
Partitioned Mixed-Criticality Scheduling on
Multiprocessor Platforms

Chuancai Gu1, Nan Guan1,2, Qingxu Deng1 and Wang Yi1,2
1Northeastern University, China
2Uppsala University, Sweden

Abstract—Scheduling mixed-criticality systems that integrate
multiple functionalities with different criticality levels into a
shared platform appears to be a challenging problem, even
on single-processor platforms. Multi-core processors are more
and more widely used in embedded systems, which provide
great computing capacities for such mixed-criticality systems.
In this paper, we propose a partitioned scheduling algorithm
MPVD to extend the state-of-the-art single-processor mixed-
criticality scheduling algorithm EY to multiprocessor platforms.
The key idea of MPVD is to evenly allocate tasks with different
criticality levels to different processors, in order to better explore
the asymmetry between different criticality levels and improve
the system schedulability. Then we propose two enhancements
to further improve the schedulability of MPVD. Experiments
with randomly generated task sets show significant performance
improvement of our proposed approach over existing algorithms.

I. INTRODUCTION

Multi-core processors are more and more widely used in
modern real-time embedded systems, which provide great
computing capacities to integrate multiple functionalities with
different criticality levels into a shared hardware platform.
Such mixed-criticality systems bring significant challenges to
the design of real-time systems.

Vestal [14] formalized the single-processor mixed-criticality
scheduling problem. Traditional real-time scheduling tech-
niques, such as EDF, may lead to poor schedulability when
applied to mixed-criticality systems. Researchers proposed
different techniques to better explore the asymmetry between
different criticality levels and improve the schedulability [1],
[4], [7], [9], [11]. Recently, Ekberg and Yi [8] introduced a
scheduling algorithm, called EY in this paper, which exhibits
very good schedulability. EY is based on the idea of EDF-
VD (EDF with virtual deadlines) proposed by Baruah et al.
[3], which balances the schedulability on different criticality
levels by tuning the virtual deadlines and has been extended
to multiprocessors [2]. In Section II-B we will give a brief
introduction to EY. The multiprocessor scheduling algorithm
proposed in this paper is based on a variant of EY.

Traditional (single-criticality) multiprocessor scheduling al-
gorithms are usually categorized into two paradigms [6]:
global scheduling, in which each task can execute on any
available processor at run-time, and partitioned scheduling, in
which each tasks is assigned to a processor beforehand, and at
run-time each task only executes on this particular processor.

978-3-9815370-2-4/DATE14/ c©2014 EDAA

Recent work in multiprocessor scheduling has shown that
partitioned scheduling typically has better schedulability than
global scheduling for hard real-time systems [5]. Therefore, in
this paper we use the partitioned approach to schedule mixed-
criticality systems.

The choice of the packing (task allocation) strategy greatly
affects the performance of partitioned scheduling. In parti-
tioned scheduling of traditional real-time systems, the first-
fit (FF) packing strategy typically performs better than oth-
ers. Therefore, it sounds a natural extension to apply FF
to partitioned scheduling of mixed-criticality systems. For
example, [10] evaluates several combinations of different
packing strategies and task sorting orders, and conclude that
the combination of FF and criticality-decreasing task ordering
performs the best among all the evaluated solutions. However,
as shown in this paper, FF actually cannot very well explore
the asymmetry between different criticality levels, and thus
leads to unsatisfactory schedulability performance.

In this paper, we propose a partitioned scheduling algorithm
MPVD, which treats high- and low-criticality tasks differently.
MPVD first uses worst-fit (WF) packing strategy to allocate
high-criticality tasks, then uses FF to allocate low-criticality
tasks. By such a hybrid packing strategy, high-criticality tasks
are evenly allocated to different processors, which gives us
a better chance to use the EY algorithm to balance the
workload on different criticality levels and improve system
schedulability.

