
A Tree Arbiter Cell for High Speed Resource
Sharing in Asynchronous Environments

Syed Rameez Naqvi and Andreas Steininger
Department of Computer Engineering, Vienna University of Technology, Austria

{rnaqvi, steininger}@ecs.tuwien.ac.at

Abstract—We present a novel tree arbiter cell that allows
a pipelined processing of asynchronous requests. In this way
it can achieve significantly lower delay in the critical case of
frequent requests coming from different clients. We elaborate
the necessary extension to facilitate a cascaded use of this cell in
a tree-like fashion, and we show by theoretical analysis that in
this configuration our cell provides better fairness than the stan-
dard approach. We implement our approach and quantitatively
compare its performance properties with related work in a gate-
level simulation. In our sample asynchronous Networks-on-Chip
application our new cell proves to increase the throughput of
three different designs available in literature by approximately
61.28%, 69.24%, and 186.85% respectively.

I. INTRODUCTION

Networks-on-Chip (NoCs) have become the de-facto stan-
dard for interconnect within Systems-on-Chip (SoCs). They
comprise a grid of routers with physical links between them,
and communication within the SoC is established by forming
an appropriate path of these physical links. Although in detail
many different switching schemes are in use, they all have
in common that the physical links are shared as they can be
potentially used for various communication paths. Accesses to
the physical link need to be appropriately orchestrated among
the potential clients to avoid collisions. While this is relatively
easy to achieve in a globally synchronous system, the modern
Globally Asynchronous, Locally Synchronous (GALS) SoCs
with their multiple, often uncorrelated, timing domains usually

r1

g1

r2

g2

(a)

(b)

CRreq+

C1req+

r1+

g1+

C1gr+

C2req+

r2+

g2+

C2gr+

C2req−

r1−

g1−

C1gr−
CRgr−

r2−

g2−

C2gr−

CRreq−

C1req−

CRgr+

Fig. 1. STG of a 4-phase Two Input TAC

C

C

&

&

&

&

&
u0

u1

u2u3

u4

u5

u6

buffer buffer

client1

client2

r1 r2 g2g1

C1req

C2req

C2gr

C1gr

TAC

CRgr

CRreq
Common
Resource

MUTEX

Fig. 2. Gate level netlist of a 4-phase Two Input TAC

employ a much more sophisticated arbitration. One solution
here is to synchronize all clients’ requests to one time domain,
thus reducing the problem to the globally synchronous case.
However, synchronizers exhibit imperfect reliability, and they
incur a performance penalty [1]. The other solution is to
employ dedicated arbitration circuits (or just arbiters), the
genuine purpose of which is to resolve conflicting requests,
and to allow their arrival times to be arbitrary. Since the
asynchronous NoCs make heavy use of arbitration, any delay
introduced by the arbiter will degrade the NoC performance
in terms of latency and throughput. With this motivation we
propose a novel arbiter circuit in this paper that is faster
than existing ones, as it allows pipelined, rather than strictly
sequential, processing of accesses in an asynchronous setup.

II. BACKGROUND AND RELATED WORK

The purpose of an arbiter is to control the access of several
clients to a shared resource (like a physical link in a NoC).
It is known that if the contending requests arrive at (nearly)
the same time, choosing the winner may involve the risk
of metastability. A mutual exclusion (MUTEX) circuit [1] is
therefore employed for this decision. Its operation using a
4-phase protocol is depicted in fig. 1(a): The activation of
the earliest request r1 is acknowledged by a grant g1 that
remains activated until r1 is withdrawn. At that point the
second request r2, if activated, will get serviced similarly.

Although in principle a multi-way MUTEX can be built
[1], the simpler two-way MUTEX is often preferred, and the
remaining arbitration logic is arranged in several levels, so as
to extend a two-way (n-way) arbiter to a four-way (2n-way)
arbiter. The circuit used for this purpose is the tree arbiter cell
(TAC); its low latency 4-phase version that serves two clients
has been proposed by Yakovlev et al. [2], and we will use
it throughout the rest of the paper to illustrate our approach.978-3-9815370-2-4/DATE14/ c©2014 EDAA

Like most of the asynchronous circuits, the TAC is modeled
using a signal transition graph (STG) presented in Fig. 1(b),
which synthesizes to the circuit shown in fig. 2. An STG [1]
is an interpreted petrinet, and it depicts the dependies between
the input and output signals.

