
Timing Analysis of First-Come First-Served
Scheduled Interval-Timed Directed Acyclic Graphs

R.M.W.Frijns∗, S.Adyanthaya∗, S.Stuijk∗, J.P.M.Voeten∗†, M.C.W.Geilen∗, R.R.H.Schiffelers∗‡, and H.Corporaal∗
∗Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands

Email: R.M.W.Frijns@tue.nl
†TNO-ESI, Eindhoven, The Netherlands
‡ASML, Veldhoven, The Netherlands

Abstract—Analyzing worst-case application timing for systems
with shared resources is difficult, especially when non-monotonic
arbitration policies like First-Come-First-Served (FCFS) schedul-
ing are used in combination with varying task execution times.
Analysis methods that conservatively analyze these systems are
often based on state-space exploration, which is not scalable due
to its inherent susceptibility to combinatorial explosion.

We propose a scalable timing analysis method on periodically
restarted Directed Acyclic Task Graphs, that can provide conser-
vative bounds on task timing properties when shared resources
with FCFS scheduling are used. By expressing task enabling and
completion times in intervals, denoting best-case and worst-case
timing properties, contention on the shared resources can be
estimated using conservative approximations.

With an industrial case study we show that our approach can
easily analyze models with thousands of tasks in less than 10
seconds, and the worst-case bounds obtained show an average
improvement of 46% compared to bounds obtained by static
worst-case analysis.

I. INTRODUCTION

With the scale and complexity of modern-day embedded
systems skyrocketing, the process of designing these systems
is relying heavily on modeling and automated construction.
Designers need to understand the behavior of such systems
in early design stages, in order to reason about the impact of
design decisions on the overall system performance.

In the domain of high-performance mechatronics, applica-
tions calculate actuator output based on periodically arriving
sensor input, in order to control e.g. the motion of parts of the
system. These applications are mapped to (typically general-
purpose) distributed computation platforms, and are executed
under strict application timing requirements [1]. Since pipelin-
ing has little effect on control performance, these applica-
tions are acyclic and are therefore expressed as periodically
restarted Directed Acyclic Task Graphs (DAGs) [2]. Because
the underlying execution platforms are often unpredictable,
task execution times can vary, so typically tasks in these DAGs
are characterized by minimum and maximum execution times.

Many (interconnect) networks in modern embedded sys-
tems, like e.g. FlexRay [3] and RapidIO [4], employ First-
Come-First-Served (FCFS) scheduling. The timing of DAGs
that are (partially) mapped to this type of resource is hard
to analyze, since in addition to the varying execution times,

tasks suffer from additional delay due to contention on these
resources. This delay depends on the timing of the DAG itself,
which varies with each execution of the graph. With timing
analysis, the worst-case timing properties are to be found, like
completion times and response times of tasks, which must be
conservative for any execution of the DAG.

The Synchronous Dataflow (SDF) [5] model of computation
is commonly used in performance analysis and synthesis of
e.g. Multi-Processor Systems-On-Chip. With SDF analysis,
the impact of mapping and scheduling on application timing
and platform memory requirements can be analyzed. SDF is
a more expressive model of computation than the restricted
homogeneous SDF commonly used with DAGs, however, there
are no SDF-based timing analysis techniques that can analyze
DAGs with aforementioned properties and requirements.

Timing analysis based on model checking [6] is also a
widely used approach in performance analysis. Here, timing
properties are verified by analyzing a set of Timed Au-
tomata [7]. These techniques are able to deal with non-
monotonic models, however, as their underlying state-space
easily explodes, model checking does not scale very well.
Especially when tasks are allowed to have variation in their
execution time, state-space explosion is easily encountered.

In this paper, we propose a scalable analysis technique that
can analyze the timing of task graphs consisting of tasks with
varying execution times mapped to shared resources under a
FCFS scheduling policy. In our approach, timing is expressed
in intervals, which denote the best-case and the worst-case
timing properties of tasks. By taking into account the best-
case timing as well, the contention on the shared resources can
be estimated. Time intervals are propagated through the nodes
in the graph taking into account the contention. Scalability is
ensured by using a conservative approximation on the interval
bounds of the tasks, and is demonstrated in experiments on a
realistic industrial-sized model.