The performance of MPVD may degrade when the number
of processors is large. To address this problem, we propose two
enhancements to MPVD to further improve the schedulability.
Firstly, we consider the situation that heavy low-criticality
tasks may fail to be allocated because the free capacity of each
individual processor is not enough, although there still remains
much total available capacity on all processors. To solve this
problem, we preserve resource for heavy low-criticality tasks
before allocating high-criticality tasks. Secondly, we propose
an optimized virtual deadlines tuning algorithm in EY to
improve the performance of our partitioned algorithm.

Experiments with randomly generated task systems are
conducted to evaluate the performance of our proposed al-
gorithms. Experiment results show that our new algorithm
MPVD, especially with the two enhancements, can signifi-
cantly improve the system schedulability comparing with ex-
isting multiprocessor mixed-criticality scheduling algorithms.



II. PRELIMINARIES

A. MC System Model and Notations
We adopt the same mixed-criticality (MC) task model as

in [8]. Similar with the traditional sporadic task model, we
define an MC sporadic system π as a finite set of independent
MC sporadic tasks, each of which may generate a potentially
infinite sequence of MC jobs

〈
J1
i , J

2
i , · · ·

〉
. Each MC task is

characterized by a 4-tuple τi = (Ti, Di, ζi, Ci), where
• Ti ∈ R+ is the minimal inter-arrival separation.
• Di ∈ R+ is the relative deadline.
• ζi ∈ {LO,HI} is the criticality level of task τi, where

LO indicates the low criticality and HI indicates the high
criticality.

• Ci : {LO,HI} → R+ is the worst-case execution time
(WCET) function, which specifies the WCET of the task
at each criticality level `: Ci(LO) denotes the estimated
WCET of task τi under the low-criticality level, and
Ci(HI) denotes the more rigidly estimated WCET under
high-criticality level, i.e., Ci(LO) ≤ Ci(HI).

Note that the relative deadlines can be arbitrary positive real
numbers without any restrictions regarding the task periods,
i.e., Di can be larger than, smaller than or equal to Ti.

To describe the workload on different criticality levels,
we use U LO

i and U HI
i to denote the low- and high-criticality

utilization of task τi respectively:

U LO
i , Ci(LO)/Ti and UHI

i , Ci(HI)/Ti.

We use LO(π) , {τi ∈ π|ζi = LO} to denote the low-
criticality task subset of π, and use HI(π) , {τi ∈ π|ζi =
HI} to denote the high-criticality subset. We define the total
utilization ULO(π) and UHI(π) as follows:

ULO(π) ,
∑
τi∈π U

LO
i and UHI(π) ,

∑
τi∈HI(π) U

HI
i .

The semantic of the MC system is as follows. When the
system starts, it runs in the low-criticality mode and each
task τi ∈ π could release jobs in sequence as long as
no released jobs execute beyond their respective run-time
deadlines. Otherwise, once any job has executed for its WCET
under low-criticality level without signaling its completion
of execution, the system will switch to high-criticality mode
immediately. In order to guarantee the high-criticality jobs still
meet their deadlines even though they execute for up to the
more strict WCET estimated under such high-criticality mode,
all of the low-criticality jobs need not meet deadlines any
more, and will be discarded totally after the mode switching.
Therefore, the low-criticality jobs will make no interference
with the scheduling of high-criticality jobs.

To schedule such an MC system successfully, all of the
jobs released from high-criticality tasks must always meet their
deadlines both in low-criticality and high-criticality modes, but
the jobs released from low-criticality tasks only need to meet
deadlines in low-criticality mode.

