
Provably Minimal Energy using

Coordinated DVS and Power Gating

Nathaniel A. Conos, Saro Meguerdichian, Foad Dabiri, and Miodrag Potkonjak

Computer Science Department

University of California, Los Angeles

{conos, saro, dabiri, miodrag}@cs.ucla.edu

Abstract—Both energy and execution speed can be greatly
impacted by clock and power gating, nonlinear voltage scaling,
and leakage energy. We address the problem of coordinated
power gating and dynamic voltage scaling (DVS) to minimize the
overall energy consumption of an application under user-specified
timing constraints. We prove that a solution provided by our
convex programming formulation that uses at most two versions
of hardware, where each version uses its own constant voltages,
is optimal. Comprehensive evaluation of the new approach
demonstrates energy improvements over traditional DVS and
DVS and power gating techniques by factors of 1.44X–2.97X and
1.44X–2.82X, respectively.

I. INTRODUCTION

There is a wide consensus that energy is a premier de-
sign and operational metric for various computing systems
ranging from data centers and desktop computers to smart
phones and sensor networks. However, energy minimization
in these modern and pending systems for time sensitive tasks
is an increasingly complex and intractable problem because
of several interwoven degrees of freedom, such as supply
voltage management, leakage currents, and unit clock/power
gating. For example, dynamic voltage scaling (DVS) is by
itself complex because the various components (e.g. functional
units and cache memory) have highly differing energy-speed
of execution trade-offs. Therefore, the overall system execution
speed is a nonlinear function with discontinuities.

Additional challenges for energy minimization include the
significant overhead (ranging from hundreds to even thousands
of clock cycles) induced by voltage and frequency adjustments.
Leakage energy alone depends on several factors, including
the allocated hardware, supply voltage, processs variation, and
temperature [6][7]. It is well known that clock and power
gating are very effective energy saving techniques with rela-
tively low time and energy overheads. However, careful power
gating and DVS settings are still necessary when considering
the entire task schedule, since their aggregate overheads may
greatly impact the execution time.

We address the problem of minimizing the total energy
required to complete a computational task within a speci-
fied allocated time. We have developed a new approach that
combines the effectiveness of static power gating and DVS
techniques using a convex programming-based procedure. It
has been a long standing common wisdom that a single
voltage should be used for the execution of a task. It was

proven that this strategy is optimal when the energy-speed
dependency is convex. Recently, it was demonstrated that when
the relationship is non-convex, it is often more advantageous
to employ multiple voltages [4]. However, unless there are
drastic differences in speed and speed-energy products for a
given application, the benefits of the technique are limited. We
create these differences by realizing N versions of the pertinent
hardware using static power gating.

The essence of the approach is illustrated in Figure 1,
which shows energy-speed trade-offs for eight versions of
hardware used to realize a synthetic application. In Figure 1a,
there are eight points that correspond to eight power gating
options of the available hardware, operating at a single voltage.
The base hardware platform corresponds to the maximal-
resource hardware allocation 8 (blue hexagram). Allocations
7 (purple pentagram) through 1 (blue square) are allocations
with decreasing hardware resources. If our time constraint, for
example, requires a clock rate of 650 MHz, the best individual
configuration (without utilizing DVS or power gating tech-
niques) is allocation 8 at nominal supply voltage, requiring 4
mJ, as shown in Figure 1a.

In Figure 1b, there are eight sets of three points that
correspond to three operational voltages of each hardware
allocation. In this case, for the same timing constraint, the
optimal single configuration, where a configuration is com-
prised of a hardware allocation and operating voltage utilizing
DVS, is allocation 6 (yellow right-arrow) set to the highest
voltage, consuming 3 mJ (25% savings). Note that the selected
configuration is the lowest energy point that exceeds the speed
requirement. Figure 1c demonstrates how power gating can
be used to reduce the energy consumption by turning off the
unused hardware after the completion of the application. This
can be done because the speed of the chosen configuration is
faster than required. In this example, the energy consumption
is now 2.7 mJ (32.5% savings).