A close analysis of the TAC’s STG reveals a possible win-
dow of improvement (in terms of its latency): On the one hand,
the down transitions on clients’ requests (C1req−, C2req−)
release the MUTEX (r1−, r2−) and the common resource
(CRreq−) simultaneously. On the other hand, however, the
requests to lock the arbiter (C1req+, C2req+) first acquire
the MUTEX (r1+, r2+), followed by reserving the common
resource (CRreq+) in series. Ghiribaldi et al. [3] recently
proposed an efficient 4-way arbiter that exploits the same
window to achieve higher performance in their arbitration
scheme. A MUTEX forms the common resource which is
reserved and released in parallel with the local MUTEXs. This
roughly saves delay of a MUTEX and that of a standard gate.

Some fast fixed priority programmable arbiters already exist
in literature that work perfectly in synchronous environment
(routers) [4], [5]. All those arbiters, in addition to the arbitra-
tion circuitry, require scheduling logic to dynamically generate
new priority vectors every clock cycle. Although such priority
vectors may be generated for asynchronous environments as
well, the arbitrary arrival time of the input requests in that
case makes the choice of the winner tedious, and usage of
the MUTEX, in any case, becomes mandatory. Furthermore,
the scheduling logic itself incurs area, power, and performance
penalties. All these observations make such arbiters irrelevant
to asynchronous design styles.

Felicijan proposed a low latency static priority asynchronous
arbiter in [6]. The design did not need any explicit scheduling
logic, since it comprised a linear priority module, which
allowed one of the n clients, ck, to block the rest (k−1) having
lower priority. The drawback associated with this approach is
the number of MUTEXs that scales linearly with clients, and
the number of Muller C-elements also scales badly.

In this work we propose an arbitration logic for fair and
nondeterministic decision (where all clients have the same
priority). Like [6] we assume that the arbiter is not the slowest
component of the design, and that the clients, once received the
grant, would keep the arbiter reserved at least for the duration
longer than the latency of the arbiter. These assumptions are
not so optimistic, especially for switch controllers in NoCs,
where the header flit reserves the shared resources, and the
tail flit releases them. Although our methodology is equally
applicable to Ghiribaldi’s approach [3], we only emphasize
on the TAC because of its simple architecture that allows
systematic modifications that are relatively easy to illustrate.

III. PROPOSED TREE ARBITER CELL

A. Window of Improvement

Refer to fig. 1(b). Once the common resource (further called
CR) is acquired (CRgr+) and the grant to one of the clients is
set (e.g., C1gr+), then the control waits for the corresponding
client’s request to go low (C1req−) before the MUTEX and

C2req+

r2+

g2+

C2gr+

r2−

g2−

C2gr−

r1+

g1+

C1gr+

r1−

g1−

C1gr−

C1req− C2req−

C1req+

C2req

&

&
&

&
C

C

C1gr

C2gr

M

C1req

(a) (b)

Fig. 3. Proposed 2-way Arbiter: (a) STG, (b) conceptual schematic

the CR may be given to the other client (if already active). Now
assume that C1 takes indefinitely long to remove its request,
which forces C2 to wait indefinitely as well. Let’s denote this
waiting time (C1gr+→ C1req−) as wtC1. Once C1 has set
its request low, a sequence of events must take place before
C2gr+ could happen (We refer to the sequence Cxreq− →
Cygr+ as the handoff HCxCy in the following). These include
the release of the MUTEX and the CR (propagation delay of
the arbiter while a grant switches from high to low, tphl),
which happen simultaneously, followed by the events needed
to reserve both of them for C2 (propagation delay when a grant
switches from low to high, tplh). While it is not possible to
optimize wtC1 (a client can keep the arbiter locked for as long
as it needs it), the latter two, being local to the TAC, however,
can be reduced. In fig. 2, the gates {u3, u5}, and {u4, u6}
form a mutual interlocking mechanism, through which C1gr+
prevents C2gr+ to happen, and vice versa. Consider if, in our
example, g2 would be already active, and the CR reserved
when C1gr− happens, then C2gr+ only sees a small delay,
thereby eliminating tphl, and significantly optimizing tplh.

