
Cross-correlation of Specification and RTL
for Soft IP Analysis

Bhanu Singh1, Arunprasath Shankar1, Francis Wolff1, Christos Papachristou1, Daniel Weyer2, and Steve Clay2

1Dept. of EECS, Case Western Reserve University, Cleveland, USA
2Rockwell Automation, Cleveland, USA

Abstract—Semiconductor companies often use 3rd party IPs
in order to improve their design productivity. In practice, there
are risks involved in using a 3rd party IP as bugs may creep in
due to versioning issues, poor documentation, and mismatches
between specification and RTL. As a result of this, 3rd party IP
specification and RTL must be carefully evaluated. Our method-
ology addresses this issue, which cross-correlates specification
and RTL to discover these discrepancies. The key innovative
ideas in our approach are to use prior and trusted experience
about designs, which include their specs and RTL code. Also, we
have captured this trusted experience into two knowledge bases
(KB), Spec-KB and RTL-KB. Finally, knowledge base rules are
used to cross-correlate the RTL blocks to the specs. We have
tested our approach by analyzing several 3rd party IPs. We have
defined metrics for specification coverage and RTL identification
coverage to quantify our results.

I. INTRODUCTION

IP reuse is a common design approach to develop system on
chip (SoC) designs. SoC design teams often source standard
based 3rd party IPs. In an ideal reuse scenario, 3rd party IPs
can be seamlessly integrated into the SoC [1]. In practice,
however there are risks involved in using 3rd party IPs. Design
quality issues in a 3rd party IP, if discovered later than the RTL
sign-off stage, increase the turnaround time and in the worst
case may lead to chip re-spins. Therefore, to mitigate the risk
of 3rd party IP reuse, the IP specs and RTL must be carefully
evaluated to discover any discrepancies early in design cycle.

We consider a common scenario, where a SoC design
team develops a IP specification (trusted spec) document but
outsources the IP design and verification to a 3rd party design
house. The SoC team finally receives the IP block as soft
IP core, which has a synthesizable RTL code description and
a detailed functional spec document. An important issue is
that the RTL design corresponds without discrepancies to its
original trusted spec. Our method addresses this issue.

In current practice, spec analysis is primarily done manually
by reading a vendors functional spec and comparing it against
the original trusted spec. There is a growing concern that this
manual process is slow and error prone. The state-of-the-art in
RTL validation can be broadly classified into (a) Simulation,
and (b) Formal methods based on either theorem proving or
model checking. Formal approaches may be challenged by the
state explosion problem in attempting to formally verify large
designs [2]. Simulations are very expensive as they require
long run times operating on large functional vector sets. Thus,

employing formal and functional testing may not provide high
confidence level at a reasonable cost.

In this paper, we propose a knowledge-guided methodology
to analyze a 3rd party soft IP, possibly untrusted, provided by
its RTL code description and a trusted specification document.
Our approach uses prior and trusted experience about designs,
including their specs and RTL code, and captures this expe-
rience in two KB, Spec-KB and RTL-KB. Knowledge Base
rules are then used to find correspondences of RTL with its
original trusted spec and infer its relation block by block to the
spec document structure. The design behavior inferred from
RTL is back annotated to corresponding spec sections. In our
approach, exploitation of prior and trusted design experience
through both Spec and RTL KBs is a key benefit in contrast
to using formal methods and functional simulations.

A. Related Works

The individual elements of our technique can be roughly
related to work in following areas: (a) Specification analysis,
(b) Reverse engineering, and (c) IP quality evaluation.

Natural language processing (NLP) based techniques, have
been proposed for extracting formal specifications from an
informal spec document [3] [4]. The in-depth NLP based
approach is very complex and computationally expensive. NLP
is not required for our approach as we focus on limited domain
specific aspect of text and do not process documents for
general linguistic context.

Reverse engineering has been an active topic of research for
many years. Most of the techniques proposed are for gate-level
netlist [5] [6]. Our approach is different as it identifies RTL
behavior, which is at higher abstraction level than the netlist.