Finally, Figure 1d demonstrates our new approach that
uses coordinated DVS and power gating to provide provably
minimal energy. The first step is to find the convex enclosure
of the energy-speed points, consisting of piecewise linear
segments such that all points are either on the enclosure or
above and to the left of it. The intuition behind computing
the convex enclosure is that we can use a combination of the
two closest points on the enclosure that surround the target
speed requirement to execute the task using the minimum
amount of energy. In this example, the highest-voltage setting
of allocation 6 (yellow right-arrow) can be used for 42% of978-3-9815370-2-4/DATE14/ c©2014 EDAA IEEE

(a) (b) (c) (d)

Fig. 1: Motivating example with 8 hardware allocations at 3 voltages: (a) no DVS or power gating; (b) DVS but no power gating;
(c) DVS and power gating; and (d) our approach, coordinated DVS and power gating.

the required time (650−600
720−600), followed by a context switch to

allocation 4 (teal down-arrow) for the remaining 58% of the
execution time. This approach requires 2.2 mJ (45% savings).
Note that in this case changing the voltage between the two
optimal points was not required, but in general DVS can be
utilized, if needed, to switch to a different voltage.

It is crucial to note that switching between allocations
is realized by power gating subsets of microarchitectural
units to, for example, reduce the number of units or the
cache sizes. Thus, using n sets of power gating circuitry, 2n

hardware allocations can be realized. Our coordinated DVS
and power gating procedure is surprisingly effective, since
schedules utilizing only two voltages and two versions of
an implementation (hardware allocation) are used and can be
determined at compile time. There is only one context switch,
where either a subset of microarchitectural units are power
gated to realize a different allocation, or voltage is scaled, or
both. Therefore, the additional storage overhead is small and
the overhead for task management is negligible.

To summarize, the overall flow of the optimization pro-
ceeds as follows: (1) create the gating structure; (2) character-
ize the application of interest; (3) calculate the DVS impact;
(4) calculate the convex enclosure; and (5) select the two best
allocations at the two best voltages (two configurations total).

II. RELATED WORK

Dynamic voltage scaling methods have been proposed
since more than two decades ago. They address energy mini-
mization by only altering the supply voltages. Those methods
cover various sets of scenarios and system specifications
ranging from continuous to discrete supply voltages to achieve
energy efficiency, but these have mainly focused on dynamic
power consumption [11][17]. Researchers have also studied the
DVS techniques in conjunction with peripheral management
and further generalized the method to multiprocessors [9][18].

Leakage energy consumption and its impact on the overall
system energy dissipation have significantly grown because of
the continuous scaling of CMOS to miniature feature sizes. In
fact, for some 35-nm processes, leakage could potentially be
even larger than dynamic energy [5][6][13]. Therefore, a MIT
group has studied techniques to address leakage energy, where
leakage current is modeled at different levels of abstraction
[12]. Furthermore, DVS has been extended to control threshold
voltages (Vt) and therefore leakage current through adaptive
body biasing [16]. Various methods for simultaneous supply
voltage and threshold voltage scaling are also covered [1][10].

Power gating at the microarchitectural level has been
proposed to achieve further reductions in leakage, by gating
units when idle periods of 10 cycles or more are detected [8].
They achieve significant leakage savings, but only consider
one or two units. Furthermore, the impact of leakage current
on energy and the usage of various hardware have led to more
general and non-convex energy-speed models [12][14].

Our approach differs from all previous techniques because
we assume non-linear tradeoffs between energy and speed of
execution with an arbitrary number of discontinuities. Further-
more, we show that partial power gating and DVS can be
combined in a provably optimal way to minimize energy.

III. PRELIMINARIES

A. Energy & Delay Model

We adopt the energy and delay models used by Dabiri et al.
[4]. For a hardware with Ms resources, switching capacitance
is a function of the resources used, C(Ms), where one iteration
of the schedule takes Rs clock cycles, and the clock period
is T = 1

f
. Since energy is the integral of the instantaneous

power over time and each iteration takes RsT seconds, the
total energy (Etotal(s)) of this schedule for one iteration of the
schedule is:

Etotal(s) = RsTPtotal(s)

= RsT [
1
2αCV 2

ddf + VddIsub] (1)

In the above equation, Ptotal(s) is the total power consumption,
the sum of dynamic (charging the capacitive load C(Ms))
and static (leakage) power, where Isub is the subthreshold
current commonly used for approximating leakage. In the
optimizations done in this paper, for each schedule we utilize

the average energy per clock cycle
Etotal(s)

Rs
versus the schedule

speed Rs/T for one iteration.