B. The EY Approach
The partitioned multiprocessor scheduling algorithm pro-

posed in this paper uses EY [8] to test and tune the schedu-

lability on each individual processor. The main idea of EY
can be summarized as follows. When the system runs in the
low criticality mode, each high-criticality task τi uses a virtual
deadline Di(LO) (shorter than its original deadline Di) in the
EDF scheduling decision. This helps the high-criticality task
to finish its low-criticality workload earlier, and thus have a
better chance to finish the remaining high-criticality workload
before its real deadline if the criticality mode-switch occurs.
Consider the example task set illustrated as below:

Task Ti Di ζi Ci(LO) Ci(HI) U LO
i U HI

i

τ1 10 10 HI 3 7 0.3 0.7
τ2 5 5 LO 3 3 0.6 0.6

Suppose the high-criticality task τ1 releases a job J at t
in the low-criticality mode. Under EDF scheduling, in the
worst-case τ1 finishes it low-criticality workload one time
unit before its absolute deadline t + D1, as shown in Figure
1a. If the execution of τ1 overflows and the system switches
to the high-criticality mode, it is impossible to finish the
remaining workload C1(HI) − C1(LO) before its absolute
deadline t+D1, as shown in Figure 1a. If we set τ1’s virtual
deadline D1(LO) = 6, we can guarantee that τ1 finishes its
low-criticality workload no later than t + D1(LO). In this
case, there is enough time for τ1 to finish its high-criticality
workload before its real deadline t+D1 after the system runs
into the high-criticality mode, as shown in Figure 1b.

J : C1(LO) C1(HI)− C1(LO)

t t+D1

T

(a) D1(LO) = 10

J : C1(LO) C1(HI)− C1(LO)

t+D1(LO)t t+D1

T

(b) D1(LO) = 6

Figure 1. Impact of different virtual deadlines.

0 5 10 15 20
Time interval length (t)

0

5

10

15

20

R
es

ou
rc

e
de

m
an

d

∑dbfHI
∑dbfLO

(a) D1(LO)=10

0 5 10 15 20
Time interval length (t)

0

5

10

15

20

R
es

ou
rc

e
de

m
an

d

∑dbfHI
∑dbfLO

(b) D1(LO)=6

0 5 10 15 20
Time interval length (t)

0

5

10

15

20

R
es

ou
rc

e
de

m
an

d
∑dbfHI
∑dbfLO

(c) D1(LO)=4

Figure 2. Impact on demand of different virtual deadlines.

Using shorter virtual deadlines is beneficial to the schedu-
lability in the high-criticality mode, but at the same time
the system is more difficult to be scheduled in the low-
criticality mode (since each high-criticality task must meet
a shorter virtual deadline). In the above example, if we set
D1(LO) = 4, the system is not schedulable in the low-
criticality mode. In EY, this phenomenon is formally captured
by the high-criticality demand bound function dbfHI(τi,∆)
and low-criticality demand bound function dbfLO(τi,∆). The
system is guaranteed to be schedulable in the low-criticality
mode if it holds



∀t ≥ 0 :
∑
τi∈π

dbfLO(τi, t) ≤ t. (1)

The system is guaranteed to be schedulable in the high-
criticality mode if it holds

∀t ≥ 0 :
∑

τi∈π∧ζi=HI

dbfHI(τi, t) ≤ t. (2)

Due to space limit, we do not recite the computation of
dbfHI(τi,∆) and dbfLO(τi,∆), but refer interested readers to
[8] for details.

For each high-criticality task τi, if its virtual deadline
Di(LO) is decreased, the high-criticality demand bound func-
tion dbfHI decreases while the low-criticality demand bound
function dbfLO increases. Figure 2 shows the demand bound
functions when τ1 uses different virtual deadlines. If the virtual
deadline is too short, the system is non-schedulable in the low-
criticality mode as shown in Figure 2a. If the virtual deadline is
too long, the system is non-schedulable in the high-criticality
mode, as shown in Figure 2c. The system is schedulable in
both modes with a proper Di(LO) as shown in Figure 2b.

The virtual deadlines of high-criticality tasks are used
as the nob to tune the schedulability in different criticality
modes. However, it leads to a larger search space to find the
optimal virtual deadline configuration. EY uses an effective
heuristic to tune the virtual deadlines. It tunes each Di(LO)
from Di to Ci(LO) monotonically to control the overall time
complexity. At each tuning point, EY decreases certain Di(LO)
to Di(LO)− 1, and EY always greedily selects the one which
gets the maximal value of the expression:

dbfHI(τk, Dk(LO))− dbfHI(τk, Dk(LO)− 1). (3)

III. MPVD PARTITIONING ALGORITHM

Partitioned scheduling for EDF-VD has been studied in [3].
And in this section we will discuss the parti- tioning schemes
for the higher performance algorithm EY.