Various approaches have been proposed for IP quality
evaluation [7] [8]. Quality metrics have been proposed such as
Quality Intellectual Property (QIP) by virtual socket interface
alliance (VSIA) [7]. Our approach provides additional specifi-
cation and RTL identification coverage metrics to quantify IP
design quality. In industry, the so called lint tools are primarily
used to check RTL design quality [9] but these tools do not
analyze specification to RTL correspondences.

II. METHODOLOGY OVERVIEW

The main elements of our technique are: (a) a KB of trusted
Specs and RTL, (b) property based models for common 3rd
party IP blocks (c) Specification analysis, (d) RTL analysis,978-3-9815370-2-4/DATE14/ c© 2014 EDAA



(a) KB generation (b) KB application for third party IP analysis

Fig. 1. KB system to determine Spec and RTL correspondence

and (e) back-annotation of inferred RTL functionality to
specification. Fig.1 provides an overview of our approach. We
have used the expert system shell CLIPS, with its powerful
inference engine to help us generate the Spec and RTL KBs
and perform rule based analysis [10]. The generation of KB is
a ongoing process, as KB is enhanced with each addition of
new IPs. Every IP in the KB is considered as trusted design,
built previously by experienced designers. The 3rd party IP
analysis involves a rule-based search process, which checks the
existence of trusted design properties in an untrusted design.
Thus correspondences between 3rd party RTL and its original
trusted spec are inferred through the KB search by matching
CLIPS rules.

Our method can be applied to standard based soft IPs. In this
context, standards are trusted public documents that establish
specifications that are universally understood to ensure com-
patible functionality and interoperability. A standard acts like
a high-level specification and defines key concepts (functions
and properties) for a design. Soft IPs from different vendors
that are compliant to a standard have concrete behavioral
correspondences. For example, every IEEE-754 compliant
floating point unit (FPU) design should support the following
rounding modes: “round to zero”, “round up”, “round down”
and “round to nearest even” [11].

We also use the concept of design domain, which we define
as a family of Soft-IP designs that have common application,
such as a bus interface domain. We generated KB from
libraries of standard-based designs and organized it as per
various design domains. In the following sections, we describe
each element of our technique.

III. KNOWLEDGE BASE GENERATION

Our method employs Spec-KB and RTL-KB, which are
described below

A. Specification KB

The Spec-KB consists of following components:

1) specification ontology: A spec document is generally
used to specify design behavior. It uses variety of notations
that include text, diagrams, and tables. We define text-objects
as words or phrases used to specify design properties. For
example, “synchronous” and “asynchronous” are text-objects.
Through analysis of different vendor specs, we observed that
for a particular design domain, specs exhibit commonality of
text-objects. These text-objects are identified from a corpus of
specs and then organized into a conceptual network, which
we term as “spec ontology”. An ontology is defined as
a knowledge representation model to explicitly represent a
domain by defining its concepts and their relationships [12].

A spec ontology consists of objects, features and their
attributes organized in a hierarchy using relationships. Fig.2
provides an overview of the ontology fragment for the ARM
AXI Bus. Each high level concept in the ontology is defined in
terms of lower level concepts using relationships, for example
“has-function”, “has-subfunction”, “has-operation” and “has-
feature”. The relationships create a conceptual network, which
corresponds to a specification model for the design. The on-
tologies that we have developed describe the design using four-
level-deep functional decomposition. The first level is soft IP
design domain along with its listed features. The second level
has function objects. The third level consists of subfunction
objects, which are further decomposed in terms of leaf level
operations. For example, in Fig.2 data-transfer is categorized
as an AXI function and “flow-control” is its subfunction. We
have developed tools to assist experts in ontology creation. We
first filter common words such as pronouns, conjunctions etc.
by using a custom stop word dictionary. We then perform spec
word frequency analysis and location analysis on a corpus of
specs to provide input to an expert about lists of important
words for a design domain.