The delay of CMOS based processing elements can be
stated as:

d = K ×
Vdd

(Vdd − Vt)α
(2)

where K and α are technology-dependent parameters. Equa-
tion 2 in its general form is used to model delay and its changes
with respect to operation frequency and supply voltage.

B. Multi-Allocation Architecture

Our objective is to minimize the energy consumption per
task or collection of tasks, while satisfying the system- and

Fig. 2: Energy-delay points for different configurations (8
allocations and 3 voltages) for the jpegdec benchmark.

application-imposed constraints, such as latency or through-
put. Equation 1 suggests that there are potentially two main
variables that can be controlled to alter system configurations.
One is the hardware capacitance (C), and the other component
is the supply voltage (Vdd), which leads to DVS techniques.

For the first component, we utilize processing elements
called hardware allocations, where each allocation effectively
has a different C(Ms) (refer to Equation 1). Allocations can
be individual processing units or can be constructed using a
subset of computational components from a larger computing
platform. Note that with n power gating hardware positions,
2n different hardware allocations can be created.

We are given (or designed) a set of hardware alloca-
tions, where each utilize different sets of hardware com-
ponents. An allocation vi is identified by a unique tuple,
vi ≡ (ei, di, si, Ri), where ei is the energy per clock cycle of
an allocation for a given schedule; di is the allocation’s delay
(latency) for a scheduling cycle; si is the allocation’s effective
speed; and Ri is the number of clock cycles to process a given
schedule on the allocation.

The second effective variable is the supply voltage (Vdd).
Energy optimization via dynamic or static voltage scheduling
and scaling is a very well studied problem. What distinguishes
this paper from previous work in DVS is that our methodology
is a hybrid of hardware resource management and voltage
scaling. The former corresponds to the fact that we potentially
utilize different hardware allocations in the scheduling (via
gating), while the latter indicates that each of these allocations
can have multiple discrete supply voltage choices.

C. Configurations

We assume to have M hardware allocations where each
can operate under K discrete supply voltages V = {Vdd1

, ...,
VddK

}, which then leads to N = M × K configurations.
Each configuration is represented as a hardware allocation-
supply voltage pair, mi = (vj , Vddk

). To each configuration
we shall assign an effective speed (computed by Equations
3 and 2) as well as a value for energy per clock cycle
(derived from Equation 4), where we represent a configuration
as mi(vj , Vddk

, si, ei). As can be observed, the configurations
have a similar representation as the hardware allocations,
which is natural since each hardware allocation is in fact a
configuration under a given supply voltage.

Assume a configuration mx is the fastest configuration
in the sense that for a given schedule it requires Rx clock

cycles, where Rx = min(R1, R2, ..., RN) and N is the
number of configurations. This configuration is called the base
configuration and its speed sx is said to be the clock frequency
fclk. We normalize other configurations’ specifications to the
base configuration and define the effective speed, si, for
configuration mi as follows.

The latency di of mi for a schedule which takes Ri clock
cycles is di = Ri/fclk. Consequently, if we assume that
the schedule requires Rx clock cycles but the operational
frequency (speed) of the configuration is si (not fclk), the
equivalent or effective speed of configuration mi is:

si = fclk ×Rx/Ri, (3)

which results in the same delay, di. Under this normaliza-
tion, switching across configurations is virtually equivalent to
⁀changing the operation frequency of the configuration under
the assumption that the required number of clock cycles
(Ri) remains the same. The energy per clock cycle of a
configuration is also normalized with Rx, yielding:

ei =
Ri

Rx

VddIsubT +
Ri

Rx

1

2
αCV 2

dd. (4)

Figure 2 shows energy consumption vs. latency for the
jpeg-decoder benchmark. In this graph, we have used 8 hard-
ware allocations, where for each allocation we show three sup-
ply voltages. We apply the normalization in Equation 3, which
leads to energy-speed points shown in Figure 3. Details of the
configurations (hardware allocation-supply voltage pairs) are
described in Section VI.

