
Thermal-Aware Frequency Scaling for Adaptive

Workloads on Heterogeneous MPSoCs

Heng Yu, Rizwan Syed, Yajun Ha

National University of Singapore

Email: {eleyuhen, syed.rizwan, elehy}@nus.edu.sg

Abstract—For applications featuring adaptive workloads, the
quality of their task execution can be dynamically adjusted given
the runtime constraints. When mapping them to heterogeneous
MPSoCs, it is expected not only to achieve the highest possible
execution quality, but also meet the critical thermal challenges
from the continuously increasing chip density. Prior thermal
management techniques, such as Dynamic Voltage/Frequency
Scaling (DVFS) and thread migration, do not take into account
the trade-off possibility between execution quality and tempera-
ture control. In this paper, we explore the capability of adaptive
workloads for effective temperature control, while maximally
ensuring the execution Quality-of-Service (QoS). We present
a thermal-aware dynamic frequency scaling (DFS) algorithm
on heterogeneous MPSoCs, where judicious frequency selection
achieves QoS maximization under the temperature threshold,
which is converted to the thermal-timing deadline as an ad-
ditional execution constraint. Results show that our frequency
scaling algorithm achieves as large as 31.5% execution cycle/QoS
improvement under thermal constraints.

I. INTRODUCTION

Adaptive applications are receiving growing attentions owing

to their capability to provide scalable execution quality in

reaction to the execution environment. The more execution

cycles assigned to an adaptive application, the higher quality

it can achieve. One example is the Scalable Video Coding

(SVC) scheme in H.264/MPEG-4 standard, which provides

customized service quality to accommodate various network

and device conditions [1]. The other example is JPEG2000

codec supporting multiple playback resolutions [2]. Rather

than simply completing or failing the execution, adaptive

applications usually define multiple execution granularity such

that a finer-grained version results in better output quality, at

the price of increased program cycles, energy, and thermal

impact.

Meanwhile, the temperature of the integrated circuits con-

tinues as a major concern. Given the shrinking device features

and increased amount of workloads running concurrently,

thermal impacts to system reliability and performance are

significantly augmented in (deep) sub-micron level. As has

been reported, 50% of device lifetime can be reduced by

increasing the temperature by 10-15◦C [3]. Clock skew could

also be prominent due to variations on temperature-aware

Elmore delay of interconnects [4]. More severely, leakage

current goes up dramatically with temperature increases. Even

for 65nm technology, heating from 60◦C to 80◦C leads to

21% increase in leakage current [5]. The leakage-thermal

mutual induction phenomenon, a.k.a. thermal-runaway, are

more prone to the increasing gate density that facilitates the

lateral heat flow between adjacent cores or functional blocks.

Dynamic Thermal Management (DTM) techniques are

proposed as a class of microarchitectural and/or OS-level

strategies for runtime temperature control, where adjustment

mechanisms including runtime thread migration [6]–[8] and

DVFS [9]–[13] are applied. Whereas the abovementioned

techniques focus on workload manipulation by deciding which

speed level or mapped processor the task1 runs at, the adaptive

applications provide an orthogonal management perspective,

where the flexibility in execution is able to tradeoff the heat

generation. Namely, in case of thermal violation, execution

can be stopped sooner than scheduled while the execution

quality can still meet a low-level requirement. As the first

of its kind, this work combines the available system-level

DTM techniques, specifically dynamic frequency scaling, and

explores the thermal management capability of the adaptive

application model.

Several recent thermal-aware DVFS techniques are found

effective in single-processor scenarios, where the “cool” tasks

interleave the “hot”2 tasks to keep the temperature fluctuating

below its threshold [11], [12]. However, in the multiprocessor

scenarios, the notion of “cool” task calls for redefinition in

the presence of shortened thermal conducting paths under

increasing chip density, as well as the parasitic thermal-

runaway effect. More specifically, whether the task is cool

or hot should depend, not only spatially but also temporally,

on the thermal activities of adjacent cores. In turn, state-of-

the-art neighbor-aware techniques, such as static ILP-based

optimization [14] and quasiconvex programming for thermal-

aware speed selection [13], are less efficient when applied

to the tasks featuring self-adaptability or large variations in

execution volume. Even the proactive temperature manage-

ment methodologies based on offline trained parameters [6],

[8] or historical measurements [7] suffer from accuracy for

such applications, given their inadequate awareness of adjacent

cores.