A. Motivating the Hybrid Packing Strategy

Before introducing our proposed partitioning algorithm with
a hybrid packing strategy, we first discuss the drawback of ex-
tending EY to multiprocessor scheduling with the FF packing
strategy and motivate the hybrid packing strategy used in this
paper. [10] presented a partitioning strategy using FF pack-
ing and decreasing-criticality task ordering (called FFDC for
short). FFDC packs as many high-criticality tasks as possible
to one processor until it is full, then picks the next processor
to pack the remaining high-criticality tasks. After all high-
criticality tasks are successfully allocated, FFDC continues to
pack low-criticality tasks also with the FF strategy. FFDC has
the best performance among all the partitioning algorithms
evaluated in [10]. Unfortunately, the combination of the FFDC
strategy and the EY approach does not yield satisfactory
performance, the reason of which is as follows. The strength of
EY is the capability of balancing the schedulability between
high- and low-criticality levels. In FFDC, the allocation of

high-criticality tasks is typically unbalanced, so the room for
EY to tune the virtual deadlines is relatively smaller. Consider
the following task set to be scheduled on two processors:

Task Ti Di ζi Ci(LO) Ci(HI) U LO
i U HI

i

τ1 10 10 HI 2 3 0.2 0.3
τ2 10 10 HI 2 3 0.2 0.3
τ3 10 10 LO 7 7 0.7 0.7
τ4 10 10 LO 7 7 0.7 0.7

By FFDC, the two high-criticality tasks τ1 and τ2 will
be allocated to processor P1, after which we allocate low-
criticality tasks. However, the low-criticality utilization sum
of τ1 and τ2 is already 0.4, so τ3 or τ4 cannot be allocated to
P1, no matter how do we tune the virtual deadlines of τ1 and τ2
(since 0.4+0.7>1). On the other hand, it is infeasible to allocate
both τ3 and τ4 to P2 since 0.7+0.7>1. So the partitioning of
this task set is failed with the FF packing strategy.

If we use worst-fit (WF) packing strategy to partition this
task set, we can allocate τ1 and τ3 to P1, and allocate τ2
and τ4 to P2. By applying the virtual deadline tuning of EY,
we see that tasks on both processors are schedulable if the
virtual deadlines of τ1 and τ2 are set to be 6. In summary, WF
distributes high-criticality tasks to different processors more
evenly than FF, which gives us more room to utilize the virtual
deadline tuning in EY to improve the schedulability.

In the allocation of high-criticality tasks, the virtual dead-
lines of high-criticality tasks are tuned to guarantee that
they are schedulable in the high-criticality mode. As soon as
all high-criticality tasks are allocated, the virtual deadlines
of all high-criticality tasks are fixed. So when we start to
allocate low-criticality tasks, the remaining capacity on each
processor is fixed. So the partitioning of low-criticality tasks
is similar to the traditional workload partitioning problem
(without multiple criticality levels). Since FF has proven to
be the best packing strategy for such a problem, we shall use
FF as the packing strategy for low-criticality tasks.

B. MPVD

Now we introduce our new partitioning algorithm MPVD
(Mixed-criticality Partitioning with Virtual Deadlines) in de-
tail. We first introduce the notation of (high- or low-criticality)
remaining utilization of a processor, which denotes the dif-
ference between 1 and the total (high- or low-criticality)
utilization of tasks that have been allocated to this processor.
For example, if only one task with utilization 0.3 is allocated
to processor P1, then the remaining utilization of P1, is 1-
0.3=0.7. We use UHI(P1) and ULO(P1) to denote the high- and
low-criticality remaining utilization of processor P1.

