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Abstract—Design of smart systems needs to cover a wide
variety of domains, ranging from analogue to digital, with power
devices, micro-sensors and actuators, up to MEMS. This high
level of heterogeneity makes design a very challenging task,
as each domain is supported by specific languages, modeling
formalisms and simulation frameworks. A major issue is fur-
thermore posed by simulation, that heavily impacts the design
and verification loop and that is very hard to be built in
such an heterogeneous context. On the other hand, achieving
efficient simulation would indeed make smart system design
feasible with respect to budget constraints. This work provides
a formalization of the typical abstraction levels and design
domains of a smart system. This taxonomy allows to identify
a precise role in the design flow for co-simulation and simulation
scenarios. Moreover, a methodology is proposed to move from
the co-simulated heterogeneity to a simulatable homogeneous
representation in C++ of the entire smart system. The impact
of heterogeneous or homogeneous models of computation is also
examined. Experimental results prove the effectiveness of the
proposed C++ generation for reaching high-speed simulation.

I. INTRODUCTION

Smart systems represent a broad class of systems defined as
intelligent, miniaturized devices incorporating functionalities
like sensing, actuation, and control. In order to support these
functions, they must include sophisticated and heterogeneous
components and subsystems such as: application-specific sen-
sors and actuators, multiple power sources and storage devices,
intelligence in the form of power management, baseband
computation, digital signal processing, power actuators, and
subsystems for various types of wireless connectivity (as
shown in Figure 1). Smart components and subsystems are
developed and produced with very different technologies and
materials specific to the corresponding domain and technology.

In this context, simulation is a very critical task, as each
domain of component adopts specific tools and framework,
that do not cover the whole smart system heterogeneity. On
the other hand, simulation is a key phase in the design and
verification process of a system, as it heavily impacts time-to-
market and the competitiveness of the final product.

The goal of this paper is to ease simulation and validation
of smart systems with three main contributions.

e A taxonomy of abstraction level/design domains. This
allows to identify a precise role in the design flow for co-
simulation and simulation scenarios, and thus to outline the
possible strategies for gaining correct simulation of smart
systems.

e A comparison between two complementary approaches,
simulation and co-simulation, showing their strengths and
weaknesses.
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Fig. 1. Typical components of a smart system

e Enhancement of reuse and integration by showing how
to ease the adoption of homogeneous simulation, with
automatic C++ generation from lower abstraction levels
and automatic integration of heterogeneous interfaces.

II. MoCs AND FRAMEWORKS FOR SMART SYSTEM
MODELING

In literature, the main approaches proposed for handling
heterogeneity are (i) top-down flows, relying either on model-
based design (MBD) or on a models of computations (MoC),
and (ii) co-simulation [1].

In MBD approaches, the system model is at the center of
the design process and it is continually refined throughout a
strictly top-down development flow [2]-[4]. Components fol-
lowing different synchronization mechanisms are put together
with data conversion mechanisms that must be implemented
manually, and that do not guarantee a correct integration.

Several MoCs have been proposed also to describe different
aspects of smart systems, such as Extended Finite State Ma-
chines (EFSMs) [5] or Hybrid Automata [6]. Unfortunately,
every MoC is a stand alone environment that can not cover all
the domains comprised in smart system development.

The complementary approach is to integrate existing com-
ponents in a bottom-up flow. This is realized with co-
simulation environments where each component is simulated in
its native environment and framework [7], [8]. Co-simulation
assemblies heterogeneous components without providing a
rigorous formal support, and it only moves the problem of
integrating heterogeneity components to the problem of inte-
grating different simulators.

In this context system integrators, such as SystemVue [9],
have been proposed. In SystemVue a system is described as
a schematic of components connected with wires and busses.
The simulation technology is based on a Data-Flow MoC and
is related to the Berkeley Ptolemy multidomain, heterogeneous
simulation platform [3]. SystemVue provides numerous li-
braries with parametrized components and interfaces to diverse
modeling formats, ranging from MATLAB to the main HDLs.
Moreover, it provides a C++ API to create libraries of custom
components.
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Fig. 2. Simulation-levels and Design domains taxonomy.

Bottom-up flows could be enhanced by using a unique
MoC, capable of cover a wide range of domains and allowing
reuse with automatic conversion tools. This would guarantee
a clear semantics and, thus, mathematical and rigorous rules
for component integration, adaptation and reuse [10]. The
couple HIFSuite [11] and UNIVERCM [12] aims at providing
such an environment. HIFSuite furnishes a set of back-end
and front-end automatic tools for a variety of languages,
while UNIVERCM is an automaton-based MoC that unifies the
modeling of both analog and digital domains.