In this paper, we propose a frequency scaling-based dynamic

1In this paper, we use workload and task interchangeably to represent the
executables on the processor.

2The “hot” or “cool” tasks are defined such that the steady-state tempera-
tures of the tasks are above or below the threshold, respectively, according to
static profiling.978-3-9815370-2-4/DATE14/ c©2014 EDAA

scheduling algorithm on heterogeneous MPSoC platforms,

leveraging the task-level adaptability for thermal violation

avoidance. An analytical, lightweight, and accurate tempera-

ture prediction method is presented that takes neighbor cores’

dynamic thermal activities into account. The adaptive task is

then able to terminate flexibly before thermal constraint vio-

lation. The timing flexibility of adaptive applications naturally

leads to our optimization goal of maximizing the application

execution cycles, which implies the maximization of the

execution Quality-of-Service (QoS). Compared to state-of-the-

art DTM techniques balancing between throughput/deadline

and thermal requirements, considering adaptive applications

adds more complexity beyond baseline throughput guarantees,

but will benefit from additional thermal management freedom.

We propose a guided-search based frequency scaling algorithm

taking into account the temperature threshold to globally

optimize the total workload cycle/QoS over all processors,

where temperature threshold is conveniently converted into

timing constraints. Results show that, our frequency scaling

algorithm achieves as large as 31.5% execution cycle/QoS

improvement under thermal constraints.

In the remaining of the paper, we give a motivational

example showing how frequency scaling and adaptive

workload can help avoid thermal violations while maximizing

performance, in Section II. System modeling and problem

definition are presented in Section III. Section IV presents

the lightweight thermal timing prediction method. Section V

describes the frequency scaling algorithm, and Section VI

gives the experimental results. The paper is concluded in

Section VII.

II. MOTIVATIONAL EXAMPLE

The focus of this work is to explore how adaptive applications

can be used to tolerate the thermal constraints, in addition

to other requirements in the real-time embedded scenarios,

while still maximizing the execution quality. In this section,

we demonstrate the factors that interact with each other to

tradeoff application quality optimization, namely the thermal

threshold, neighbor thermal interaction, application execution

time, system energy, as well as the scheduling overhead. We

consider a simple 2×2 identical tiled cores, as shown in Fig. 1,

which are able to run at 100MHz and 300MHz. Assuming tiles

T1 and T3 are already running at 300MHz, now two identical

parallel adaptive tasks, τ , are to be dispatched on T2 and T4.

The scheduling process is invoked to decide the processor

frequency and the execution cycles3 of τ , under the deadline

and thermal constraints. For illustration purpose, the system

energy constraint is not considered here for the time being.

To derive the temperature profile, we use the temperature

simulator tool, HotSpot [15], and feed the parameters of the

tiled cores as shown in Table I in Section VI.

Fig. 2 shows the temperature traces of T2 and/or T4 that

run at 300MHz (red filled box with solid line) and 100MHz

3We use execution cycle to represent the application quality. Their mono-
tonically increasing relationship is presented in Section III.

Fig. 1: A four-tiled platform with thermal interaction repre-

sented as thermal resistance.

 55

 55.5

 56

 56.5

 57

 57.5

 58

 58.5

 59

 0 20 40 60 80 100 120 140 160 180
 0

 10

 20

 30

T
e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s
)

C
y
c
le

s
 (

1
e
9
)

Time (s)

w/o interference
w interference 100MHz
w interference 300MHz

freq-cycle at 300MHz
freq-cycle at 100MHz

thermal threshold

A

B

Fig. 2: The illustrative example: frequency scaling leads to

cycle increase under the thermal constraint.