II. RELATED WORK

SDF analysis is a well-known approach in the design and
analysis of distributed real-time systems. SDF is commonly
used in static timing analysis, assuming tasks with fixed
execution times. However, shared resources with arbiters that
are not in the class of budget schedulers can not be modeled978-3-9815370-2-4/DATE14/ c© 2014 EDAA

with these techniques. In [8], a resource-aware extension of
SDF analysis is used in a design-space exploration technique
to dimension multiprocessor systems. Shared resource ac-
cesses are explicitly modeled, and their impact is analyzed
by considering the state-space of the different executions of
an SDF graph. Even with fixed execution times, heuristics are
needed to prevent a state-space explosion.

Analysis methods based on model checking tools, like the
popular UPPAAL [9] tool, use Timed-Automata (TA) [7] to
verify timing properties. The execution state-space of these
TA is exhaustively searched to e.g. find worst-case timing
properties. This results in very accurate bounds, but model
checking inherently suffers from state-space explosion. Dif-
ferent approaches focus on heuristics and model-reductions
to limit the state-space. In [10], UPPAAL is used to analyze
the timing of a RapidIO network. By applying heuristics,
somewhat larger models can be handled at the cost of accuracy,
but analysis of the full system model under high traffic load is
not possible without reverting to simulation techniques. The
work of [11] combines model checking with the Real-Time
Calculus (RTC) [12]. With RTC, event streams are expressed
in arrival curves, which bound the minimum and maximum
number of events seen in a stream for any time window
of some size. Scalability of the TA-analysis is improved by
abstracting part of the system under consideration into a
single arrival curve. Since the RTC arrival curves are defined
over any time window, information about absolute time is
lost. Therefore, it cannot distinguish absolute time offsets in
streams, resulting in pessimistic bounds when merging e.g. two
strictly periodic streams which have a phase shift relative to
each other [13]. Also, RTC assumes arrival curves are given.
In our approach it is sufficient to know the minimum and
maximum task execution times.

III. TIMING PROPERTIES

We assume that a Directed Acyclic Graph (DAG) G = (T,D)
is given, with T a finite set of tasks and D ⊆ T × T a set of
dependencies. We further let R denote a collection of resources
and assume that M : T → R maps any task to the (private or
shared) resource it is statically bound to. The execution timing
of tasks in G is expressed in intervals.

Definition 1. (INTERVAL) I is the set of closed intervals
defined by I = {[a, b] a, b ∈ N, b ≥ a}. Intervals are ordered
according to a subset ordering, i.e. (I,⊆) is a partially
ordered set. The lower bound L of an interval is given by
L([a, b]) = a, the upper bound U is given by U([a, b]) = b.

The timing properties can be expressed in the following task
labelings on tasks in G:
• E : T → I maps tasks to their execution interval. E(t) =

[a, b] denotes that an execution of task t will require at
least a, and at most b time units.

• C : T → I maps tasks to their completion interval
bounds, i.e. C(t) is the interval at which task t will finish
its execution.

• En : T → I maps tasks to their enabled interval bounds.

• B : T → I maps tasks to a busy interval. The busy
interval of a task reflects the delay between its enabling
and its completion time, including both waiting time as
a result of contention, and its execution time.

Note that the busy interval B is not a response interval, but
an algebraic term that, given a best-case (worst-case) enabling
of a task, denotes the delay that results in a best-case (worst-
case) completion of that task. The worst-case response time
of t, i.e. its maximum delay, is not necessarily in B(t); it is
bounded by U(C(t))− L(En(t)).

The execution interval labeling E is assumed to be given for
DAG G. Furthermore, all resources in R employ a First-Come-
First-Served (FCFS) scheduling policy, where tasks are queued
for execution based on the time they are enabled. Fixed-order
schedules on (a subset of) tasks in G can then be modeled by
adding sufficient scheduling dependencies to the DAG, while
omitting (some of) these dependencies allows modeling of e.g.
shared communication resources.