MPVD works in the following three steps:
1) Allocate high-criticality tasks to processors by the WF

packing strategy, i.e., always select the processor Px

with the maximal high-criticality remaining utilization
UHI(Px) to allocate tasks. The tasks are sorted in the
decreasing order of their high-criticality utilization UHI.

2) Tune the virtual deadlines of high-criticality tasks allo-
cated to each processor by the tuning algorithm in EY



[8] to meet the dbfHI constraint (2), i.e., to guarantee
that the high-criticality task subset on each processor is
schedulable in the high-criticality mode. If the tuning
algorithm in EY fails on any processor, the partitioning
algorithm MPVD fails.

3) Allocate low-criticality tasks to processors by the FF
packing strategy. The tasks are sorted in the decreasing
order of their low-criticality utilization ULO. In this step,
we use the dbfLO constraint (1) to check whether an
unallocated low-criticality task can be assigned to a can-
didate processor, i.e., whether the tasks already assigned
to this processor and the current task can meet deadlines
in the low-criticality mode if they are scheduled together
on this processor.

Note that the first step of MPVD only allocates high-
criticality tasks to processors, but does not guarantee anything
about the schedulability. After all high-criticality tasks are
allocated, we tune their virtual deadlines and decide whether
they are schedulable in the high-criticality mode. The virtual
deadline tuning algorithm in EY is of pseudo-polynomial time
complexity, and in practice rather time consuming. It will be
extremely inefficient if the virtual deadline tuning algorithm
has to be invoked iteratively. MPVD only needs to invoke the
virtual deadline tuning algorithm once on each processor.

At run-time, the tasks allocated to each processor are
scheduled in the same way as EY. When the system is in
the low-criticality mode, tasks are scheduled by EDF and
each high-criticality task uses its virtual deadline in the EDF
scheduling decision. When the system runs into the high-
criticality mode, all the low-criticality tasks are abandoned
immediately, and all high-criticality tasks use their original
deadlines in the EDF scheduling decision.

IV. ENHANCEMENTS TO MPVD

The MPVD partitioning algorithm introduced in last section
may still lead to unsatisfactory performance under certain
circumstances. In this section, we enhance MPVD by opti-
mized task allocation strategies and virtual deadline tuning
algorithms to further improve the schedulability.

A. Heavy Low-Criticality Task Aware Partitioning

One of the most important issues in partitioned scheduling is
to avoid the situation that a heavy (high-utilization) task cannot
be allocated while the processors still have relatively large
available capacities. The decreasing utilization task ordering
is an effective way to avoid the above situation. Therefore,
we choose to use decreasing utilization to order tasks in the
allocation of high- and low-criticality tasks (step 1 and 3)
respectively. However, since MPVD first allocates all high-
criticality tasks before allocating any low-criticality task, it
may happen the situation that some heavy low-criticality tasks
cannot be allocated to any individual processor although there
remains much total remaining capacity on all processors. For
example, consider the task set in Table I to be partitioned on
two processors. By MPVD, each processor will be assigned 2
high-criticality tasks as illustrated in Figure 3a. Therefore, the

Table I
AN EXAMPLE TASK SET

Task Ti Di ζi Ci(LO) Ci(HI) U LO
i U HI

i

τ1 10 10 HI 2 3 0.2 0.3
τ2 10 10 HI 2 3 0.2 0.3
τ3 10 10 HI 2 3 0.2 0.3
τ4 10 10 HI 2 3 0.2 0.3
τ5 10 10 LO 7 7 0.7 0.7

low-criticality task τ5 cannot be allocated to any of the two
processors no matter how do we tune the virtual deadlines of
the high-criticality tasks (since 0.2+0.2+0.7>1).