(blue empty box with solid line), respectively, considering

thermal interference from T1 and T3. The green dashed line

indicates a thermal threshold of 57◦C, which is an assumption

for illustration purpose. The other two dashed lines indicate

the time-cycle monotonic relationship for a fixed frequency.

According to the thermal traces, if the tiles run at 300MHz,

execution stops at 13.33ms due to thermal threshold violation.

The cycle executed, as indicated at point A(13.33, 4), reaches

4E+9 cycles. On the other hand, if frequency scaling is

conducted such that tiles run at 100MHz, no thermal violation

happens, and the tiles can run till the deadline at 100s reaching

10E+8 cycles, which is shown at point B(100, 10). Assuming

that the task τ has adaptive feature, such that more execution

cycles can render higher execution quality, frequency scaling at

100MHz is preferred under the thermal and timing constraints.

Another interesting observation from Fig. 2 is that the thermal

interference from the neighbors can be significant. The filled

box with dashed line indicates the temperature trace of T2 and

T4, by shutting off T1 and T3 when running τ . In this way

the thermal interference from T1 and T3 is experimentally

minimized. A difference of 2.7◦C is observed, which can

significantly impact the frequency results in Fig. 2.

In this work, we aim to efficiently conducting dynamic

frequency scaling for adaptive applications in order to

optimize the execution cycles under the thermal, timing,

and energy constraints. By modeling the neighbor thermal

interference effects, we propose an efficient runtime frequency

scaling method. As a key step for the optimization, we also

propose a fast method to identify the time before thermal

violation (as shown in Fig. 2, time to reach point A).

III. SYSTEM MODELING AND PROBLEM DEFINITIONS

A. System modeling

1) Adaptive task model: We assume the platform contains

a set of Np heterogeneous processors, including synthesized

functional blocks, DSPs, or CPUs that are capable of workload

processing. The workload, namely a task ti, is featured by:

(1) average processor switching capacitance Ci reflecting the

processor logic utilization by the task; (2) the execution

timing deadline di since its invocation; (3) the minimum

execution cycles cmin
i as the minimum execution requirement

to ensure baseline quality requirement qmin
i ; (4) the ceiling

execution cycles cmax
i with associated quality qmax

i . An

important assumption is that the intermediate quality levels

in [qmin
i , qmax

i] increases monotonically with execution cycle

increase in [cmin
i , cmax

i], such that the more cycles executed

for the workload, the more QoS can be generated by execution.

The quality-cycle relationship can be validated by real-life

applications, where an example would be the inverse DWT

whose data is illustrated in Fig. 3. Please refer to [16] for a

list of applications with adaptive features.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 2.5 3 3.5 4 4.5 5 5.5 6

E
x
e

c
u

ti
o

n
 C

y
c
le

 (
1

E
+

8
)

DWT Resolution level

SOL_DWT
SAT_DWT

WAV_DWT

Fig. 3: The DWT quality levels and corresponding cycles. Data

obtained by profiling three HD images from NASA.

2) Power model: To realize DVFS, we assume that the

processor operates under a finite set of voltage-frequency pairs

(v, fv), where fv depends on voltage v and is usually set

as the highest frequency allowable by v. The total power

consumption, Pi, of a task ti under voltage v consists of

both dynamic and leakage components, p
dyn
i and p

lkg
i . As

with [11], [14], we assume the dynamic power does not

vary significantly with temperature change, and model it

conventionally as p
dyn
i = Civ

2
i fi, where we simplify fvi

as fi. The leakage power changes superlinearly under vi.