IV. PROBLEM FORMULATION

A. Optimization Objective

Our key objective is to use multiple configurations to
process a given task such that the total energy consumption
of the system is minimized, while the processing is completed
prior to a specified deadline. A scheduling output can be rep-
resented as an ordered series of configurations and the length
of time each configuration is scheduled for operations: Ψ =<
(m1, t1), (m2, t2), (mk, tk) >, where Mr = {m1, v2, ...,mN}
are the N configurations as defined in Section III-C, r is the
scheduled task, and the duration for which each configuration
mi is active is ti. Therefore, the total energy consumption for
this schedule and optimization objective can be defined as:

EΨ =

∫ T

0

P (ξ(t))dt =
R
∑

0

e(si)∆R (5)

minimize(Er), s.t.Dr =
∑

i;vi∈Vr

ti ≤ T (6)

where Dr is the processing delay/latency for the schedule Ψ
and T is the deadline.

B. Configuration Switching Overhead

Switching configurations has potentially two sources of
overhead: (1) power gating overhead caused by switching
across hardware allocations; and (2) voltage scaling overhead.
The overhead presents itself in both energy and delay.

1) Power-Gating Overhead: Power gating is done by plac-
ing a suitably sized header or footer transistor for a circuit
block. The amount of switching energy in the header device
(Eheader) and the number of cycles needed to power gate a
macro before reaching the break-even point (Nbreakeven) are
computed as [8]:

Eheader = 2CheaderV
2
dd ≈ 2WH

1

2
CswitchingV

2
dd. (7)

Nbreakeven = 2
1

2Lα

√

mVtWH

VddDIBL
(1 + 2

Csupply

Cswitching

), (8)

Parameter definitions are presented by Hu et al.; Nbreakeven

is shown to be about 10 clock cycles [8].

Assuming that the ratio of the header device WH is
constant for all the modules, the timing overhead of power
gating remains the same for the different schedules. However,
the energy overhead is a monotonic function of the number
of components in the schedule. Using Equations 7 and 8, this
overhead can be modeled as:

ǫij = f(vi, vj) ∝ |Ni −Nj |, (9)

δij = g(vi, vj) = δ. (10)

Equation 9 indicates that the energy overhead as a result of
power gating is a function of the difference in the resources
in hardware allocations vi and vj , whereas the delay overhead
could be assumed to be a constant value.

2) Voltage Scaling Overhead: Switching the supply voltage
from Vddi

to Vddj
creates overheads in energy (ǫij) and delay

(δij), which is represented by switching from configuration i
to j for each respective case. We use results from Andrei et
al. [1] and Martin et al. [16] to model these overheads as:

ǫij = Cr|Vddi
− Vddj

|2 + Cs|Vbsi − Vbsi |
2 (11)

δij = max(pVdd
|Vddi

− Vddj
|, pVbs

|Vbsi − Vbsi |) (12)

where Cr and Cs are constants for power rail capacitance and
substrate-well capacitance, respectively. Note that when a con-
figuration switch occurs, potentially both supply voltage Vdd

and body-bias voltage Vbs change. The delay overhead caused
by supply voltage and bias voltage changes are proportional to
pVdd

and pVbs
, respectively, and the larger delay of these two

will be the overall delay overhead.

V. OPTIMAL-ENERGY SCHEDULING

In this section, we derive a set of properties of our
formulation and an optimal N-configuration schedule that leads
us to the proposed methodology. This sections extends the
work in [4] by incorporating both hardware allocation as well
as operating supply voltage.

First, we illustrate methods for emulating any virtual
operating speed using a mixture of configurations. Consider
a simple example where there are two configurations m1

and m2. For the sake of simplicity, we have omitted the
configuration switching overheads in this example. Recall that
because the optimal solution uses at most two configurations,
requiring a maximum of one configuration switch, this over-
head is negligible. In order to run the system at speed s∗

(s1 ≤ s∗ ≤ s2) for a given interval [a, b], we first use

Fig. 3: Energy-speed points for different configurations for
the jpegdec benchmark. Note that the speed is normalized as
described in Equation 3.

configuration m1 in speed s1 for t1 seconds and m2 with s2
for t2 seconds, where t1 and t2 are:

t1 =
s2 − s∗

s2 − s1
× (b− a), t2 =

s∗ − s1
s2 − s1

× (b− a) (13)

where s∗ is the weighted average speed when the system is
run at speeds s1 and s2, indicating that in the duration of
[a, b] the system was operating at the virtual speed of s∗. In
the presence of switching overheads, the target speed would
be s∗δ = b−a

b−a−δ
s∗. In this scenario, if s∗δ < s2, then:

t1 =
s2 − s∗δ
s2 − s1

× (b− a), t2 =
s∗δ − s1
s2 − s1

× (b− a) (14)