A task is enabled when all its predecessors have completed
their execution. Without loss of generality, tasks without inputs
are assumed to be enabled at [0, 0]. The relation between the
enabled interval of a task t ∈ T of G and its completion
interval is:

En(t) =

{
[0, 0] if pred(t) = ∅

max
t′∈pred(t)

C(t′) otherwise , (1)

where pred(t) = {t′ ∈ T | (t′, t) ∈ D} denotes the set of
predecessors of t, and the max-operator on intervals is defined
as maxV = [maxi∈V L(i),maxi∈V U(i)] for all finite non-
empty sets V ⊆ I .

When t is enabled, it enters the execution queue of its
resource, where it needs to wait on the completion of all tasks
that were queued earlier. When t eventually gets access to its
resource, it starts executing and completes after some time
in E(t). During execution of t, no other task can claim the
resource on which t is executing. The busy interval B(t) of
task t is the period between its enabling and its completion,
and thus includes both the time that t spends waiting in the
execution queue (which depends on the contention) as well as
the time that t is executing. The completion interval of any
task t ∈ T in terms of its busy interval is then given by:

C(t) = En(t) +B(t), (2)

where i1+i2 = [L(i1)+L(i2), U(i1)+U(i2)] for all i1, i2 ∈ I .
In a concrete execution of G, each task has an execution

time within the bounds of its execution interval. The execution
times determine (up to non-determinism) the exact execution
order of all tasks in the graph for that specific execution.
In each concrete execution of G, tasks can have different
execution times, so timing analysis of G must therefore result
in labeling intervals that express conservative bounds on the
timing properties of any possible concrete execution of G.
The busy interval B(t) of some task t is considered to be
conservative if both En(t) and C(t) are conservative bounds
for concrete executions.

t1
[1,2]

t3
[7,12]

t4
[5,6]

t5
[7,9]

t2
[3,6]

En C B
[0, 0] [1, 2]t1

t2

t3

t4

t5

[1, 2] [4, 8]

[1, 2]

[8,14]

[13,20]

[8,14]

[13,20]

[20,29]

[1, 2]

[3, 6]

[7,12]

[5, 6]

[7, 9]

task

(a)

t1
[1,1]

t4
[3,9]

t3
[4,6]

t2
[2,5]

t5
[2,4]

t6
[9,12]

t7
[3,5]

En C B
[0, 0] [1, 1]t1

t2

t3

t4

t5

[1, 1] [3, 6]

[1, 1]

[1, 1]

[3,6]

[5, 7]

[4,10]

[5,31]

[1, 1]

[2, 5]

[4, 6]

[3,9]

[2,25]

task

t6 [5,7] [14,31] [9,24]

t7 [4,10] [7,31] [3,21]

(b)

Fig. 1. Two example DAGs. In the left DAG GNC there is no resource
contention, since the dependencies in GNC enforce a fixed-order schedule.
In DAG GC on the right, there is contention on the white resource.

If B is given, e.g. when there is no contention, the timing
of a DAG is calculated by propagating the completion- and
enabled intervals of Equations 1 and 2 through the nodes
of the graph in topological order, similar to (Homogeneous)
SDF-analysis techniques lifted to an interval-timed domain, as
shown in the following example.
Figure 1(a) shows an example DAG GNC with five tasks
t1 · · · t5 bound to two resources p1(white) and p2(light grey).
The intervals inside the vertices denote the execution interval
for each task. GNC has a set of dependencies that enforce
a fixed-order schedule (t1 → t2 and t3 → t4 → t5). Due
to this schedule, any task can start executing immediately
when it is enabled, so B(t) = E(t) for all t ∈ T . Starting
with task t1, which is enabled at En(t1) = [0 , 0], execution
of t1 completes at [1, 2], and enables tasks t2 and t3 at
[1, 2], since both have only a single incoming dependency
on t1. Subsequently, executions of t2 and t3 complete at
[4, 8] and [8, 14] respectively. Completion of t3 enables
task t4, which has multiple incoming dependencies, so
En(t4) = max {C(t2), C(t3)} = [8, 14]. Completion of t4 at
[13, 20] enables t5 at [13, 20], which completes at [20, 29].
The timing labels of GNC are summarized in the figure.