P1

τ1

τ3

P2

τ2

τ4

(a) MPVD

P1

τ5

τ4

P2

τ1

τ2

τ3

(b) MPVD-HA

Figure 3. Task allocation results in different approaches

To address this problem, we enhance MPVD by a heavy
low-criticality task aware policy. The main idea is to make a
tradeoff between high-criticality workload balancing and the
schedulability of low-criticality tasks by preserving moderate
free resources for heavy low-criticality tasks, which are defined
as follows:

Definition IV.1 (Heavy Low-Criticality Task). Given a mixed-
criticality system π, a low criticality task τk is heavy if

U LO
k > 1− ULO(πHI)

m
. (4)

The enhanced heavy low-criticality task aware MPVD par-
titioning algorithm, called MPVD-HA for short, differs from
MPVD by adding one step before starting MPVD:

• Select all of the heavy low-criticality tasks satisfying
(4) and relate each heavy low-criticality task to one
processor. If a heavy low-criticality task τb is related
to processor Px, then we set the initial high-criticality
remaining utilization of Px as

UHI(Px)← 1− U LO
b . (5)

After that, the partitioning algorithm follows the same
procedure as MPVD. It is easy to see that if the number of
heavy low-criticality tasks is greater than the processor number
m, then the task set cannot be successfully scheduled by any
algorithm (since in that case the total low-criticality utilization
of the task set is larger than m).



In the example of Table I, since 1 − ULO(πHI)/2 = 0.6 <
U LO
5 = 0.7, τ5 is a heavy low-criticality task and is related to

P1. So UHI(P1) is set to 1 − 0.7 = 0.3. After that, following
the MPVD partitioning algorithm, τ1, τ2, τ3 will be allocated
to P2 and τ4 will be allocated to P1 as illustrated in Figure
3b. Consequently, P1 reserves enough free capacity to adopt
the heavy low-criticality task τ5 in step 3 of MPVD, and the
task set is successfully partitioned.

B. Improving the Virtual Deadline Tuning Algorithm

A major reason for EY to achieve extremely good schedula-
bility is that it employs a very effective heuristic algorithm to
tune the virtual deadlines of high-criticality tasks. However,
the tuning algorithm in EY is not completely suitable to
MPVD. Recall that when the tuning algorithm is invoked
in step 2 of MPVD, only high-criticality tasks have been
allocated and no information of low-criticality is known at
that moment. If one uses (3) to choose the task to shrink its
virtual deadline, it may lead to very fast increase of dbfLO,
which is harmful to the schedulability in the low-criticality
mode. To address this problem, we use the balance factor as
the metric to choose tasks for virtual deadline tuning.

Definition IV.2 (Balance Factor). For a high criticality task
τk and time interval size t, the balance factor is defined as

φ(τk, t) =
dbfHI(τk, Dk(LO))− dbfHI(τk, Dk(LO)− 1)

Ck(LO)/(Dk(LO)− 1)− Ck(LO)/Dk(LO)
. (6)

The denominator Ck(LO)/(Dk(LO)−1)−Ck(LO)/Dk(LO),
intuitively, represents the cost of the schedulability in the low-
criticality mode when the virtual deadline of a high-criticality
task is decreased by 1. Our new tuning algorithm always
chooses the task with the maximal φ(τk, t) value, which
improves the schedulability in the high-criticality mode at the
minimal cost of the schedulability in the low-criticality mode.

V. EXPERIMENTAL EVALUATION

We conduct experiments with randomly generated task
systems to compare the performance, in terms of acceptance
ratio, of the algorithms proposed in this paper and previous
multiprocessor scheduling algorithms for mixed-criticality sys-
tems. The previous algorithms evaluated in our experiments
include both global and partitioned scheduling algorithms.
Our experiments show that the performance of partitioned
scheduling is significantly better than global scheduling (the
algorithms in [12], [13]), which is similar to the multiprocessor
scheduling of traditional real-time task systems. Therefore, in
this section we only report the comparison between the algo-
rithms proposed in this paper and other partitioned scheduling
algorithms. The evaluated algorithms include:
• MPVD: the partitioning algorithm in Section III.
• MPVD-HA: MPVD enhanced by the heavy low-

criticality task aware allocation policy in Section IV-A.
• MPVD-HA-BF: MPVD-HA further enhanced by the op-

timized virtual deadline tuning in Section IV-B.
• DC-Audsley: the partitioned scheduling algorithm based

on the Audsley approach in [10].