Otherwise, s∗δ ≥ s2 indicates that in order to compensate for
switching delay overhead, effective speed should be more than
s2. Therefore, there is no need to use two configurations and
the processing can happen only with configuration m2 for the
duration of b− a:

t1 = 0, t2 =
s∗

s2
× (b− a) ⇒ s∗ = s2, t2 = b (15)

A. Convex Energy-Speed Curve

Given two configurations mi and mj with effective speeds
of si and sj , Eij is defined to be the the minimum energy per
clock cycle for a given virtual speed s∗. Thus, when consid-
ering configuration switching overhead, E ′

ij(s
∗) is simply the

minimum energy consumed between its representative virtual
speed or by a single configuration, as described by:

Eij(s
∗) =

ej − ei
sj − si

(s∗ − si) + ei, (16)

E ′
ij(s

∗) = min(Eij(s
∗) + ∆eij , ei). (17)

Using this notion of a continuous energy-speed definition,
we form a bounding curve on the energy-speed points of the
configurations. This curve is convex when switching over-
head is ignored and has a convexity property with switching
overhead under some conditions which are presented below.
Figure 3 shows this continuous energy-speed curve, which
will be the target operation space. When considering switching
overhead, the optimal bounding curve would have vertical
shifts (proportional to its energy overhead) and horizontal
segments. Horizontal segments are cases where running at a
higher speed than s* (e.g. a single configuration) would be
more energy efficient than switching between two surrounding
configurations due to the overhead. Note that the optimality of
the proposed algorithm still holds by just adding the energy
(ǫik) and speed (δij) overheads to the proof of Theorem 5.1.

TABLE I: Allocation parameters.

Allocation IDC LSU ALU MUL L1 L2

1 2 2 2 1 16KB none
2 2 4 2 1 16KB 32KB

3 4 4 4 2 16KB 32KB

4 4 8 4 2 16KB 32KB

5 8 8 8 2 32KB 64KB

6 8 16 8 4 32KB 64KB

7 16 16 8 4 32KB 64KB

8 16 32 16 8 64KB 128KB

TABLE II: Power (W) at max VDD .

Allocation IFU LSU MMU ALU MUL L2

1 0.33 0.17 0.05 0.19 0.89 none
2 0.33 0.17 0.09 0.19 0.89 0.37

3 0.38 0.22 0.10 0.25 1.19 0.37

4 0.38 0.22 0.10 0.25 1.19 0.37

5 0.63 0.37 0.37 0.82 1.19 0.64

6 0.63 0.37 0.37 0.82 3.85 0.64

7 0.88 0.55 0.91 0.82 3.85 0.64

8 1.02 0.64 0.91 1.48 6.92 1.10

B. N-Configuration Scheduling Algorithm

Theorem 5.1: There is an optimal N-configuration
scheduling where only two or less configurations are used
throughout the execution of a task

Proof: Assume there is an optimal configuration schedul-
ing Ψ which uses k different configurations where k > 2.
Furthermore assume m1, m2, and m3 are three consecutive
configurations in terms of energy consumption in the schedule
and each runs for a duration of t1, t2, and t3 seconds
respectively. We will show that there is another schedule Ψ∗

that can be derived from Ψ which uses one less configuration
and EΨ∗ ≤ EΨ while DΨ∗ ≤ DΨ. We omit the details for
brevity but there are two cases to consider in the proof:

• E13(s2) ≤ e2: This shows that by removing m2 and
only using m1 and m3, total energy consumption will be
reduced since s2 can be virtually achieved using equation
13, which leads to energy consumption compared to E2;
• E13(s2) > e2: This scenario itself is divided into three
cases: s∗ < s2, s

∗ > s2, or s∗ = s2, where s∗ is the
effective speed of the schedule when switching between
the three configurations. If s∗ < s2, it is trivial that s∗

can be created using only m1 and m2 with less energy
consumption. Similar arguments hold for s∗ > s2 and if
s∗ = s2 and it is evident that only m2 should have been
used for the whole execution of the task.