We have also developed a “Spec-Extractor” tool to auto-
mate the extraction of text-objects from a third-party IP spec
document. A spec document is analyzed by first converting
it from PDF into XML format using Adobe tools. The spec-



Fig. 2. Fragment of specification ontology for AXI bus

extractor then parses the XML and generates a hierarchical
tree based on the location of each spec word in a particular
section, subsection, paragraph and sentence of the document.
Since each word is a leaf node in the tree, the key idea is the
path back to the root. A unique location vector is generated
for every word derived from corresponding XML tags for
document structure. Spec words are further clustered under
categories as, (i) Spec ontology words, (ii) RTL symbols (port
and module names) (iii) acronym/abbreviations/numbers, (iv)
custom stop words, (v) English dictionary words, and (vi)
unknowns. This captured data is outputted as CLIPS facts,
which then gets analyzed by the spec rule base (see below).
Each trusted spec gets represented in a machine readable
format by populating a uniform CLIPS fact template with
text-objects existing in that particular spec. This representation
enables us to compare the spec of a new design with existing
designs in the KB. The Spec ontology helps in extraction of
salient features of a design from textual spec documents.

2) Specification Rule-base: The rule-base analyzes CLIPS
fact based representation of a 3rd party IP spec by finding
correspondences with the spec KB. The rule-base has mul-
tiple level of inference rules. The higher level rules perform
inferences by combining lower level inferences. Following is
description of various categories of spec rules.

a) Location rules: These rules use location proximity
information of text-objects in the spec to associate design
features with their attributes or find negative phrases associated
with features. For example, for FPU designs, precision is a
feature and it has attribute value of “single” or “double”.

b) Function Rules: These rules infer design functions
based on occurrence of text-objects that identify low level
operations and sub-functions listed in the spec ontology. We
may have a partial match of features in a spec with certain
features that are more important as they provide hints of the
existence of high-level functions. For example, the existence
of a lookup table or memory component for FPU designs can
be used as hint to infer the occurrence of a floating-point
divider. The I/O names for bus protocol designs can also be
used as hints to infer the associated bus interface function. For
example, if a spec has partial matching with signal objects
listed in Fig. 2, then it is a hint for the existence of AXI
bus. The rules also check if any essential design property key
to making inferences about a design function is missing in a

third-party IP spec, such as overflow property of FPU design.
c) IO property based: These rules check I/O inconsis-

tency between spec and RTL by testing if port names and
their attributes specified in a spec document match with RTL
description. The I/O tables listed in specs are parsed from
XML version of specs to infer I/O connectivity specified for
the design. The IO port information for each RTL entity/mod-
ule is extracted from the RTL port definitions.

B. RTL KB

The RTL-KB consists of following components:
1) RTL-CLIPS: This format is a semantically equivalent

translation of RTL code into CLIPS facts. It helps the rule-
base to semantically and syntactically infer RTL properties.
We have developed tools to perform RTL to CLIPS translation
and a simulation environment for RTL-CLIPS.

Table I gives some examples of VHDL language elements
and their CLIPS templates. We define two types of fact
templates and instances of these templates as facts represent
RTL in CLIPS. The var template captures attributes associated
with a signal/variable declaration. The stmt template captures
attributes of a control/data operation. For example, inputs,
output and type of operator used. Each fact, an instance of
these templates, has a unique id and each has a parent, to
maintain the block structure of the VHDL code.

TABLE I
EXAMPLES OF HDL REPRESENTED IN KNOWLEDGE BASE

VHDL Element CLIPS Template

signal clk : std logic;
...

(var (parentid gen3) (id gen6) (text clk)(class signal))

process (clk)
...

(stmt (parentid gen13) (id gen17)(cat BLOCK
CONC-SEQ)(ins gen6) (stmts gen19 gen20))

elsif rising edge(clk) then (stmt (parentid gen23) (id gen26) (cat SEQ IF) (ins
gen6) (stmts gen27 gen29))

cnt <= cnt + 1;
...

(stmt (parentid gen26) (id gen27) (cat MATH ADD)
(ins gen8 ”1”) (outs gen8))

Stmt templates include a multislot cat, for category. A
CLIPS slot holds one value whereas a multislot holds an
ordered list of values. We define the category as a path through
a tree of commands. For example, “MATH ADD” for addition.
The statements in a code block make references to their
parent; however for blocks of sequential statements, we also
define a stmts multislot in the parent, to give the order of
execution. Within a process, flow of control constructs include
sequential, conditional, loop and function. Sequential control
is defined by an ordered list of ids in the stmts multislot of
the parent stmt. These ids appear in the id slot of each child.
Conditional and loop control are defined as a parent stmt
with command category “SEQ IF” or “SEQ WHILE” and a
conditional variable reference in the ins multislot and one or
two ids in the stmts multislot. Function calls are defined as
a stmt with command category “SEQ FUNC name” for the
function name and ins and outs multislots with references to
arguments and results.