According to [17], we adopt the linear model with sufficient

accuracy, p
lkg
i = K1(vi)T + K2(vi), where K1 and K2 are

constants under vi depending on manufacturing technology,

core specification, design style, etc. Then, the total power

consumption is

Pi = Civ
2
i fi +K1(vi)T +K2(vi). (1)

Since we focus on the execution cycles of ti, we define the

energy consumption per cycle,

E
cyc
i = Civ

2
i + (K1(vi)T +K2(vi))fi

−1. (2)

3) Thermal model: We adapt the thermal model from

HotSpot, which employs the thermal-electrical duality and

computes the processors’ temperature with an equivalent

lumped thermal RC network [15]. As in [14], we consider

(1) the lateral heat conduction, denoted as Gl
m,n, between

adjacent processors m and n; (2) cross-layer heat conduction,

Gh
m, between m and the covered heat spreader, h; and (3)

thermal capacitance, Cm, for m’s transient timing behavior of

heat transfer. The temperature of m can then be calculated

using the differential equation:

Cm

dTm(t)

dt
=

∑
n∈M

(Tn(t)− Tm(t))Gl
m,n

+ (Th(t)− Tm(t))Gh
m + Pi,m(Tm(t)),

(3)

where M is the set of neighbor processors of m, and

Pi,m(Tm(t)) is the power of running ti as a function of

Tm(t). Due to higher thermal conductivity of heat spreader

(for instance 400W/mK for copper), than 148W/mK for the

silicon chip, we treat the heat spreader as one whole unit rather

than splitting it into several interactive blocks. Work in [14]

specifies the modeling of finer grained heat spreader element

interactions, and our model can be readily extended to cover

it. The same extension applies to external devices such as heat

sinks or fans, which are not included in this work for simplicity

of elaboration. We lump the thermal interface material (TIM)

together with the heat spreader given its negligible thickness.
4) Problem statement: This work focuses on the dynamic

scheduling algorithm design that aims at maximizing the total

execution cycles,
∑

ti∈N ci, of all adaptive tasks ti in a task

set N which are in the scheduler queue and ready to be

dispatched and run in parallel. The optimization is subject to

constraints of individual task deadlines di, energy budget EN ,

quality requirements represented by cycles [cmin
i , cmax

i], and

temperature threshold T .

In our approach to deal with the temperature constraint,

we convert it into the timing constraint dthri , which stands for

the time constraint of ti before it heats above T . Then we

present an efficient guided-search based fi selection heuristic

for the
∑

ti∈N ci maximization under timing (min(di, d
thr
i)),

cycle, and energy constraints.

IV. DECIDING THERMAL TIMING CONSTRAINT (dthri)

The thermal profile of a core m depends on the heating/cooling

effects due to self-execution and neighbor conduction. So

obtaining Tm(t) requires the temperature profiles of all pro-

cessors and the heat spreader. In the context of m, we rewrite

(3) as

C
dT (t)

dt
=

∑
n∈neighbor

(gn(t)− T (t)) ·Gl
n

+ (gspn (t)− T (t)) ·Gh + Pi(T (t)),

(4)

where gn(t) and gspn (t) are the temperature of neighbor n

and heat spreader, respectively. According to (1), Pi(T (t)) =
Civ2i fi + K1(vi)T (t) + K2(vi) = K ′

1T (t) + K ′
2(fi), where

under fixed vi, K
′
1 = K1(vi) is constant, and K ′

2 = K2(vi)+
Civ2i fi is linear to fi. Then, in the standard linear form, (4)

becomes

dT (t)

dt
+ αT (t) =

1

C
(K ′

2 +
∑

x∈{n|sp}

gx(t) ·Gx), (5)

where Gx∈{n|sp} is the respective conductance from the pro-

cessor or heat spreader to m, and α =
∑

x∈{n|sp} Gx−K′
1

C
. With

integrating factor u(t) = eαt, we solve (5) as

u(t)T (t) =
K ′

2

C

∫
u(t)dt+

1

C

∑
x

(Gx

∫
u(t)gx(t)dt) + C0

=
K ′

2

αC
u(t) +

1

C

∑
x

(Gx

∫
u(t)gx(t)dt) + C′

0,

(6)

where C′
0 = T (0)− K′

2

αC
, and T (0) is the initial temperature at

t = 0. Further manipulate Eqn. (6) using integration by part,

T (t) =
K ′

2

αC
+

1

αC

∑
x

(Gx · gx(t))

+ C′
0e

−αt −
1

αC
e−αt

∑
x

(Gx

∫
eαtg′x(t)dt).