Therefore, we can reduce the number of configurations in
the schedule by one and still use less or equal amount of
energy. The same method is applied recursively till at most
two configurations remain in the schedule.

An immediate observation follows that for a given feasible
schedule, the average speed of the system, s∗ has a lower
bound of Rx/T where T is the schedule deadline and R is the
required number of clock cycles when the fastest configuration
is used. We call this speed the critical speed. The idea behind
the methodology is to utilize the maximum slack available and
run the system at the lowest speed possible, s∗, to minimize
the energy consumption. Algorithm 1 summarizes the optimal

scheduling for one task. For multiple tasks, we use the results
from [19] and apply the same scheduling with the observation
that for a critical speed, s∗, the schedule and configurations
are found using Algorithm 1. Note that the scheduling is the
implicit result of Algorithm 1.

Algorithm 1 N-Configuration Scheduling: Single Task.

1: Find the critical speed: s∗ = Rx/T ;
2: Find i and j such that E ′

ij(s
∗) is minimized (binary search);

3: Use Equation 15 to find the configuration and schedule times for
mi and mj ;

Theorem 5.2: Algorithm 1 results in the minimum energy
consumption per frame while meeting all hard deadlines.

Proof: From 5.1 we conclude that at most two configu-
rations are needed to find the minimum energy consumption.
Also, from step 2 of the Algorithm 1, the minimality of energy
consumption for 2-configuration schedules is guaranteed.

VI. EXPERIMENTAL RESULTS

We used the SimpleScalar-ARM simulator [3] to generate
single-threaded ARM7-ISA cycle accurate traces. Resources
considered are: 1) instruction fetch units (IFU); 2) load-store
units (LSU); 3) arithmetic logic units (ALU); 4) multipliers
(MUL); and 5) level 1 and 2 instruction/data caches (L1/L2)
(Table I). Our power model uses 45-nm parameters included
in McPAT [15]. We extract the power values for each modeled
resource for each configuration (Table I). Configuration energy
(ǫij) and delay (δij) overheads are computed using representa-
tive functional unit load, rail, and substrate capacitances using
equations in Section IV. We cover eight hardware allocations
and enable five discrete supply voltages (0.7, 0.8, 0.9, 1.0,
and 1.1V). Due to space constraints, Table II only lists the
hardware allocations’ combined dynamic and static powers at
the maximum supply voltage. We update the Wattch [2] model
with these values to generate total energy and runtime values
for each benchmark at each configuration.

We performed our evaluations on 13 different benchmarks,
considering 40 configurations comprised of 8 hardware alloca-
tions and 5 different supply voltages per allocation. We com-
pare our optimal coordinated DVS and power gating approach
against a) DVS alone and b) DVS and power gating. Recall
that both of these approaches use only a single allocation and
voltage, while our approach uses up to two allocations and two
voltages (two configurations) that achieve the optimal energy
for a given delay constraint.

Figures 4a and 4b illustrate the energy savings achieved
in comparison to these scenarios. The x-axis represents the
application and the y-axis is the normalized energy savings.
For each application, there are 8 columns corresponding to
the different allocations. For applications epicenc, g721enc,
g721dec, gsmdec, blowfenc, blowfdec, and sha, allocation
C5 could not be used to execute the application by the
given deadline. In this case, a black bar is shown below the
axis to indicate that the base case (either DVS or DVS and
power gating) does not have a feasible solution and therefore
no energy comparison can be made. Allocations C1-C4 are
omitted from the results because they could not be used by the
DVS and DVS and power gating approaches to execute any
applications within the allotted time. This is to be expected,
since these allocations have very limited hardware resources.

1.50X

1.59X

1.44X

2.97X

-1X

X

1X

2X

3X

4X

5X
E

n
e

rg
y

 S
a

v
in

g
s

Application

Energy Savings vs Optimal DVS

C5

C6

C7

C8

0X

(a)

1.44X

1.53X

1.38X

2.82X

-1X

X

1X

2X

3X

4X

5X

E
n

e
rg

y
 S

a
v

in
g

s

Application

Energy Savings vs Optimal DVS and Power Gating

C5

C6

C7

C8

0X

(b)

Fig. 4: Energy savings of our coordinated DVS and power gating approach vs. (a) DVS and (b) DVS and power gating. Note that
for a subset of applications, hardware allocation C5 is not fast enough to meet the required deadline. Furthermore, allocations
C1-C4 are omitted from the results because they could not meet the deadline for any application.