2) A Property Based Model (PBM) for the design: A
property is a partial specification which contains some element
of expected design behavior. In our approach, the behavior of a



standard based design is represented by collection of its partial
specifications. The properties of trusted designs are captured
in the KB through a PBM. The expert generates this model
using combination of following notations (a) hypothesis about
design behavior, (b) library of template code fragments, and
(c) test vectors for expected input/output behavior.

For an IP, its hierarchical functional decomposition results in
behavioral functions, which at the highest abstraction level, are
captured through the spec ontology. The PBM for a design is
further refined by experts providing template code fragments,
which act as pattern for concept to code mapping. The
functions and operations in spec ontology correspond to a set
of RTL code fragments (sequence of control/data operations),
captured through rules in RTL-KB. For example, Table II lists
some template code fragments and their annotations (spec-
words listed in corresponding domain spec ontology).

The properties of the CLIPS code are semi-automatically
made into CLIPS rules with the assistance of a code analysis
tool. The tool allows an expert to provide an annotation for a
fragment of RTL code. The user identifies the annotation and
associates it with sample CLIPS facts from the converted RTL
code. The tool then assembles the code fragment as antecedent
and annotation as consequent into a set of CLIPS rules. The
resulting rules then automatically annotate sections of trusted
RTL code and low-level annotations are used for performing
higher-level annotations. The expert’s skill in recognizing
code fragments becomes part of the system and similar code
fragments in untrusted RTL get annotated with an equivalent
concept. The concepts inferred by pattern matching rules
are further confirmed through application of test vectors. We
explain the PBM using an example for synchronous FIFO,
shown in Fig. 3.

Fig. 3. Property based model of a FIFO design

Example -: The model has a hypothesis about FIFO
design composition in terms of its behavioral functions: “push
data”, “pop data”, and “exceptions”. The expert knowledge
about a FIFO design is also captured. For example, syn-
chronous FIFO is categorized as a single clock-domain design.
The template code fragments associated with the model as
shown in Table II provide hints for existence of these behav-
ioral functions.

3) RTL Rule-base: The RTL-rulebase captures heuristic
knowledge of design experts. The KB keeps on improving
as more designs are analyzed and more rules get added to
capture variations in RTL implementation. This increases the
accuracy of the rule based inference process. Following is a
description of various rule categories.

TABLE II
EXAMPLE - TEMPLATE RTL CODE FRAGMENTS AND THEIR ANNOTATIONS

Code fragment Annotation
(first level)

Annotation
(second level)

process (pclk or presetn)
if presetn = ’0’ then
rdAdr <= ”0”;
elsif rising edge(pclk) then

pclk and presetn
annotated as
clock and active
low reset.

process block gets annotated as
“clocked process”.

rdAddr <= rdAdr + 1
wrAdr <= wrAdr + 1

“up-counter”
annotation

dout<=
mem(conv integer(rdAdr));

rdAdr annotated
as “read address”

further annotated as read pointer

a) Syntactic rules: This rule-set infers common design
concepts like counters, memory components, FIFO, FSM etc.
A “process” in VHDL get annotated as sequential, combina-
tional, control-only, and for existence of arithmetic operations.

b) Behavioral analysis rules: These rules identify prop-
erties of an untrusted RTL by finding correspondences with
RTL KB. The inferences done by rules at lower level are
used to perform higher level inference. Each rule uses a
combination of template code fragments as a pattern and
on successful firing provides an annotation. Following is an
example of a rule which infers “logical left-shift” operation.
(defrule MAIN::infer-LSL
(stmt(parentid gen0)(cat DESIGN)(text ?module))
(stmt(cat CONST)(text ?x&˜:(str-index 1 ?x)) (outs ?y))
(stmt(parentid ?p)(cat MATH CONCAT) (ins ?f2in1 ?y)(outs ?out1))
(stmt(parentid ?p)(cat MATH WHEN)(ins ?cmpResult1 ?out1 ?f3in2))
(stmt(parentid ?p)(cat MATH ==)(ins ?sel ?const1)(outs ?cmpResult1))
(stmt(cat CONST)(text ?constVal1&:(eq(string-to-field ?constVal1)