III. SIMULATION PLATFORM FOR SMART SYSTEM
DESIGN

A. Simulation levels and Design domains taxonomy

Simulation and design are heavily influenced by the ab-
straction level of a component or a system. It is thus necessary
to clearly identify the abstraction level involved in smart
system design and to associate each domain and simulator
to the correct level. The main factors determining the level
of abstraction are: time granularity, interconnection model,
state space granularity and data aggregation. Time granular-
ity may be continuous or discrete time, or follow an event
based semantics where time ticks only when the system state
changes. The interconnection model describes communication
and synchronization between components as potential or flow
quantities, flow charts or transactions. The granularity of
state space details data aggregation for simulation purposes,
i.e., variables managed by differential equations, symbolic
variables or objective constructs. Finally, data aggregation
states whether the component is modeled by considering the
minimum (black box) or maximum (clear box) number of state
space variables necessary for a correct representation of the
observable behavior.

Given these factors, it is possible to identify five main
abstraction levels typical of smart systems.

e At transactional level, simulation is strictly event based
and inter component communication happens via transac-
tions. Variables are used to model system state.

e At functional level, simulation is event based but commu-
nication relies on the flow chart interconnection style.

e The structural level may support both continuous time
evolution (modeled with differential equations and conser-
vative laws) and discrete time evolution (with event based
or a flow chart synchronization and finite set variables). A
black box approach is adopted.

o At device level, simulation can be both continuous or
discrete time. A clear box approach is adopted.

e The physical level adopts continuous time synchronization
and the conservative interconnection style. State space
granularity is described as differential equations and with
a clear box approach.

Given the taxonomy and the heterogeneous domains typ-
ically present in any smart system, it is possible to build a

design-domains/simulation-level matrix, shown in Figure 2.
Such a chart allows to identify the abstraction level (rows)
and the domain (column) of the most widespread tool and
languages in the context of smart systems. This allows to
correctly differentiate the use of co-simulation and simulation.
Text in bold shows the typical entrance level and tools for each
domain.

Models of the lowest abstraction levels are represented by
different design languages, thus they must be simulated by
using their own simulator (e.g., Matlab, Modelsim, EMPro,
etc.).

Moving to the functional level, there is a convergence
in the modeling language, as all domains are represented in
C++. Even if this would in principle allow simulation, the
MoC implemented into each C++ model can be different from
domain to domain. Thus, simulation can be built if models are
coherent with respect to the same MoC. As a result, the chosen
MoC must be able to cover all domains. As outlined in Section
III, UNIVERCM proved to cover most of the heterogeneous
domains. If UNIVERCM allows to generate C++ code (Section
[II-B), then all C++ components can be simply linked together
to simulate a design covering more than one domain.

At transaction level, the communication protocol is com-
mon to all domains as it relies on transactions. SystemVue
covers all domains and thus it can be used as a general
integration framework (Section III-C). This allows to simu-
late in a coherent way functional models based on different
computation models.

B. C++ Code Generation from UNIVERCM

UNIVERCM allows to reconcile heterogeneous domains to
a unique MoC, thanks to automatic generation of the homoge-
neous format and thus enhancing bottom-up flows. The recon-
ciled version of each automata can be then mapped to a target
language, such as C++, by defining formal transformations,
with the goal of generating an implementation of the whole
system in a single language [13].

Each UNIVERCM automaton is mapped to a C++ function,
representing the whole automaton evolution, as depicted in
Figure 3. The function body is built as a switch statement,
where each case represents one of the automaton states. Each
edge is implemented as an 1 f or else if statement, whose
guard is a logic and of the enabling condition of the edge and
of the activation condition on synchronization events. Contin-
uous evolution is implemented as a discretized implementation
of the flow predicate, by adopting one of the many numerical
algorithms to solve differential equations.

Code generated from the UNIVERCM automata is ruled by a
management function, in charge of activating automata and of
managing the status of the overall system and parallel compo-
sition of automata. Whenever the system is made of more sub-
components, automata have to be composed by checking the
correspondence between variables and synchronization events
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Fig. 3. UNIVERCM automaton to be converted to C++ (left) and corre-
sponding generated code (right)

of the two. This mapping must be identified by the designer, to
allow the management function to propagate the correct values.