• EY-FF: the straightforward extension of EY to partitioned
scheduling with the FF packing strategy as discussed in
the beginning of Section III.

• MC-Partition: the partitioned scheduling algorithm based
on EDF-VD approach in [2].

A. Random Task Set Generation

Our experiments use dual-criticality implicit deadlines spo-
radic task model on an m identical unit speed multiprocessor
platform. We use a similar approach as in [8] to generate
random mixed-criticality task sets. The random task is gener-
ated by four tunable parameters: the probability PHI of being
of high-criticality, the maximal ratio RHI between high- and
low-criticality execution time of each high-criticality task, the
maximal low-criticality execution time Cmax

LO and the maximal
period Tmax. Each new task τi is generated as follows:
• ζi = HI with probability PHI, otherwise ζi = LO.
• Ci(LO) is a randomly generated integer uniformly drawn

from [1, Cmax
LO ].

• Ci(HI) is a randomly generated integer uniformly drawn
from [C(LO), RHI · Ci(LO)] if ζi = HI. Otherwise,
Ci(HI) = Ci(LO).

• Ti is a randomly generated integer uniformly drawn from
[Ci(HI), Tmax].

• Di = Ti because of the implicit deadline constraint.
Each random task set is generated with a target normalized

average utilization U∗ with a acceptable range of errors:
U∗min = U∗ − 0.005 ·m and U∗max = U∗ + 0.005 ·m.

A random task set is generated by starting with an empty
task set π = ∅, to which random tasks are successively added.
We generate a new random task and append it to π continually
as long as min(ULO(π), UHI(π)) < U∗min. If a task is added such
that max(ULO(π), UHI(π)) > U∗min, we discard the whole task
set and start with a new empty task set. If a task is added such
that U∗min ≤ min(ULO(π), UHI(π)) and max(ULO(π), UHI(π)) ≤
U∗max, the task set is finished, unless all tasks in π have the
same criticality level or ULO(π), UHI(π) > 0.99, in which case
the task set is instead discarded.

B. Results

The parameter configuration of the experiments in Figure
4 is as follows: PHI = 0.5, RHI = 4, Cmax

LO = 10 and
Tmax = 200. Figure 4a to Figure 4d show the acceptance
ratio, i.e., the portion of schedulable task sets out of all
the random task sets generated at this utilization range, as
a function of normalized average utilization with different
processor numbers. Each point in any figure includes at least
2000 randomly generated task sets.

Figure 4e and Figure 4f illustrate the effect of varying
random parameters RHI and PHI through the weighted accep-
tance ratio function of the varied parameters. For each certain
varied parameter, we compute 20 acceptance ratios A(Ui) with
different Ui, and let W (Ui) > 0 be the weighted factor for
target utilization Ui. The weighted acceptance ratio is denoted
as
∑
∀Ui

W (Ui) ·A(Ui)/
∑
∀Ui

W (Ui). Each point in the two
figures includes at least 20000 randomly generated task sets.



0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized average utilization

0

20

40

60

80

100

A
cc

ep
ta

nc
e

ra
ti

o
(%

)

MPVD-HA-BF
MPVD-HA
MPVD
DC-Audsley
EY-FF
MC-Partition

(a) Result on 2-processor system

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized average utilization

0

20

40

60

80

100

A
cc

ep
ta

nc
e

ra
ti

o
(%

)

MPVD-HA-BF
MPVD-HA
MPVD
DC-Audsley
EY-FF
MC-Partition

(b) Result on 4-processor system

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized average utilization

0

20

40

60

80

100

A
cc

ep
ta

nc
e

ra
ti

o
(%

)