B. Design Concept

For simplicity we begin describing our methodology for
the case of two clients. Fig. 3(a) presents the STG of our
arbiter, with all the instances relevant to the CR removed. A
small difference that we have brought into this mechanism is
the release of the MUTEX (r1−, r2−) without waiting for
the client’s request going down: since the mutual interlocking
already prevents the pre-mature handoff, the MUTEX is free
to be allocated to the other client. In simple words, Cygr+
will not happen until Cxreq− has happened, however Cy
already possesses the MUTEX. Fig. 3(b) presents a possible
implementation of the STG. Although our strategy allows the
waiting client to acquire the MUTEX while the winner is yet
to release it knowingly, one still might argue that the delay
introduced through the C-gates and the cross coupled AND-
gates, would be larger than that for releasing/acquiring the
MUTEX itself. If so, there is no obvious benefit in terms of
performance, and we unnecessarily introduced a number of
gates in the system. The benefit, however, will become visible
when we apply the same strategy to the TAC, discussed next.

C1req+ C2req+

r1+ r2+

g1+ g2+CRreq+

CRgr+

CRreq−

CRgr−

C1gr− C2gr−

g1−

r1− r2−

g2−

C1gr+
C2gr+

C2req−C1req−

Fig. 4. STG of the proposed TAC

C

u10

u9

&

&

&
u0

u1

u2
C C

C

u5u7

&
u4

&

C1req

C1gr

C2gr

C2req

u3

u8 u6

CRreq

CRgr

g1

g2

r2

r1

Fig. 5. Circuit of the proposed 2-way Arbiter

C. Adaptation to TAC
The STG shown in fig. 4 illustrates how the TAC adapts

to our modifications. A client may acquire the arbiter by
following the identical sequence of events as in case of the
standard TAC, i.e., the requesting client first acquires the local
MUTEX, followed by acquiring the common resource (like [3]
we use a MUTEX here as well, further called CRM). The
difference that we propose shows up in the other phase: As
soon as one of the clients receives the grant, the CRM and
the local MUTEX are simultaneously released, and the other
client is allowed to lock both of them. The latter type of
locking may be termed as virtual locking, since the first client
is still in charge of the CRM until it literally lowers its request.
This STG when synthesized generates the schematic shown in
fig. 5. Apparently it seems to have incurred a further overhead
in terms of area and latency; the benefit, however, is that tphl
no more depends on wtCx (it is initiated as soon as the grant
is given). So far we have simply generated a circuit that meets
our criterion. However, there are some other challenges that
we address in the following in turn.

1) Local clients’ interlocking: As may be observed in fig. 5,
the handoff HCxCy still sees a delay of three C-gates and an
AND-gate1. Since this interlocking is essential it cannot be
avoided, but this latency may be reduced to two C-gates by
adopting the interlocking shown in fig. 6. Note that all the C-
gates used in the method are asymmetric, i.e., the inverted
inputs are only relevant during low to high transitions of

1Recall that we assume wtCx is sufficiently large to allow the other client
to acquire the local MUTEX and virtually reserve the CRM in the meantime.

C

CC

C

C1req

C2req

g1

g2

CRgr

C2gr

C1gr

u6

u3

u4

u5

Fig. 6. Proposed rapid interlocking within 2-way Arbiter

the gates; symmetric C-gates in place could easily lead to
deadlocks. While u5 and u6 interlock each other to prevent
the premature handoffs, u3 and u4 do the same to guarantee
a safe handshake protocol with the CRM.

A small improvement in terms of performance may be
brought into the circuit by adopting the methodology proposed
in [3]: The CRM may be reserved simultaneously with the
local MUTEX. This only requires the gates u0 and u1 to have
C1req and C2req as inputs, instead of g1 and g2 respectively.