IV. TIMING ANALYSIS WITH CONTENTION

For DAGs with contention, B is not given but needs to be
computed. The additional task delay in B due to contention
can be estimated by analyzing the relation between enabled
intervals of different tasks on the same resource. These enabled
intervals in turn depend on B. A natural approach to deal
with this recursive dependency is to use a fixed-point iteration.
We analyze DAG timing by iterating on B, starting with a B

assuming no contention. In each iteration more contention is
taken into account, until a fixed-point is reached. To provide
some intuition on contention, we first show an example DAG
showing contention. Then, in Subsection IV-A, we show how
to conservatively estimate task completion intervals given
some B. The fixed-point iteration is explained in Section IV-B.

Consider DAG GC in Figure 1(b). It consists of seven tasks
t1 · · · t7 mapped to three resources p1(white), p2(light grey)
and p3(dark grey), and has insufficient dependencies between
the tasks on resource p1 to enforce a fixed-order schedule. As
a result, some tasks on p1 will contend for resource access.

Due to the dependency between tasks t1 and t4, they do not
contend for resource access. Also, t2, t3 and t4 do not contend,
since they are mapped to different resources. For these tasks,
B(t) = E(t) holds. Initially, task t1 is the only enabled task,
at [0, 0]. Completion of t1 at [1, 1] enables t2, t3 and t4, which
then complete at [3, 6], [4, 7] and [4, 10] respectively.

Now, tasks t5, t6 and t7 are enabled at [3, 6], [5, 7] and
[4, 10]. These tasks suffer from contention, so their busy time
is to be determined. In case of resource contention, predecessor
completion is not a sufficient precondition for the start of the
execution of a contending task; completion of any other tasks
that precede it in its execution queue is required as well. In
GC , t4 is enabled strictly before t5 and t6, so in any concrete
execution of GC , t4 precedes these tasks. Depending on their
concrete enabling time, they may need to wait on completion
of t4 before starting their execution.

Besides the possible delay caused by waiting on completion
of t4, tasks t5, t6 and t7 also contend with each other. Since
they have overlapping enabled intervals and are mapped to
the same resource, in concrete executions of GC , these tasks
are enabled at any time within the bounds of their enabled
intervals. For different concrete executions of the graph, the
queueing order of these tasks can be different. These queue
orderings can result in different busy and completion intervals
for these tasks and any other tasks that depend on them.

Exact analysis of the timing effects of these different
queueing orders requires state-space exploration. In such an
approach, analysis time and resource utilization show factorial
growth in the number of overlapping tasks in the DAG,
rendering an exact analysis intractable already for relatively
small DAGs. To ensure scalability, instead of exactly analyzing
all different task execution orders, we approximate the best-
case and worst-case completion intervals, and combine these
in a single closed interval that provides conservative bounds
for any concrete execution of the graph.

A. Contention model

Given an initial B, the enabled intervals of the tasks in
the DAG can be calculated by evaluating Equations 1 and 2
on tasks in the graph in topological order. If the enabled
intervals of all tasks are known, the completion interval of
a task t is estimated by analyzing the possible delay caused
by tasks mapped to the same resource that can be queued in
the execution queue of t’s resource before the enabling of t.

t6

t4

t2t1

t3

t5

(a)

t6

t4

t2t1

t3

t5

t0

(b)

Fig. 2. Two similar DAGs. In the DAG of 2(a), t3 precedes t4 in any execution
of the DAG, even if their enabled intervals would overlap, since tasks in
pred(t4) are dependent on all tasks in pred(t3). The DAG of 2(b) has no
such precedence relation between t3 and t4.

There can be no contention between t and some other task
t′ if t and t′ are dependent, i.e. a directed subset of D connects
them, since then one is enabled after completion of the other.
Tasks that are enabled strictly earlier than t precede t in any
concrete execution, and thus affect t in both best-case and
worst-case. Tasks with an enabled interval overlapping with
that of t will precede t in only some concrete executions.

Let ee(t) denote the set of tasks which are independent of
t, mapped to the same resource and enabled strictly earlier
than t, either based on a strictly smaller enabled interval, or
because of the dependencies between predecessors of t and
t′ (see Figure 2). Similarly, oe(t) denotes all tasks which are
independent of t, mapped to the same resource, whose enabled
interval overlaps with that of t and which are not in ee(t).