MPVD-HA-BF
MPVD-HA
MPVD
DC-Audsley
EY-FF
MC-Partition

(c) Result on 8-processor system

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized average utilization

0

20

40

60

80

100

A
cc

ep
ta

nc
e

ra
ti

o
(%

)

MPVD-HA-BF
MPVD-HA
MPVD
DC-Audsley
EY-FF
MC-Partition

(d) Result on 16-processor system

2 3 4 5 6 7 8 9 10
Varying RHI

20

30

40

50

60

70

80

90
W

ei
gh

te
d

ac
ce

pt
an

ce
ra

ti
o

(%
)

MPVD-HA-BF
MPVD-HA
MPVD

DC-Audsley
EY-FF
MC-Partition

(e) Varying RHI on 4-processor system

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Varying PHI

20

30

40

50

60

70

80

90

W
ei

gh
te

d
ac

ce
pt

an
ce

ra
ti

o
(%

)

MPVD-HA-BF
MPVD-HA
MPVD

DC-Audsley
EY-FF
MC-Partition

(f) Varying PHI on 4-processor system

Figure 4. Experiment results (PHI = 0.5, RHI = 4, Cmax
LO = 10andTmax = 200)

Figure 4 shows that MPVD performs better than DC-
Partition, DC-Audsley and EY-FF with fewer number of
processors. However, the performance of MPVD degrades as
the number of processors becomes greater. With 16 processors,
MPVD may fail to partition task sets with rather low total
normalized average utilization. This is mainly because of the
problem we pointed out at the beginning of Section III. The
enhanced algorithm MPVD-HA can solve this problem and
thus steadily exhibits better performance than DC-Audsley and
EY-FF. Moreover, with the optimized virtual deadline tuning
algorithm based on the balance factor, the acceptance ratio of
MPVD-HA-BF is further improved.

VI. CONCLUSIONS

In this paper we studied the partitioned scheduling algorithm
for mixed-criticality systems on multiprocessors. We proposed
new partitioned scheduling algorithms based on a hybrid
task packing strategy and the state-of-the-art single-processor
mixed-criticality scheduling algorithm EY [8]. Experiments
with randomly generated task sets showed significant improve-
ment of our proposed approach over existing algorithms.

ACKNOWLEDGEMENTS

Supported in part by China Fundamental Research Funds for the Central
Universities under grant N100204001 and N110804003; and China Re-
search Fund for the Doctoral Program of Higher Education under grant
20110042110021; and China Science Fund for Youths under grant 61300022.

REFERENCES

[1] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in RTAS, 2010.

[2] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality
scheduling on multiprocessors,” Real-Time Systems, 2013.

[3] S. K. Baruah, V. Bonifaci, G. D`Angelo, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie, “Mixed-criticality scheduling of
sporadic task systems,” in Algorithms-ESA, 2011.

[4] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed
criticality systems,” in RTSS, 2011.

[5] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, “An empirical
comparison of global, partitioned, and clustered multiprocessor edf
schedulers,” in RTSS, 2010.

[6] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah, “A categorization of real-time multiprocessor scheduling
problems and algorithms,” Proceedings of the IEEE, 2004.

[7] D. de Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling of
mixed-criticality real-time task sets,” in RTSS, 2009.

[8] P. Ekberg and W. Yi, “Outstanding paper award: Bounding and shaping
the demand of mixed-criticality sporadic tasks,” in ECRTS, 2012.

[9] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems,” in
RTSS, 2011.

[10] O. R. Kelly, H. Aydin, and B. Zhao, “On partitioned scheduling of fixed-
priority mixed-criticality task sets,” in TrustCom, 2011.

[11] H. Li and S. Baruah, “An algorithm for scheduling certifiable mixed-
criticality sporadic task systems,” in RTSS, 2010.

[12] ——, “Outstanding paper award: Global mixed-criticality scheduling on
multiprocessors,” in ECRTS, 2012.

[13] R. Pathan, “Schedulability analysis of mixed-criticality systems on
multiprocessors,” in ECRTS, 2012.

[14] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in RTSS, 2007.