2) Interlocking multiple TACs: In a tree structure, arbi-
trating multiple clients (n = 2k) requires multiple TACs
(
∑k−1

i=1 2k−i) to be employed in log2n − 1 levels, fig. 7.
At the last level (n = 4), a CRM may be placed as the
common resource for both the TACs, as already mentioned.
Interestingly, as soon as one of the TACs, say T1, has released
the CRM, while one of its grants, say C1gr, is still high, the
other TAC, say T2, may acquire the CRM, and one of its
grants, say C3gr, may also go high, thus violating the most
fundamental property of an arbiter. This happens because our
pipelined scheme relies on the mutual interlocking between
the two grant outputs within a TAC, which is not effective
across different TACs. Just like C1 prevents C2 within T1 from
getting a grant in parallel via interlocking, it must also do the
same to C3 and C4 in T2. A speed independent solution will
require complete handshaking between the two TACs, which
may be inserted in the STG of fig. 4: The winning TAC, T1,
sends out a lock others request signal right after CRgr+. On
T2 the same signal appears as lock me request, which must
be mutually exclusive with CRgr+, since the CRM already
belongs to T1. At this point T2 sends the acknowledgment, and
does not allow any of its grants to go high until the unlock
signal has arrived from T1. This completes the handshake
protocol between the contending TACs. The STG in fig. 8
depicts this logic (for simplicity we have shown the case of
a single client), which guarantees speed independence. This
solution, however, may incur a performance penalty since T1
has to wait for the acknowledgment before its Cxgr+ could
happen. This may be slightly relaxed by making the following
timing assumptions.

3) Timing assumptions: We insert an AOI-gate be-
tween the output grants of the TAC that generates the
lock others request signal, and a pair of AND-gates (one for
blocking each client) that implements the required functional-
ity of the lock me request signal, as shown in fig. 9. Recall
from the previously discussed scenario that T1 and T2 can
generate simultaneous grants if lock others request from the
former does not reach the latter timely. The condition for safe
interlocking is evaluated as follows: T1 while releasing the

TAC
1

R
C

TAC
1

TAC
2

TAC

TAC
4

1

TAC

2
k−1

n = 4

n = 8

n = 2
k

TAC

TAC

2

3

M

Fig. 7. Arrangement of TACs in several levels

Fig. 8. STG of the proposed TAC with multiple TACs interlocking

CRM roughly sees the delay of two NAND-gates (u0+, u2−),
handoff at the CR (CRgrT1−, CRgrT2+), and a wire delay2

between the TAC and the CRM, refer to fig. 5. On the other
hand, T2 between reserving the CR and generating a grant
sees two C-gates (u5+→ u7+, or, u6+→ u8+) and a wire
delay. T1 can block T2 within a delay of one AOI-gate. For
the TAC interlocking to be safe, the following condition must
hold true, which we believe is quite simple to achieve;

δ(AOI−) + δ(wire) < δ(u5+) + δi(u7+) + δ(wire)) +

δ(u0+) + δ(u2−) + δ(HCRM)

Here δ(X) and δi(Y) refer to the switching and inertial delays
of gates X and Y respectively. HCRM refers to the handoff
at the CRM. For simplicity, if we assume similar wire delays
on both sides of the equation, then the rest suggests that the
AOI-gate must be faster than a C-gate, two NAND-gates and
a MUTEX connected in series, which is very safe.

D. Unfairness Window
Fair arbitration demands that the grant be given to the first

amongst all the clients that requested the CR. Neither the

2We assume that wires within the same TAC have zero communication
delay, while those connecting with other cells cost some non-negligible delays.