The earliest possible completion of t occurs when it is
enabled as early as possible, and the start of its execution is
delayed as little as possible. This is the case when t is enabled
at L(En(t)), all tasks in ee(t) complete as soon as possible,
and all tasks in oe(t) (except for t itself, which executes at
its best-case execution time) are enabled later then t. So, in
best-case, t can start executing after its best-case enabling and
the best-case completion of the last completing task in ee(t).

The latest possible completion of t occurs when it is enabled
as late as possible, and the start of its execution is delayed as
much as possible. Given t’s worst-case enabling, t is delayed
most if all tasks in ee(t) complete at the upper bound of their
completion interval, and all tasks in oe(t) execute at the upper
bound of their execution interval, while they are enabled just
before the upper bound of the enabled interval of t.

Consider the partial DAG and a representation of its execu-
tion queue in Figure 3. It consists of 3 independent tasks t1, t2
and t3 mapped to the same resource. The enabled interval of t1
overlaps with that of t2 and t3, and t2 is enabled strictly before
t3. According to aforementioned completion time estimation,
U(C(t2)) = U(En(t2))+U(E(t2))+U(E(t1)). Task t3 must
wait for completion of t2 before it can start its execution,
and can be preceded by t1, so then U(C(t3)) = U(C (t2)) +
U(E(t3)) + U(E(t1)). However, since U(E(t1)) is already
taken into account in U(C(t2)), it is accounted for twice
in U(C(t3)) (case 1 in the figure). To correct this, in the

t1
[5,5]

t3
[5,5]

t2
[5,5]

En(t1) = [2,20]

En(t2) = [3,5]

En(t3) = [7,8]

E(t1)E(t2) E(t3) E(t1)

C(t2)

En(t3)

En(t3) E(t1+t3)

E(t3)

C(t3)

C(t3)

1)

2a)

E(t1+t3)

2b)

En(t3) C(t3)

En(t2)

Fig. 3. Example of part of a DAG where the execution time of t1 is
contributing twice to the completion time of t3. A representation of the
execution queue for worst-case timing is shown on the right.

estimation of U(C(t3)), only the execution time of tasks in
oe(t3) that are not in oe(t2) are to be added (case 2a in
the figure). However, if U(En(t3))) is such that U(C(t2))−
U(En(t2)) ≤ U(E(t1)), not adding t1 would lead to an
estimate that is not conservative, so in that case U(C(t2)) is
estimated with U(En(t2))+U(E(t1))+U(E(t2))+U(E(t3))
(case 2b in the figure). So in general, the corrected worst-case
completion time estimate is the maximum of case 2a and 2b
in the Figure 3.

With this contention model, the completion interval of a
task t given some B is then given by:

C(B)(t) = max (ξ, ζ), where

ξ = En(B)(t ′) +B(t′) +

(∑
t′′∈oe(t)\oe(t′)

E(t′′)

)
∪ E(t)

with t′ the last completing task in ee(t)

ζ = En(B)(t) +

(∑
t′′∈oe(t)

E(t′′)

)
∪ E(t).

(3)
The union operator on sets of intervals is defined as ∪V =

[mini∈V L(i),maxi∈V U(i)] for all finite non-empty V ⊆ I .

B. Fixed-point iteration

In this section, we will formulate an iteration on busy
intervals, and prove that a fixed point will always be found
in a finite number of steps. We start by defining a partial
ordering on the interval labelings of Section III.

Definition 2. (POSET ON IT) Define relation v ⊆ IT ×IT as
follows. For l1, l2 ∈ IT let l1 v l2 if and only if l1(t) ⊆ l2(t)
for all t ∈ T . It is easy to verify that (IT ,v) is a poset.

The iteration will compute busy intervals for each task taking
into account the contention on the shared resources. To this
end we will define a finite complete lattice on the mappings
from tasks to busy intervals. This lattice is contained in poset
(IT ,v) and is defined by explicitly defining a bottom and
top element. The bottom element represents the case in which
tasks do not contend, while the top element assumes maximal
contention.

Definition 3. (FINITE BUSY INTERVAL LATTICE IN IT) We
define bottom ⊥ ∈ IT and top > ∈ IT by ⊥(t) = E(t) and
>(t) = (

∑
t′∈{t′′∈T |M(t′′)=M(t)}) ∪ E(t) for all t ∈ T . The

set BL ⊆ IT is defined as BL = {B : T → I | ⊥ v B v >}.
It is easy to prove that (BL,v) is a finite lattice.