C. SystemVue C++ integration

The first step to integrate a C++ external component in
SystemVue is to specify its interface as names and data types
of all the inputs, outputs and parameters. The behavior of the
C++ code is then described by respecting the SystemVue API
through four C++ methods. The Setup() method is used to
specify the rate of each port. The Initialize() method contains
all initialization code and it is automatically invoked after the
simulator has calculated the schedule for the simulation run.
The Run() method performs any actions that the model needs
to perform during simulation. Finally, the Finalize() method
performs any post-simulation coding.

In this way, SystemVue allows to define and embed custom
C++ code. By means of HIFSuite, this SystemVue interface
can exploited to integrate digital components from various
HDL descriptions.

D. Impact of MoCs on simulation and co-simulation perfor-
mance

Adopting a single MoC allows to avoid co-simulation and
overheads due to data sharing and time synchronization. The
taxonomy in Figure 2 helps in further understanding the impact
of MoCs and of heterogeneity on simulation and co-simulation
at different abstraction levels.

As mentioned in Section III-A, lowest abstraction levels
are represented by different design languages and MoCs.
As a result, each domain must be simulated by using their
own simulator (e.g., Matlab, Modelsim, EMPro, etc.). Co-
simulation frameworks are thus built by connecting different
simulators, such as shown in [7], [8]. However, explicitly mod-
eling synchronization between simulators heavily impacts sim-
ulation performance and effectiveness [14]. Other approaches
have a lighter impact, by compiling separately the different
formats and linking them together as done by ModelSim to
co-simulate SystemC and VHDL. This lighter approach is
still affected by the presence of heterogeneous MoCs, as the
data sharing mechanism and time synchronization introduce a
heavy overhead.

Functional level brings to a convergence in terms of
modeling language. Here MoCs shows their impact to the full.
If all C++ components follow the same MoC, then they can
easily integrated with no further overhead. Else, if the adopted
MoCs are heterogeneous, it becomes necessary to introduce
a communication layer applying data and synchronization
conversion.

This can be easily achieved at transaction level, as transac-
tions and standard interfaces force a communication protocol.
This mitigates the effect of having multiple MoCs.
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Fig. 4. Overview of the water tank system compositions.

IV. EXPERIMENTAL RESULTS
A. Water tank system

An overview of the water tank system is given in Fig. 4.
The fank component, characterized by an uncontrolled out-
bound water flow, belongs to the Analog domain. Two compo-
nents may belong to the MEMS sensors and actuators domain:
a valve, whose aperture affects the incoming flow of water and
an evaluator, that checks the level of water in the tank. The
system includes also a controller, that acts on the aperture
of the valve (digital HW domain) and a software driver that
sets the legal upper and lower bounds accepted for the water
level (embedded SW domain). The heterogeneity in terms of
domains and abstraction levels makes simulation with a single
environment or language impossible.

Six different descriptions of the system have been chosen
(see Table I):

1. Heterogeneous simulation: the components are described
using different HDLs and integrated within a unique tool
(i.e., ModelSim).

2. Mixed top-down/bottom-up approach: the tank is modeled
by using the graphical editor provided with SystemVue.
The controller is a VHDL component imported in the
SystemVue environment while the remaining components
have been synthesized in C++ via UNIVERCM. In this case,
ModelSim needs to be co-simulated with SstemVue.

3. Homogeneous co-simulation: the tank is modeled by ex-
ploiting the SystemVue modeling tool, while all the other
components are imported into SystemVue as C++ modules.

4. SystemVue simulation: all C++ descriptions are automati-
cally generated and integrated by using SystemVue.

5. UNIVERCM-SystemC simulation: SystemC code is gener-
ated from the UNIVERCM representation of all components
(as explained in [14]).

6. UNIVERCM simulation: a purely C++ description obtained
via UNIVERCM by exploiting the methodology proposed in
Section III-B.

To compare all the approaches, 1000 seconds of execution
of the given plant have been simulated. Results are reported
in Table I. Heterogeneity has a bad impact on simulation
performance. Indeed, mixing different tools, as for descrip-
tion 2, leads to a significant performance degradation due
to synchronization mechanisms among tools. Descriptions 1
and 3 highlight that also mixing languages and formalisms
reduces the performance. A good performance is achievable by
connecting components described in a homogeneous way, by
either using an aggregation tool such as SystemVue (descrip-
tion 4) or the SystemC scheduler (description 5). However, the
best result is obtained by the UNIVERCM simulation, thanks to
its homogeneity both in terms of used tools, computational
model and aggregation.

B. SMAC open—source platform

The different available approaches have been applied also
to the smart system depicted in Figure 5. The platform is



TABLE 1.