C

CC

C

g1

g2

CRgr

u6

u3

u4

u5

C2gr

C2req

C1gr

C1req

AOI

lock_others lock_me

Fig. 9. Schematic incorporating the interlocking logic

design of the TAC, nor of that proposed in [3] fulfils this
demand. For example, consider a scenario where clients C1
and C2 request for the CRM simultaneously through T1, and
C1 wins the grant while C2 is put to wait. Now after a while
C3 makes its request through T2, which will immediately
reach the other input of the CRM, since C4 is still inactive
on the same TAC. Although C2 made its request before C3,
the latter would unfairly win the grant as soon as C1 had
released it. This unfairness happened because the request from
C2 to the CRM still had to go through two NAND-gates
within T1, and this time was sufficient for T2 to acquire the
CRM. In fig. 10 we have presented the maximum length of
this unfairness window, i.e., the period during which a client
can unfairly reserve the CR. The abbreviations CR and M
refer to the delays inserted due to the CRM and the local
MUTEX respectively, and FL and BL refer to the forward and
backward latencies of the TAC (Cxreq+/− → CRreq+/−,
CRgr + /− → Cxgr + /−). Note that the events shown in
part (a) of the figure correspond to the response of the standard
TAC, and (b) presents the behavior of the proposed circuit.

The request of C2, which occurred at time instance t2,
reached the CRM at t12 due to long wtC1. C3’s request,
meanwhile, reached and acquired the CRM at t11 and t13 re-
spectively. Without losing generality, the following condition,
if true, will lead to unfair grants;

t11 < t12

By substituting the values for t11 and t12 as depicted, and
making few simplifications, such as, FL and BL of T1 are
approximately equal to that of T2, and rise and fall times of
each gate are identical, the condition becomes;

t8 < t1 + 2(FL+BL) + wtC1

In the worst case, C2req may occur at the same time with
C1req and still lose the grant, i.e., t1 = t2;

t8 < t2 + 2(FL+BL) + wtC1

where wtC1 may be substantial.
In contrast to above, the same condition using the proposed

circuit is given by;

t11 < t17

which upon simplification becomes;

t8 < t2 + 2(FL+BL)

Clearly, the unfairness window in the latter case is restricted
to releasing and acquiring the arbiter in quick succession, and
therefore guarantees relatively fairer arbitration.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t12t11 t14

C1req

C2req

CRreq1

CRgr1

C1gr

C2gr

C3req

CRreq2

CRgr2

C3gr

t13

FL

CR

BL

wt_Cx

FL-M

CR

BL

FL

CR

BL

FL-M

BL + FL-M

t15 t16 t17

CRreq1

CRgr1

FL-M
CR

CR

(a)

(b)

t5 t18

Fig. 10. Worst-case Unfairness Window: (a) TAC, (b) Proposed Circuit

IV. IMPLEMENTATION AND EVALUATION

We implemented four different designs for a four-clients
setup, (a) standard TAC, (b) Ghiribaldi’s 4-way arbiter [3], (c)
SPA proposed in [6], and (d) the pipelined high speed TAC
proposed in this work. All of the designs were synthesized for
90nm technology.

A. Worst and Best Case Latencies

Table I presents the latency of each arbiter with just one
active client. Note that [6] presents a range of latencies; this
is due to the different sized C-elements associated with each
client: the lowest priority client has the largest C-element, and
therefore, is the slowest as well. Something that is not apparent
in the table is the fact that the cycle time for each design may
be interpreted differently: For the first two, the given cycle
times correspond to the best-case since this evaluation does
not consider any delays due to the environment, otherwise
the cycle time for each of them would linearly grow. For the
remaining two designs, this time corresponds to the worst-case
since both of them have some (virtual) pipelining employed,
which would become visible when multiple clients were active
and the delays of the environments were also considered.
In simple words, increase in the cycle time (due to the
environment) for one client, reduces tphl for itself, and tplh for
the other client. This complementary behavior of the clients is
not visible in our evaluation. For Felicijan’s work, this shall
have a marginal impact on tphl, roughly equivalent to saving
a delay of a cascaded AND-gate and C-element pair. Refer to
[6] for details.