Any B ∈ BL maps tasks in T to their busy interval. Given a
busy interval labeling Bi ∈ BL, a new busy interval labeling
Bi+1 ∈ BL can be computed by the following progressive
function FB(B) : BL → BL:

Bi+1(t) =
(
C(Bi)(t)− En(B i)(t)

)
∪Bi(t), (4)

where i1 − i2 = [L(i1) − L(i2), U(i1) − U(i2)] for all
i1, i2 ∈ I with L(i1) ≥ L(i2) and U(i1) ≥ U(i2). Given
Bi, with Equations 1 and 2 En(B i) is computed. Then,
C(Bi) can be computed with Equation 3, taking into account
the contention based on En(Bi). A new busy interval is
then obtained by calculating C(Bi)−En(Bi) and taking the
union with Bi to ensure progressiveness, which is required to
guarantee convergence.

Starting with an initial B(t) = E(t) for all t ∈ T (⊥ of
BL), with Equation 4, lattice BL is traversed from the bottom
upwards. At each iteration, busy intervals can grow by taking
more contention into account, until a fixed-point is reached.
The following theorem shows that the fixed-point algorithm
converges in a finite number of iterations.

Theorem 1. FB has a fixed-point in BL given by FIX FB =
t{Fn

B(⊥) | n ≥ 0}, and there is an m ∈ N such that
Fm
B (⊥) = FIX F .

Proof. Trivially, B v FB holds, since FB is constructed by
taking the union with B. Since BL is a lattice, and thus a
chain-complete partial order, with the Bourbaki-Witt theorem,
FB has a fixed-point. Since B̂ is finite, this fixed-point will
be reached in a finite number of steps.

The following theorem shows that any fixed-point of FB is
conservative.

Theorem 2. If B is not conservative, then it is not a fixed-
point of FB .

Proof. Assume that B is not conservative in the ith iteration.
Then there exists a first faulty task tf with either a faulty
concrete completion time Cc(tf) > U(C(Bi)(tf)) or a faulty
concrete enabled time Enc(tf) > U(En(Bi)(tf)). Since it
is the first faulty task, the concrete execution of all earlier
tasks are within their respective intervals. Since Enc(tf) is
derived from completion times of predecessors which are
within their intervals, Enc(tf) ≤ U(En(Bi)(tf)). Hence,
Cc(tf) > U(C(Bi)(tf)). We show that this will be fixed in
the i+1th iteration such that Cc(tf) ≤ U(C(Bi+1)(tf)). Re-
ferring to Equation 4, we distinguish two cases in the concrete
execution. The first case is when some tasks in ee(Bi)(tf) are
still executing after Enc(tf). In the concrete execution, there
is the last completing task in ee(Bi)(tf) following without
any gaps by 0 or more tasks that are not in ee(Bi)(tf)
ending with tf . Since Enc(tf) ≤ U(En(Bi)(tf)), these tasks
are included in eo(Bi)(tf)) in the evaluation of ξ given in
Equation 4. Hence for this case Cc(tf) ≤ U(C(Bi)(tf)).
The second case is when tf is enabled after completion of

all tasks in ee(Bi)(tf). In the concrete execution, there are
tasks not in ee(Bi)(tf) and enabled earlier, ending with tf .
These tasks are included in eo(Bi)(tf)) in the evaluation of ζ
given in Equation 4. The remaining execution of these tasks
is added to Enc(tf) which is also within its interval bounds.
This leads to Cc(tf) ≤ U(C(Bi)(tf)) in both the cases.
Since Cc(tf) > U(C(Bi)(tf)), transitively U(C(Bi)(tf)) ≤
U(C(Bi+1)(tf)). Thus, Bi is not a fix-point of FB .

Finally, Theorem 3 provides bounds on the fixed-point
found by the algorithm.