(str-length (proper-str ?x)))) (outs ?const1))
=>
(assert(inference(module ?module)(function LSL)(cf 0.9))))

c) Register Meta-data rules: We define a register de-
scription template as shown in Table III and it uses meta
data tags for register specification. Each register in spec is
specified using meta-data tags to capture its name, address,
reset value and access type. The register meta-data rules
identify mismatches between register specification in Spec
document and register implementation in RTL. For example,
inconsistency in register label/address etc.

TABLE III
PROPOSED REGISTER DESCRIPTION TEMPLATE

module
name

base
address

bus
protocol

version date author

fpuReg 0x400 AHB 2.1 xyz abc
register
name

address
offset

field
name

reset
value

index access
type

comments

OP SEL 0x0 operation select
RSVD 0x0 31:2 RO
OPCODE 0x0 1:0 RW 2’b00 = Add; ...

d) I/O port rules: For each design domain, an expert
associates a label with signal names to map names from
different vendors to an equivalent concept. For example, for
FIFO designs “push” and “write” signals are labelled as “fifo
write”. This is captured in an I/O label dictionary. For a new
design, automatic port name resolution is performed using
stemming and lemmatization techniques [13]. This associates
each port name with an equivalent concept from the I/O label
dictionary. The generated I/O label file is reviewed by a user
and is provided as an input to the rule-base.



e) Datapath rules: These rules use design composition
knowledge provided by experts in PBM. These rules anno-
tate unidentified code blocks using annotation information of
neighboring code blocks. For example, for a “FPU Add” func-
tion in the PBM, its datapath has “fraction addition (FrAdd)”
subfunction followed by “leading zeros (LZ)” subfunction and
then “fraction left-shift (FrLS)” subfunction [15]. If two code-
fragments in RTL are annotated as ”FrAdd” and ”FrLS”, then
the data dependency is analyzed to annotate a associated code
fragment as “LZ” subfunction.

f) Evaluation Rules: In our approach, a CLIPS program
is run to simulate the execution of the VHDL code. The
KB has reference test-vectors associated with each behavioral
function and these are developed as part of trusted designs
in the KB. The behavioral analysis and data path rules first
identify entities in an untrusted RTL that have matchings with
functions in PBM. The IO Port rules further provide concept
labels to RTL signals of 3rd party IP. The rule-base then
generates input test values for an entity in untrusted RTL using
a test vector in KB and IO concept labels. The user reviews
the input values before they are applied as evaluation rules to
simulate 3rd party IP.

4) Confidence levels: Our methodology has a confidence
factor (CF) associated with each rule to support partial match-
ing and accommodate expert knowledge about significance
of a design property. CF given to a rule by an expert is in
the range of 0 to 1. CF is the likelihood of being accurate
in inferring a design functionality when a particular design
property exists in Specs or RTL code. CF allows the rule
base to identify high level design functions even for partial
matching of properties. CFs are merged for rules inferring
a function at the same hierarchical level using a parallel
combination formula. Fig. 4 provides an example of CFs
merging. We produce the CF of inferring a higher level
module, based on the existence of lower modules, by the
weighted average CFs of lower level modules.