TABLE I
ARBITERS’ LATENCIES FOR ONLY ONE ACTIVE CLIENT

Design tplh tphl Cycle time
(ps) (ps) (ps)

STD TAC 401 266 667
Ghiribaldi 324 343 667
Felicijan 278 — 536 217 — 336 495 — 872
Proposed 400 548 948

Finally for our design, the given values hold true if only one
client is active, and wtCx is as small as the delay of an inverter,
which, as we have already argued, is extremely pessimistic.

0 100 200 300 400 500 600

Cxgr+ --> Cxreq- (wt_Cx) (ps)

0

100

200

300

400

500

600

tp
h
l
(p

s)

Fig. 11. Impact of increasing wtCx on latency of the proposed arbiter

In that case there is no slack time for our proposed pipelining
to become effective. Fig. 11 depicts the improvement in tphl
with increasing wtCx. Starting from the delay equivalent to an
inverter (corresponding to the worst case latency) up to a point
around 360ps, tphl falls almost linearly with wtCx. From
this point onwards, the latency becomes constant (206ps), and
is governed by the logic that we have added on top of the
standard TAC. This adds to tplh to represent the best case
cycle time of 606ps for our design.

B. Handoff Latencies

Once again we assume that clients C1 and C2 share a local
MUTEX, and C3 and C4 do the same with each other. This
means that a handoff between C1 and C2 (in any direction)
will be much slower than their handoffs with C3 or C4 for all
the designs except for [6] in which HC1C2 shall be the fastest,
and HC1C4 shall be the slowest. Similarly for all the designs
except [6], handoffs between C3 and C4 will be slower than
their handoffs with C1 or C2 on the other arbiter.

Table II summarizes these handoff latencies. For designs
1,2 and 4, the worst case latencies were computed by placing
an inverter between Cxgr and Cxreq that would minimize
wtCx. The best case latencies were computed by making
wtCx longer than the arbiters’ internal latencies. Note that
the first two designs have identical best and worst case values.
Because of its dependence upon wtCx, the results obtained for
the proposed work are so diverging. Given an environment
satisfying our assumptions, the proposed work can result in
significantly faster arbitration, especially with all eager clients.

As far as design 3 is concerned, it is rather difficult to
estimate the worst case latencies. In their design, the authors
have used two variable environments: right hand side (rhs),
and left hand side (lhs) of the arbiter, the former of which
must be slower than the arbiter’s internal latency in order for
the design to work correctly. In our evaluation, that is how we
computed the best case latency for this design. As a result, the
worst case is determined by the upper bound on the rhs logic,
which is obviously design specific.

To evaluate the threshold client’s delay essential for the
proposed methodology to allow high speed resource sharing,
we have observed the behavior by gradually increasing wtCx

from 20ps to 600ps, and plotting it against the average case
latencies of other designs. Fig. 12 and fig. 13 present the
handoff latencies between the clients on the same and different
TACs respectively. It may be observed that beyond 200ps, the
proposed methodology achieves the best throughput, which

TABLE II
HANDOFF LATENCIES

Design best case worst case best case worst case
C1→ C2 C1→ C2 C1→ C3 C1→ C3

C1→ C4 C1→ C4
(ps) (ps) (ps) (ps)

1 STD TAC 613 613 355 355
2 Ghiribaldi 619 619 328 328
3 Felicijan 740 - 814 -

889 -
4 Proposed 299 764 119 410

20 46 100 150 200 300 400 500 600

Cxgr+ --> Cxreq- (wt_C1) (ps)

0

100

200

300

400

500

600

700

800

H
a
n
d
o
ff

_C
1

C
2

 (
p
s)

This work
STD TAC
Ghiribaldi
Felicijan

Fig. 12. Impact of wtCx on handoff latency on the same TAC

comes to saturation around 500ps mark. The saturation occurs
since the elapsed time is sufficient for the virtual pipelining
to have effectively completed its task in the background, and
further delay of the client should not bring any improvement.

One advantage that the design 3 enjoys over the rest is
its guarantee to not generate overlapping grants. In all other
circuits, due to different rise and fall times of the standard
gates, it may be possible that shortly before the grant to client
1 or client 2 has been removed, the grant to client 3 or client
4 is already set (this equally applies vice versa). Therefore
all those designs require the clients to have some decoupling
logic with the CR (that forces a null into the protocol no
matter the grants are overlapping) to ensure safe handshaking.
This additional logic will add a small performance overhead
on designs 1, 2 and 4, which is not included in our analysis.