Theorem 3. For some DAG G = (T,D) and t ∈ T , let
Bbounds(t) be defined by [L(E(t), U(

∑
t′∈indep(t)

E(t′))], with

indep(t) = {t′ ∈ T | M(t′) = M(t) ∧ {(t, t′), (t′, t)} ∩
DTC = ∅} and GTC = (T,DTC) the transitive closure of
G. If B(t) is bounded by Bbounds(t), then FB(B) is bounded
by Bbounds(t) as well.

Proof. L(FB(B)(t)) = L(E(t)) holds trivially due to the
union operation in the definition of B in Equation 4. The upper
bound considers two cases. First case is when U(ξ)>U(ζ) and
U(FB(B)(t)) = U (En(B)(t ′) +B(t′)) − U (En(B)(t)) +

U

(∑
t′′∈eo(B)(t)\eo(B)(t′)

E(t′′)

)
where t′ is the last complet-

ing task in ee(B)(t). The term U(En(B)(t′) + B(t′)) −
U(En(B)(t)) is only computed using tasks in indep(t).
This is because U(En(B)(t′)) is derived from tasks that
t′ depends on, and U(B(t′)) is derived from tasks not in
U(En(B)(t′)) but in eo(B)(t′). Hence, U(En(B)(t ′)+B(t′))
is not computed using duplicates of the execution time of
any task. U(En(B)(t)) is computed using all tasks having
a dependency to t. As a result, the difference U(En(B)(t′)+
B(t′)) − U(En(B)(t)) is not computed using any tasks
with dependencies to t. It is also not computed using any
tasks dependent on t since those have not been enabled
yet to contribute to any of the three constituent terms.
Tasks in eo(B)(t) can neither have a dependency to t
since they are completed before U(En(B)(t)), or have de-
pendencies from t since those are enabled only after the

completion of t. The term U

(∑
t′′∈eo(B)(t)\eo(B)(t′)

E(t′′)

)
adds tasks that are in eo(B)(t) but not in eo(B)(t′) thus
avoiding duplicates. Therefore, U(FB(B)(t)) is computed
using tasks in indep(t), without duplicates. In other words
U(FB(B)(t)) is bounded by U(Bbounds(t)). Second case is

when U(ξ)<U(ζ) and U(FB(B)(t) = U

(∑
t′′∈eo(B)(t)

E(t′′)

)
since U (En(B)(t)− En(B)(t))= 0 . As already explained,
tasks in eo(B)(t) are in indep(t), so also in this case
U(FB(B)(t)) is bounded by U(Bbounds(t)).

V. EXPERIMENTAL EVALUATION

In this section, the presented approach is applied to a
realistic industrial-scale analysis problem, and compared to
two other approaches: SDF analysis without shared resources

0 10 20 30 40 50 60 70 80 90 100 110 120
Maximum makespan (µs)

p1.1
p1.2
p1.3
p1.4
p1.5
p1.6
p1.7
p2.1
p2.2
p2.3
p2.4
p2.5
p2.6
p2.7
p3.1
p3.2
p3.3
p3.4
p3.5
p3.6
p3.7

P
ro

ce
ss

in
g
 U

n
it

Static, no contention
Interval analysis
Static, worst-case est.

Fig. 4. Makespans of a DAG modeling an industrial-sized control application
in a wafer scanner, mapped to 3 octo-core processors.

by neglecting any contention on shared resources, and by
worst-case contention analysis.

The analyzed DAG is a 6 degree of freedom digital control
application that controls an imaging subsystem in a commer-
cial wafer scanner. It consists of 2285 tasks mapped to a
platform with three octo-core processors. The 8th core on each
processor is reserved for other processing purposes. The model
is calibrated with time measurements obtained by measuring
block execution timing in isolation on the machine.

The DAG contains a set of dependencies that enforce a
fixed-order schedule on each processor resource. It has lots
of dependencies between tasks mapped to different cores;
to model core-to-core (c2c) communications, which occur
through shared L3 cache, 5377 c2c tasks are automatically
added to the DAG, and mapped to 3 (FCFS) resources, one
for each processor. Each c2c task has an assumed execution
interval of [5, 5]ns. The decorated DAG is analyzed using
interval analysis, and compared to a standard SDF analysis.