Fig. 5: Normalized energy consumption for a given delay
constraint for the epicenc benchmark using our coordinated
DVS and power gating approach.

Furthermore, Figure 5 shows the given deadline and result
for our approach for the epicenc application. It is clear from
the figure that although hardware allocations C1-C5 cannot
meet the deadline independently, the optimal result uses a
combination of allocations C6 and C3, whose highest-voltage
configurations are the surrounding points of the target speed
on the convex enclosure. For each allocation, the DVS-only
approach would consume energy equivalent to the energy
consumption of the lowest-energy configuration to the right
of the target speed. In the DVS and power gating approach,
the same configuration would be selected but powered off after
completing the task.

VII. CONCLUSION

We have developed a new approach for energy minimiza-
tion under timing constraints that combines the effectiveness
of power gating and dynamic voltage scaling (DVS) in a
coordinated manner. We use a convex programming procedure
to optimally solve the problem without placing any restrictions
on the energy-speed of execution relationship or the voltage
step values. The technique is highly practical; on standard
benchmarks, our method results in an average savings of
1.44X–2.97X and 1.44X–2.82X with respect to the best DVS
and DVS and power gating solutions, respectively.

REFERENCES

[1] A. Andrei et al., “Overhead-conscious voltage selection for dynamic and
leakage energy reduction of time-constrained systems,” DATE, pp. 518–

523, 2004.

[2] D. Brooks et al., “Wattch: a framework for architectural-level power
analysis and optimizations,” SIGARCH, vol. 28, pp. 83–94, 2000.

[3] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,”
SIGARCH, vol. 25, pp. 13–25, 1997.

[4] F. Dabiri et al., “Energy minimization for real-time systems with non-
convex and discrete operation modes,” DATE, pp. 1416–1421, 2009.

[5] Conos, N.A. et al., “Gate sizing in the presence of gate switching activity
and input vector control,” VLSI-SoC, pp. 138–143, 2013.

[6] Conos, N.A. et al., “Maximizing yield in Near-Threshold Computing
under the presence of process variation,” PATMOS, pp. 1–8, 2013.

[7] Conos, N.A. and Potkonjak, M., “A temperature-aware synthesis ap-
proach for simultaneous delay and leakage optimization,” ICCD, pp.316–
321, 2013.

[8] Z. Hu et al., “Microarchitectural techniques for power gating of execution
units,” ISLPED, pp. 32–37, 2004.

[9] C.-M. Hung et al., “Energy-efficient real-time task scheduling for a DVS
system with a non-DVS processing element,” RTSS, pp. 303–312, 2006.

[10] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynami-
cally variable voltage processors,” ISLPED, pp. 192–202, 1998.

[11] R. Jejurikar and R. Gupta, “Energy aware task scheduling with task
synchronization for embedded real time systems,” CASES, pp. 164–169,
2002.

[12] J. Kao et al., “Subthreshold leakage modeling and reduction tech-
niques,” ICCAD, pp. 141–148, 2002.

[13] H.-S. Kim, “Impact of scaling on the effectiveness of dynamic power
reduction schemes,” ICCD, pp. 382–387, 2002.

[14] R. Kumar et al., “Heterogeneous chip multiprocessors,” Computer, vol.
38, no. 11, pp. 32–38, 2005.

[15] S. Li et al., “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” MICRO, pp. 469–
480, 2009.

[16] S. M. Martin et al., “Combined dynamic voltage scaling and adaptive
body biasing for lower power microprocessors under dynamic work-
loads,” ICCAD, pp. 721–725, 2002.

[17] P. Rong and M. Pedram, “Power-aware scheduling and dynamic voltage
setting for tasks running on a hard real-time system,” ASP-DAC, pp. 473–
378, 2006.

[18] T. Wei et al., “Online task-scheduling for fault-tolerant low-energy real-
time systems,” ICCAD, pp. 522–527, 2006.

[19] F. Yao et al., “A scheduling model for reduced CPU energy,” FOCS,
pp. 347–382, 1995.