(7)

The steady state temperature of m, Tm
ss , can then be repre-

sented as, assuming temperature change rate g′x(t) → 0 and

e−αt → 0 (as t → ∞),

Tss =
K ′

2

αC
+

1

αC

∑
x

(Gx · gx,ss), (8)

where gx,ss is the neighbor x’s steady state temperature. To

calculate the steady state temperature for processors and heat

spreader, the system of equations (8) can be conveniently

solved in the matrix form.

The thermal timing constraint, dthri , is rigorously defined if

Tm
ss > T , where

T =
K ′

2

αC
+

1

αC

∑
x

(Gx · gx(d
thr
i)) + C′

0e
−αdthr

i

−
1

αC
e−αdthr

i

∑
x

(Gx

∫ dthr
i

0

eαtg′x(t)dt).

(9)

Solving (9) at runtime has prohibitive complexity because

gx(t) is difficult to be profiled/projected accurately in mul-

tiprocessors with quick thermal conduction. We begin from a

simple scenario and make safe assumptions for more compli-

cated cases. First of all, we study the scenario that, at the time

of deciding dthri on m, no task activation on other processors

exists, namely gx(t) rise of all processors are solely due to

task ti. We assume that gx(t) rises as a step function from

gx(0) to steady state gx,ss. This assumption is conservative

by making temperature increase faster. Plugging in the step

function of gx(t), Eqn. (9) becomes

T − K′
2

αC
− 1

αC

∑
x(Gx · gx,ss)

T (0)−
K′

2

αC
− 1

αC

∑
x(Gx · gx,ss)

= e−αdthr
i . (10)

dthri = −
1

α
ln

T −
K′

2

αC
− 1

αC

∑
x(Gx · gx,ss)

T (0)−
K′

2

αC
− 1

αC

∑
x(Gx · gx,ss)

. (11)

If for some processor x, gx,ss > T , we replace gx,ss with T .

As the more generic case, assume some tasks (tx) start

earlier and run concurrently with ti. We define tx as a “hot”

(“cool”) task if gx,ss > gx(0) (gx,ss ≤ gx(0)), where gx(0)
is instantaneous temperature at t = 0. The cool task can be

caused by decreasing the voltage/frequency (vx, fvx) level, or

ceased execution. For the hot task, the assumption of a step-up

gx(t) is still conservative as explained above. However, for the

cool task, assuming the step-down gx(t) leads to relaxation

of dthri approximation, because faster dropping gx(t) could

lead to slower rising temperature of hot tasks in the system,

and effectively results in longer dthri using (11), jeopardizing

the conservativity of dthri . On the other extreme, assuming the

non-step-down, namely, a constant temperature gx(t) = gx(0),
is over-conservative. We can then apply a discount, namely

wxgx,ss, as the compromise. The discount factor wx should

be empirically derived, e.g. based on the past observation of

neighbor impact [8]. Then, for gx(t) in (9), we choose step

functions for hot neighbors h̃, and discounted step functions

for cool neighbors c̃. The thermal timing constraint is then,

dthri = −
1

α
ln

T − K′
2

αC
− 1

αC

∑
(Gh̃gh̃,ss + wc̃Gc̃gc̃,ss)

T (0)−
K′

2

αC
− 1

αC

∑
(Gh̃gh̃,ss + wc̃Gc̃gc̃,ss)

.

(12)

Last but not least, we do not consider any task

activation/deactivation happening later. Because at the

time of their activation/deactivation, it falls into the scenario

considered above.