SIMULATION TIME OF THE WATER TANK SYSTEM BY USING THE DIFFERENT PROPOSED DESCRIPTIONS.

# Simulation Tank Valve Evaluator Controller Driver E.XCCUUOH
Framework Time (ms.)
1 Heterogeneous simulation ModelSim (SystemC) ModelSim (SystemC) ModelSim (SystemC) ModelSim (VHDL) ModelSim (SystemC) 1,427
2 SystemVue-based co-sim. SystemVue SystemVue (C++) SystemVue (C++) ModelSim (VHDL) SystemVue (C++) 49,001
UNIVERCM - SystemVue
3 Heterogeneous Simulation SystemVue SystemVue (C++) SystemVue (C++) SystemVue (C++) SystemVue (C++) 1,516
4 SystemVue simulation SystemVue (C++) SystemVue (C++) SystemVue (C++) SystemVue (C++) SystemVue (C++) 505
5 | UNIVERCM UNIVERCM UNIVERCM UNIVERCM UNIVERCM UNIVERCM 474
SystemC Simulation SystemC SystemC SystemC SystemC SystemC
6 | UNIVERCM simulation UNIVERCM C++ UNIVERCM C++ UNIVERCM C++ UNIVERCM C++ UNIVERCM C++ 154
TABLE II. SIMULATION TIME OF THE SMAC OPEN-SOURCE PLATFORM BY USING THE DIFFERENT PROPOSED DESCRIPTIONS.
# Simulation XYAxis Mlite-CPU SW Application UART Memory RF Transceiver APB Bus E:XCCLIIIOH
Framework Time (ms.)
1 SystemVue-based ADS ModelSim SystemVue ModelSim ModelSim ModelSim ModelSim 509.002
co-simulation (Verilog-A) (VHDL) (C++) (VHDL) (VHDL) (SCNSL) (VHDL) ’
. . SystemVue SystemVue SystemVue SystemVue SystemVue SystemVue SystemVue
2 SystemVue simulation (C+) (C+4) (C++) (C++) (C++) (C++) (C++) 21,984
UNIVERCM UNIVERCM | UNIVERCM UNIVERCM UNIVERCM | UNIVERCM UNIVERCM UNIVERCM
3 . . 21,118
Simulation C++ C++ C++ C++ C++ C++ C++
Software importance of removing heterogeneity. Benefits are obtained
Memory VLSS Application using a unique language and optimality employing a single
computational model. The paper also shows a comprehensive
CLoLd S— methodology that easies and speeds up the design and sim-
S—— = ulation, with a positive effect on time-to-market and com-
e [ Transceiver petitiveness. Future extensions of this work will address the
Serial nerace — = accuracy concerning analog behavior and its trade-off with
s respect simulation performance.
Fig. 5. Overview of the SMAC open—source platform compositions. REFERENCES

widely heterogeneous, and it is composed by: (1) a XYAxis
accelerometer, i.e., a MEMS sensing data related to move-
ments of the system and (2) a MIPS processor (the Mlite-
CPU), belonging at the digital HW domain, executing (3) a
Software application elaborating data sensed by the accelerom-
eter and stored in (4) a Memory. Communication is managed
by another digital component: a (5) Universal Asynchronous
Receiver/Transmitter (UART), providing a serial interface to
the sensor. (6) A RF Transceiver, used to send and receive
data from other smart sensors, and (7) an APB Bus used to
connect all the components composing the platform.

The effectiveness of the approach has been proved com-
paring three different descriptions of a simplified version of
the system: heterogeneous co-simulation, SystemVue-based
simulation and UNIVERCM simulation. All simulations are run
to reproduce 1000 seconds of the real platform execution.
Results, shown in Table II, show that the use of a unique
MoC (i.e., UNIVERCM simulation) gives excellent performance
and it allows to efficiently simulate the system. Employing an
aggregation tool, such as SystemVue, gives good performance
further enhanced by the easiness of integration, that does not
require to uniform the adopted MoC. Employing state of the
art techniques, such as heterogeneous co-simulation, leads to
a huge communication and synchronization overhead.

V. CONCLUSIONS

The paper tackled the heterogeneity of smart systems.
It built a taxonomy of abstraction level/design domains to
identify a precise role in the design flow for co-simulation
and simulation scenarios. It highlighted the importance of
MoCs in the performance and integration difficulties of smart
system integration. Finally, it proposed a methodology to
convert a heterogeneous description into a homogeneous rep-
resentation based on C++. The experimental results show the
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