Since SDF analysis requires monotonic models, any con-
tention between c2c tasks in the DAG can be only analyzed
statically, i.e. either under the assumption that there is no con-
tention at all, or under assumption of worst-case contention. In
the first case, c2c tasks keep their assumed 5ns execution time.
In the second case, the worst-case contention is determined by
counting the number of tasks mapped to each shared resource,
and then for each task t, subtracting the number of tasks on the
same resource with which t has a dependency relation and the
number of tasks that will precede t based on a dependency
relation between predecessors (see Figure 2(a)). This yields
the number of potentially interfering tasks for each task on
a shared resource. The execution time of that task is scaled
accordingly. In both static cases, the DAG is analyzed with
standard max-plus algebra that is used in SDF analysis.

Figure 4 shows the maximum makespan (the worst-case
completion of the last scheduled task) for each processing

unit, obtained by interval analysis, static SDF analysis neglect-
ing contention, and static SDF analysis assuming worst-case
contention. The model is analyzed in less than 10 seconds.
The analysis results show that, on average, the worst-case
makespan calculated with interval analysis is 46% lower com-
pared to static worst-case analysis. On average, the makespans
obtained with our analysis are 40.2% above the makespans
where no contention is assumed. Part of this difference is
caused by contention and part by over-estimation; exactly in
which proportion is not easy to pinpoint.

This case shows that our analysis can easily handle large-
scale models in the order of thousands of contending tasks,
and shows a significant improvement in the provided worst-
case bounds compared to static worst-case analysis.

VI. CONCLUSION

We proposed a new analysis method to obtain bounds on
worst-case timing properties of acyclic task graphs mapped to
platforms containing shared resources with a FCFS scheduling
policy, where variation on task execution times is allowed.
With an industrial case study we show that our approach
can easily analyze models with thousands of tasks in less
than 10 seconds. The calculated worst-case bounds obtained
with interval analysis show an average improvement of 46%
compared to bounds calculated by static worst-case analysis.

REFERENCES

[1] R. Frijns, A. Kamp, S. Stuijk, J. Voeten, M. Bontekoe, K. Gemei, and
H. Corporaal, “Dataflow-based multi-asip platform approach for digital
control applications,” in Euromicro conf. on Digital System Design,
DSD, 2013.

[2] S. Adyanthaya, M. Geilen, A. Basten, R. Schiffelers, B. Theelen, and
J. Voeten, “Fast multiprocessor scheduling with fixed task binding of
large scale industrial cyber physical systems,” in Euromicro conf. on
Digital System Design, DSD, 2013.

[3] R. Makowitz and C. Temple, “Flexray - a communication network for
automotive control systems,” in Factory Communication Systems, 2006
IEEE International Workshop on, 2006, pp. 207 –212.

[4] S. Fuller, RapidIO: The embedded system interconnect. Wiley, 2005.
[5] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of

the IEEE, vol. 75, no. 9, pp. 1235 – 1245, sept. 1987.
[6] M. Hendriks and M. Verhoef, “Timed automata based analysis of em-

bedded system architectures,” in International Parallel and Distributed
Processing Symposium, IPDPS, 2006.

[7] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183 – 235, 1994.

[8] Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal, “Iteration-
based trade-off analysis of resource-aware sdf,” in Euromicro Conference
on Digital System Design, DSD, 2011, pp. 567–574.

[9] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Int’l J.
on Software Tools for Technology Transfer, vol. 1, no. 1-2, pp. 134–152,
1997.

[10] J. Xing, B. Theelen, R. Langerak, J. Pol, J. Tretmans, and J. Voeten,
“Uppaal in practice: Quantitative verification of a rapidio network,” in
Leveraging Applications of Formal Methods, Verification, and Valida-
tion, ser. LNCS. Springer, 2010, vol. 6416, pp. 160–174.

[11] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele, “Timed
model checking with abstractions: towards worst-case response time
analysis in resource-sharing manycore systems,” in Proc. of the 10th
ACM Int’l Conf. on Embedded Software, EMSOFT, 2012, pp. 63–72.

[12] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in IEEE Int’l Symp. on Circuits
and Systems, ISCAS, vol. 4, 2000, pp. 101–104.

[13] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse, “System architec-
ture evaluation using modular performance analysis: A case study,” Int.
J. Softw. Tools Technol. Transf., vol. 8, no. 6, pp. 649–667, Oct 2006.