V. CYCLE MAXIMIZATION USING GUIDED-SEARCH

We present the heuristic for total cycle maximization,
∑

ti∈N
ci,

given constraints under the real-time embedded scenario, in-

cluding deadline constraint di, system energy constraint EN ,

and the thermal timing constraint dthri derived above. The task

set N contains parallel tasks/workloads, ti, which are to be

dispatched and run on heterogeneous parallel processors. The

optimization is formulated as,

Maximize ∑
ti∈N

ci (13)

Subject to

ci

fi
≤ min{di, d

thr
i }, ∀ti ∈ N (14)

∑
ti∈N

(ciE
cyc
fi

) ≤ EN (15)

where (14) indicates the timing constraint, namely the deadline

due to performance or thermal requirement, whichever is

shorter. The energy constraint is indicated in (15), where

E
cyc
fi

is the per-cycle energy, ref. (2). We assume the above

constraints are values after substraction from worst case timing

and energy overheads due to frequency transition, namely

transiting from highest to lowest voltage/frequency levels or

vice versa. The goal is to find appropriate fi for each ti ∈ N ,

such that (13) can be maximized.

Applying existing solutions for the problem has been proved

to have a complexity of NP-completeness [18]. To efficiently

solve the optimization problem, we propose a heuristic to

determine ti’s frequency scaling direction, namely, increasing

or decreasing fi. The frequency scaling decisions are guided

by ensured total cycle increment under each successful search

for frequency scaling directions, so we name the heuristic as

guided-search, which is based on the following observations,

#1 Scaling up fi requires higher power consumption,

leading to higher Tss, and decreases dthri if available.

Similarly, scaling down fi increases dthri .

#2 The per-cycle energy, E
cyc
i , as defined in (2), is a

function of both T and fi under vi. Note from above

that T changes following fi; however, empirical data

shows that T changes in a smaller extent compared

to fi. Hence, according to (2), we assume that E
cyc
i

is monotonically decreasing with fi.

#3 Non-ideal selection of fis for N fails to fully utilize

timing and energy resources simultaneously, and can

have either (14) or (15) equalized but not both.

#4 Assuming (15) is equalized but some ti in (14) is not,

we can select a ti and scale up fi (hence decrease

E
cyc
fi

). To keep (15) equal, ci can be increased.

According to (14), ci increase can be realized under

increased fi. At the mean time, fi increase could re-

duce dthri due to increased temperature, preventing ci
increase. Thus, deciding whether fi can be increased

is subject to whether ci is actually increased after the

scaling.

#5 If all (14) are equalized but (15) is not, we can select

a ti and scale down fi to increase E
cyc
fi

. By scaling

down fi, the dthri can be extended, producing space

for ci increase. At the mean time, the ci and E
cyc
fi

increase should not violate (15).

Observations #4 and #5 reveal the frequency scaling directions

to increase ci in both situations. Thus,
∑

ci can be steadily

increased in a guided search process. As the first step, we

have to initially reach one of the two situations (#4 and

#5). We assume that each ti has been assigned cmin
i cycles

before runtime. The initial fi is set to the highest value. By

maximizing fi, for each ti, l.h.s of (14) is expected to be less

than the r.h.s.. According to #1, it might happen that dthri is

shortened such that ci
fi

> dthri for some ti. In this case, fi is

reduced until ci
fi

≤ dthri . If the violation persists at the lowest

fi, we continue to scale down other task’s frequencies starting

from the one with the highest steady state temperature, in the

TABLE I: HotSpot setup and core parameters

100MHz 300MHz

Dyn. 821.2mW 2532mW

Lkg. P = 4T + 695mW

amb. temp 45◦C

T. size (mm2) 8.5×8.5

hope that dthri becomes longer due to system-wide cooling

down. Otherwise an anomaly should be reported and handled

by the scheduler.

By scaling up the fi, energy constraint (15) is also expected

to be satisfied given the monotonically decreasing relationship

between E
cyc
fi

and fi. After all the constraints of (14) and (15)

are met, we choose to increase the ci of one or more ti until

the equality of either (14) or (15) is reached, whereby situation

#4 or #5 happens.

Under situation #4, fi in (14) is scaled up by one level to

fi+, while ci should be increased to maintain equality of (15).