Merge Rule

Infer barrel

shifter

Rule A1

Combinational

logic

Rule 2

Logical shift left

operation

CF1 = 0.1

CF2 = 0.6

barrel-shift CF = CF1 + CF2 – (CF1* CF2)

= 0.64

Fig. 4. Confidence factor merging using parallel combination formula

IV. BACK ANNOTATION TECHNIQUE AND METRICS

A. Back annotation Technique

The objective of back annotation is to map RTL modules
to the corresponding sections in spec. We assume that the
spec has IO port list specified for each RTL entity. The
spec analysis method uses location vectors of text-objects
to annotate the corresponding spec sections/subsections. The
RTL modules get annotated by the RTL analysis method. A
particular spec section to RTL entity/module correspondence
is established through the existence of module name, matching

annotations and IO port list in that section. For example, in
Fig. 5 #1, #2, #3 refer to back-annotation of RTL entity/ports
to sections in spec. Finally, design properties annotated to the
section are matched against RTL annotations for the entity.
CF is assigned for both complete matches and partial matches
of the annotations. The back-annotation follows a bottom
up procedure where CFs generated for matching lower level
modules are summed and averaged progressively to find the
CF for a higher level module. Fig. 5 provides an overview of
back annotation process

Fig. 5. Back Annotation overview

B. Metrics

1) Spec coverage (SC): A Spec section is considered cov-
ered if a function and its properties listed in spec ontology are
annotated to that section. Since functions are first level objects,
inference of a high-level function by spec analysis and its
location in “section” text covers all lower level subsections.
If a high-level function could not be directly identified but
its properties and sub-functions are found in a subsection,
then the corresponding section is annotated with the function
with a confidence level (CF) calculated by the rule-base.
If the CF is below a user-defined threshold, the section
is considered uncovered. SC results provide feedback about
sections that have no correspondence with spec-KB and RTL.
These sections need to be carefully reviewed by the user.

2) Identification (Id) Coverage: Id coverage is defined as
the percentage of functions listed in PBM model that can be
inferred from an untrusted RTL. If a function gets inferred
but all of its subfunctions and properties cannot be inferred
then CF for a function is low and it decreases overall CF. The
CF value for an IP is the average confidence of the rule-base
about the inferences performed for the IP.

V. SUMMARY OF RESULTS

We have developed a prototype KB system based on power-
ful CLIPS inference engine for the following design domains:
FPU, ARM2 and timer. With our industrial collaborators, we
developed trusted designs (Specs & RTL), spec ontologies and
Spec & RTL rule-bases for these design domains. The FPU,
ARM2 and Timer spec ontology contained 115, 134 and 39
features respectively. We obtained vendor FPU IPs, AMBER
ARM2 IP and Timer IP from opencores.org. We considered
each vendor IP as untrusted design. We performed analysis of
spec and RTL for each untrusted IP.



TABLE IV
SPEC ANALYSIS RESULTS

Spec Document Information Spec Extractor Output Spec Rule-base Analysis Output
IP
Name

No. of
Pages

No. of
Sections Domain

Total
words

Ontology
matches

Acronym/
abbreviat.

Number/
symbol

English
Dictionary

un-
known

Functions
inferred

Features
inferred

Sections
annotated

Spec
coverage

FPU IP1 [14] 6 4 FPU 710 51 24 26 563 46 6 31 3 75 %

FPU IP2 [15] 23 5 FPU 2889 187 50 231 2421 89 5 46 4 80 %

FPU IP3 [16] 12 13 FPU 3720 226 63 277 2344 43 4 40 5 41 %

AMBER IP [17] 48 8 ARM2 10342 695 280 742 6501 779 15 86 7 87.5 %

TIMER [18] 25 6 Peripheral 2919 19 163 292 1750 9 2 11 2 33 %

TABLE V
RTL ANALYSIS RESULTS

RTL Design Information RTL Rule-base Analysis Back Annotation
(Spec & RTL mismatches)

IP
Name entities processes clips facts

for rtl
rules
fired

functions
inferred

fsm
inferred

memory
ram/rom

bus
interface

Id
coverage

average
CF

IO
based

register
based

function inference
mismatch

FPU IP1 11 102 3335 92 4 0 0 0 57 % 0.48 0 NA 2

FPU IP2 13 48 3965 162 5 1 0 0 71 % 0.93 0 NA 0

FPU IP3 7 22 3919 73 4 0 0 0 53 % 0.7 0 NA 0

AMBER IP 14 30 15195 269 15 2 2 1 85 % 0.9 2 0 0

TIMER 5 11 1232 24 2 0 0 1 90 % 0.72 1 9 0

Table IV provides spec analysis results. The table lists
(a) spec extractor output as number of words extracted from
XML version of each spec, and (b) their classification as spec
ontology, english dictionary word etc. Then spec rule-base
performs location and function analysis. The table also lists the
number of functions and features inferred for each spec, and
the spec coverage metrics. Spec coverage provides feedback
to the user about spec sections of the untrusted IP that have
no correspondences and need to be carefully reviewed. A low
spec coverage also acts as feedback to KB developer to add
more rules and to improve the spec ontologies.
Table V provides RTL analysis and back annotation results.

