordering techniques. Employed in the synthe-
sis of datapaths, the BBDD manipulation package is capable
to advantageously restructure arithmetic operations producing
11.02% smaller and 32.29% faster circuits, as compared to a
commercial synthesis flow.

ACKNOWLEDGEMENTS

This research was supported by ERC-2009-AdG-246810.

REFERENCES

[1] C.Y. Lee, Representation of Switching Circuits by Binary-Decision Pro-
grams, Bell Systems Technical Journal, 1959.

[2] S.B. Akers, Binary Decision Diagrams, IEEE Trans. Comp., C-27(6):509-
516, June 1978.

[3] R.E. Bryant, Graph-based algorithms for Boolean function manipulation,
IEEE Transactions on Computers, C-35: 677-691, 1986.

[4] C. Yang and M. Ciesielski, BDS: A BDD-Based Logic Optimization
System, IEEE Trans. CAD, vol. 21, pp. 866-876, July 2002.

[5] S. Malik et al., Logic verification using binary decision diagrams in a
logic synthesis environment, Proc. ICCAD, 1988.

[6] M.S. Abadir et al., Functional test generation for digital circuits using
binary decision diagrams, IEEE Trans. Comput., C35 (1986), pp.375-379.

[7] C. Scholl, R. Drechsler, B. Becker, Functional simulation using binary
decision diagrams, Proc. ICCAD, 1997.

[8] K.S. Brace, R.L. Rudell, R.E. Bryant, Efficient implementation of a BDD
package, Proc. DAC, 1990.

[9] R. Rudell, Dynamic variable ordering for ordered binary decision dia-
grams, Proc. ICCAD, 1993.

[10] R.E. Bryant, On the Complexity of VLSI Implementations and Graph
Representations of Boolean Functions with Application to Integer Multi-
plication, IEEE Trans. on Comp., vol. 40, no. 2, p. 205, February 1991.

[11] S. Minato, Zero-suppressed BDDs for set manipulation in combinatorial
problems, Proc. DAC, pp. 272-277, 1993

[12] R. Drechsler et al., Ordered Kronecker functional decision diagrams: a
data structure for representation and manipulation of Boolean functions,
IEEE Trans. CAD, Vol. 17, Issue 10, pp. 965-973, Oct. 1998.

[13] E.I. Goldberg, Y. Kukimoto, R.K. Brayton, Canonical TBDD’s and Their
Application to Combinational Verification, Proc. IWLS, 1997.

[14] L. Amaru, P.-E. Gaillardon, G. De Micheli, Biconditional BDD: A
Novel Canonical Representation Form Targeting the Synthesis of XOR-
rich Circuits, Proc. DATE 2013.

[15] R. Drechsler, B. Becker, Binary Decision Diagrams: Theory and Imple-
mentation, Kluwer Academic Publisher, 1998.

[16] M. De Marchi et al., Polarity control in Double-Gate, Gate-All-Around
Vertically Stacked Silicon Nanowire FETs, Proc. IEDM 2012.

[17] Y. Lin et al., High-Performance Carbon Nanotube Field-Effect Transis-
tor with Tunable Polarities, IEEE Trans. Nanotech., 4(5): 481-489, 2005.

[18] D. Lee et al., Combinational Logic Design Using Six-Terminal NEM
Relays, IEEE Trans. CAD, Vol. 32, Issue: 5, pp-653-666, May 2013.

[19] BBDD package available at: http://lsi.epfl.ch/page-102566-en.html.
[20] CUDD: CU Decision Diagram Package Release 2.5.0
[21] P. Tarau, Pairing Functions, Boolean Evaluation and Binary Decision

Diagrams, Proc. CICLOPS, 2008
[22] Predictive Technology Model (PTM), http://ptm.asu.edu/