The choice of ti depends on how much thermal violation can

be avoided during fi scaling up. We select the ti with the

lowest steady state temperature in the system as calculated

by (8). In the process of frequency reduction, it may happen

that all branches in (14) are equalized due to increased ci, but

there are still unused energy in (15). In this case, situation #5

occurs and we scale down fi by one level to fi−, while ci
might still be increased, due to extended dthri , to maintain the

equality of (14). The process continues until #4 occurs again,

or termination conditions happen.

The frequency scaling process terminates under any of the

three conditions:

• ci = cmax
i , ∀ti ∈ N ;

• when scaling up fi is required, all fis are in the highest

allowable frequency;

• when scaling down fi is required, all fis are in the

lowest allowable frequency.

VI. EXPERIMENTAL RESULTS

We use the HotSpot [15] thermal simulation tool as the

evaluation platform on the performance of our algorithm. We

assume the platform contains 9 tiled FFT cores synthesized on

the Xilinx Virtex-6 XC6VLX240T board. Table I shows the

tile data necessary to derive the thermal profile. The power

values of the FFT cores are derived using ModelSim based

on the Virtex implementation. Under nano-scale device sizes,

the instantaneous leakage power is dependent on the device

temperature. According to the XPower Analyzer, the leakage

power is linear to the temperature as shown in Table I.

To evaluate the performance of our algorithm, we synthe-

sized a set of pseudo adaptive workloads on the platform. The

number of workloads varies between [8, 40] in the step of 4.

The workloads are assumed to be inter-dependent in execution

sequence, which is randomly generated using TGFF [19].

The execution is based on a slack claim and redistribution

fashion [18], where the preceding task, tp, finishes 30% before

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40

T
im

in
g

 R
e

d
u

c
ti
o

n
 (

%
)

Avg. Task Number

65˚C
70˚C
75˚C

Fig. 4: Percentage of thermal timing constraints to normal

deadlines.

its statically determined time. The task group, denoted as N in

Section III, then adopts the slack timing and associated energy.

In constraint (14), the di is the sum of ti’s and 30% of tp’s

execution time, and in (15) EN is the saved energy associated

with 30% of tp.

To reflect the effectiveness of adaptive workload on the

temperature constraint, we carefully adjust the workload

deadlines to be compatible with the thermal timing. Fig. 4

shows how temperature constraint shortens the deadline for

the set of workloads under test, ranged between 8 and 40. By

reducing the temperature threshold from 75◦C to 70◦C and

65◦C, the average deadline shortening rate (the ratio between

dthri and di, ref. Eqn. (14)) reduces from 90.6% to 50.0%

and 16.1% respectively. The average cycle gain, as shown in

the solid lines in Fig. 5, reduces accordingly by 14.9% and

58.2%. However, compared to not applying the frequency

scaling approach, which is plotted in the dotted lines in Fig.

5 and derived by setting all frequencies to the middle of the

available frequency levels, our approach gains on average

31.5%, 9.5%, and 3%, under temperature constraints 75◦C,

70◦C, and 65◦C, respectively. The difference in cycle gain

under different temperature constraints, can be explained such

that more timing resources at higher temperature threshold

are provided for frequency scaling. Note that large reduction

in timing constraints, as shown in Fig. 4, does not necessarily

leads to large reduction in cycle gain in Fig. 5. This is because

the experiment is based on the runtime slack claiming and

distribution, and this phenomenon coincides with the finding

in [18], where parallel energy constraint is more of the scarce

resource rather than timing.

VII. CONCLUSIONS

In this paper, we present a frequency scaling algorithm

that targets adaptive workloads, which is employed as

an application-level thermal management scheme. The

performance of the algorithm, provided with accuracy of

thermal sensing data, is as large as 31.5% compared to not

applying frequency scaling. As an immediate future work, we

would like to synthesize real-life systems, instead of pseudo

workloads, for more concrete evaluation of the algorithm.