The RTL to CLIPS translation was automatically performed
for each IP. The table lists number of RTL clips facts, rules
fired and inferences done for each IP. The function inferences
refer to the number of behavioral functions being successfully
inferred, e.g. FPADD in FPU domain. The bus-interface lists
the number of protocol buses inferred in the IP. The IP level
CF is the weighted average CFs of its lower level modules.
The Id coverage corresponds to behavioral functions inferred
for each IP in comparison to their number in PBM. A high
CF means that functions along with low level properties get
identified in RTL. The CF of the IP drops if there is a function
inference mismatch between spec and RTL. The FPU IP1 has
two functions (Float to integer and Integer to Float) listed
in its spec but not inferred from RTL. On manual review this
discrepancy was confirmed. The register discrepancy for timer
is RTL coding quality issue where register defines for address
and name used in Spec are not found in RTL. The timer has a
port naming discrepancy between specs and RTL. The ARM2
design has two extra ports in RTL as compared to Specs.

VI. CONCLUSION

We have presented a knowledge-guided methodology to per-
form analysis of Soft-IPs. Our approach can assist engineers
in discovering discrepancies between IP spec and RTL. The
coverage results can be used as metrics for IP analysis.

ACKNOWLEDGEMENT

This work has been supported by the DARPA IRIS Program
under contract: HR001-11-C-0091. Rockwell Automation col-
laborated as a team effort in this project.

REFERENCES

[1] M. Keating and P. Bricaud, Reuse Methodology Manual: For System-on-a-chip
Designs, 3rd ed. Boston, MA:Kluwer, 2002.

[2] J. Bhadra, M. S. Abadir, L. C. Wang, S. Ray. A Survey of Functional Verification
through Hybrid Techniques, IEEE Design & Test of Computers, March-April 2007.

[3] A. Holt, E. Klein, A semantically-derived subset of English for hardware verifica-
tion, Proc. 37th Annual meeting of Assoc. for Computational Linguistics, 1999.

[4] W. Cyre, Capture, Integration, and Analysis of Digital System Requirements with
Conceptual Graphs, IEEE Trans. on Knowl. and Data Eng., 1997.

[5] W. Li, Z. Wasson, S. A. Seshia, Reverse Engineering Circuits Using Behavioral
Pattern Mining, HOST 2012.

[6] P. Subramanyan, N. Tsiskaridze, Reverse Engineering Digital Circuits Using
Functional Analysis, DATE 2013.

[7] K. Werner, Can IP quality be objectively measured?, DATE, 2004.
[8] L. Wang, H. Luo, Automated IP Quality qualification for efficient SoC design,

Electronic Packaging Tech. and High Density Packaging (ICEPT-HDP), 2012.
[9] F. Wickberg, HDL code analysis for ASIC in Mobile Systems, liu.diva-

portal.org/smash/get/diva2:24142/FULLTEXT01
[10] J. C. Giarratano, G. D. Riley, Expert Systems: Principles and Programming,

4th ed.: Thomson Course Technology, 2005.
[11] IEEE, IEEE 754-2008 Standard for Floating point arithmetic.
[12] S. Nirenburg, V. Raskin Ontological Semantics Cambridge, MA: MIT Press 2004.
[13] C. D. Manning et.al, Introduction to Information Retrieval, Cambridge University

Press. 2008
[14] R. Usselmann, http://opencores.org/project,fpu.
[15] A. E. Jidan, http://opencores.org/project,fpu100.
[16] D. Lundgren, http://opencores.org/project,fpu double.
[17] S. Cornor, http://opencores.org/project,amber.
[18] R. Hayes, http://opencores.org/project,pit.