C. Throughput Estimation

To have a fair estimate of the best case throughput for
each of the four designs considering equal priority traffic,
we simulated two different orders of arbitration. In the first
one, called alternating order, we made sure that the requests
from the clients arrived simultaneously, leading to a round
of arbitrations, in the order of grants G1, G3, G2, and G4
(therefore only observing the handoffs between the clients

20 46 100 150 200 300 400 500 600

Cxgr+ --> Cxreq- (wt_C1) (ps)

0

100

200

300

400

500

600

700

800

900

h
a
n
d
o
ff

_C
1

C
3

/C
1

C
4

 (
p
s)

This work
STD TAC
Ghiribaldi
Felicijan

Fig. 13. Impact of wtCx on handoff latency between different TACs

on different TACs). In the second case, called sequential, the
requests from the clients arrived strictly in the order C1, C2,
C3, and C4 (with sufficient delays in between, so that the effect
of handoffs between the clients on the same TAC could also
be observed), leading to the grants being given in the same
manner as well (G1 → G4). Table III presents the throughput
for each design corresponding to the two orders of arbitration,
measured in Mega rounds (of arbitration) per second (Mrps).
It is evident from the results that on average, the proposed
work promises around 61.28%, 69.24%, and 186.85% higher
throughput than the designs 1,2, and 3 respectively.

TABLE III
COMPARISON OF THROUGHPUT

Design Throughput (Mrps)
Alternating Sequential

1 STD TAC 400 330
2 Ghiribaldi 384 312
3 Felicijan 206 206
4 Proposed 666 515

V. CONCLUSION

Arbitration is essential where resources need to be shared,
and arbiter performance can have non-negligible impact on
overall system performance. In this work we have proposed
a novel tree arbiter cell that allows a pipelined processing of
requests, i.e. arbitrating for the next request while the current
one is still ongoing. The extra logic required for this feature
initially increases the arbiter delay; however, in the relevant
case of frequent requests from different clients our scheme
yields a considerable speed-up. We have introduced an inter-
TAC communication path for cascaded use of our TAC cell
that not only enforces exclusive activation of a single grant
at a time, but also improves the fairness of the arbitration
process. Our simulation results clearly indicate that in most
realistic cases our scheme provides superior performance; in
an example NoC application we gained a speed-up of 61.28%,
69.24%, and 186.85% as compared to three different designs
from literature. In environments where one client is more eager
than the rest, designs 1 and 2, having the smallest cycle times,
shall prove more useful than the proposed methodology.

REFERENCES

[1] D. J. Kinniment, Synchronization and Arbitration in Digital Systems.
Wiley, 2007.

[2] A. Yakovlev, A. Petrov, and L. Lavagno, “A low latency asynchronous
arbitration circuit,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 2, no. 3, pp. 372 –377, sept. 1994.

[3] A. Ghiribaldi, D. Bertozzi, and S. M. Nowick, “A transition-signaling
bundled data noc switch architecture for cost-effective gals multicore
systems,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2013, 2013, pp. 332–337.

[4] G. Dimitrakopoulos, N. Chrysos, and K. Galanopoulos, “Fast arbiters for
on-chip network switches,” in Computer Design, 2008. ICCD 2008. IEEE
International Conference on, 2008, pp. 664–670.

[5] C.-H. Huang, J.-S. Wang, and Y.-C. Huang, “Design of high-performance
cmos priority encoders and incrementer/decrementers using multilevel
lookahead and multilevel folding techniques,” Solid-State Circuits, IEEE
Journal of, vol. 37, no. 1, pp. 63–76, 2002.

[6] F. Feliciian and S. Furber, “An asynchronous on-chip network router with
quality-of-service (qos) support,” in SOC Conference, 2004. Proceedings.
IEEE International, sept. 2004, pp. 274 – 277.