Meanwhile, a runtime FPGA-based core relocation scheme,

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 10 15 20 25 30 35 40

C
y
c
le

 I
n
c
re

a
s
e

Avg. Task Number

65˚C w/o.fs
65˚C w.fs

70˚C w/o.fs
70˚C w.fs

75˚C w/o.fs
75˚C w.fs

no thermal impact

Fig. 5: Cycle increase of the proposed algorithm compared to

no frequency scaling.

as a joint and complementary design perspective to adaptive

workloads, is being studied for more efficient thermal control.

REFERENCES

[1] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the h.264/avc standard,” IEEE Trans. on Circuits

Syst. Video Techn., vol. 17, no. 9, pp. 1103–1120, 2007.
[2] T. Acharya and P. S. Tsai, “Jpeg2000 standard for image compression:

Concepts, algorithms and vlsi architectures,” Wiley 2004.
[3] R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur, “Thermal

performance challenges from silicon to systems,” 2000.
[4] T. Sato, J. Ichimiya, N. Ono, K. Hachiya, and M. Hashimoto, “On-chip

thermal gradient analysis and temperature flattening for soc design,” in
ASP-DAC, 2005, pp. 1074–1077.

[5] W. Liao, L. He, and K. Lepak, “Temperature and supply voltage aware
performance and power modeling at microarchitecture level,” IEEE

Trans. CAD, vol. 24, no. 7, pp. 1042–1053, 2006.
[6] I. Yeo, C. C. Liu, and E. J. Kim, “Predictive dynamic thermal manage-

ment for multicore systems,” in DAC, 2008, pp. 734–739.
[7] A. K. Coskun, T. S. Rosing, and K. C. Gross, “Proactive temperature

balancing for low cost thermal management in mpsocs,” in ICCAD,
2008, pp. 250–257.

[8] G. Liu, M. Fan, and G. Quan, “Neighbor-aware dynamic thermal
management for multi-core platform,” in DATE, 2012, pp. 187–192.

[9] M. Bao, A. Andrei, P. Eles, and Z. Peng, “Online thermal aware dynamic
voltage scaling for energy optimization with frequency/temperature
dependency consideration,” in DAC, 2009, pp. 490–495.

[10] Y. Ge and Q. Qiu, “Dynamic thermal management for multimedia
applications using machine learning,” in DAC, 2011, pp. 95–100.

[11] S. Zhang and K. S. Chatha, “Thermal aware task sequencing on
embedded processors,” in DAC, 2010, pp. 585–590.

[12] H. Huang, G. Quan, J. Fan, and M. Qiu, “Throughput maximization for
periodic real-time systems under the maximal temperature constraint,”
in DAC, 2011, pp. 363–368.

[13] V. Hanumaiah and S. B. K. Vrudhula, “Reliability-aware thermal man-
agement for hard real-time applications on multi-core processors,” in
DATE, 2011, pp. 137–142.

[14] T. Chantem, X. S. Hu, and R. P. Dick, “Temperature-aware scheduling
and assignment for hard real-time applications on mpsocs,” IEEE Trans.

VLSI Syst., vol. 19, no. 10, pp. 1884–1897, 2011.
[15] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,

and M. R. Stan, “Hotspot: A compact thermal modeling methodology
for early-stage vlsi design,” IEEE Trans. VLSI Syst., vol. 14, no. 5, 2006.

[16] V. K. V. et al., “Analysis and characterization of inherent application
resilience for approximate computing,” in DAC, 2013, pp. 1–9.

[17] Y. Liu, R. P. Dick, L. Shang, and H. Yang, “Accurate temperature-
dependent integrated circuit leakage power estimation is easy,” in DATE,
2007, pp. 1526–1531.

[18] H. Yu, Y. Ha, and B. Veeravall, “Quality-driven dynamic scheduling for
real-time adaptive applications on multiprocessor systems,” IEEE Trans.

on Computers, vol. 62, no. 10, pp. 2026–2040, 2013.
[19] “Tgff: task graphs for free,” 2008,

http://ziyang.eecs.umich.edu/~dickrp/tgff/.

