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Abstract—Multi-level caches are widely used to improve the memory
access speed of multiprocessor systems. Deciding on a suitable set of cache
memories for an application specific embedded system’s memory hierarchy
is a tedious problem, particularly in the case of MPSoCs. To accurately
determine the number of hits and misses for all the configurations in
the design space of an MPSoC, researchers extract the trace first using
Instruction set simulators and then simulate using a software simulator.
Such simulations take several hours to months. We propose a novel method
based on specialized hardware which can quickly simulate the design space
of cache configurations for a shared memory multiprocessor system on an
FPGA, by analyzing the memory traces and calculating the cache hits and
misses simultaneously. We demonstrate that our simulator can explore the
cache design space of a quad-core system with private L1 caches and a
shared L2 cache, over a range of standard benchmarks, taking as less as
0.106 seconds per million memory accesses, which is up to 456 times faster
than the fastest known software based simulator. Since we emulate the
program and analyze memory traces simultaneously, we eliminate the need
to extract multiple memory access traces prior to simulation, which saves
a significant amount of time during the design stage.

I. INTRODUCTION

Memory subsystem is a major deciding factor when considering
the performance of processor-based systems. Recent advancements in
processor architectures and manufacturing technologies have enabled
processors to operate at increasingly high frequencies. Unfortunately
the same cannot be said for memory systems. Accessing the main
memory consumes a large number of processor clock cycles, making it
a performance bottleneck. The most widely used solution is employing
faster but smaller cache memories to hold the most recently used data
close to the processor for efficient access. Caches improve performance
based on two attributes of application programs: a memory block is
likely to be repeatedly accessed (i.e. temporal locality); and adjacent
memory blocks are likely to be accessed in sequence (i.e. spatial
locality).

In application specific embedded Multi-Processor System on Chips
(MPSoC), where processors are optimized for applications, the caches
in the memory hierarchy also need to be optimized. Such optimizations
have been enabled by customizable processors such as ARM Cortex and
Tensilica Xtensa. A designer of such systems needs to identify suitable
configurations for different caches in the hierarchy, with respect to Block
Size, Set Size and Associativiy. This requires the exploration of a large
design space, resulting from private and shared caches arranged in a
multi-level hierarchy.

Simply selecting the largest available cache configuration to achieve
a high hit rate does not necessarily provide better performance, contrary
to what intuition suggests, as demonstrated by Shwe et al. in [1] and
Janapsatya et al. in [2]. Figure 1 presents the performance and energy
consumption variations when using different cache configurations, and
shows that the largest configuration (with maximum hits) provides
neither best performance nor least energy. Infact, large caches can often
result in slower memory accesses in addition to power and chip die
overheads. Therefore, it’s essential to explore the design space of the
cache hierarchy, accurately find the hit rates of different configurations
and use the results to obtain estimates for performance and energy
consumption.

Individually testing the behaviour of different cache configurations
for the system under design and counting their cache hits is not
a feasible solution. Instead, the literature contains a large body of
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Fig. 1: (a) Execution time and (b) Energy consumption profiles for G721 encoder on a
Tensilica Xtensa processor using different cache configurations, by Shwe et al. [1].

research work towards software simulation methods of multiple cache
configurations, mostly for a single cache in a uniprocessor system. Some
methods [3, 4, 5] rely on mathematical analyses to make guesses at
cache hit rates; while a majority [6, 7, 2, 8, 9, 10, 11] aims at exact
simulation of a set of cache configurations, where precise hit and miss
rates are calculated for a given application from its memory access
trace. Even though precise simulations provide accurate hit rates, the
simulation time taken in software is significantly high. For the memory
access trace detailed in Fig. 2, the fastest available software simulator
by Sugumar et al. [6] takes 90 minutes to cover the design space of a
single L1 cache (consisting of 44 configurations). A more acute problem
in software simulation is the extraction of memory access trace, which
is a painstakingly slow process. For example, Fig. 2 reports that 72
hours were spent in trace extraction of an MPEG2 encoder executing
on a single core for an input of 24 low resolution video frames.

The aforementioned precise software simulation methods are tar-
geted at uniprocessor systems. The considerable time consumption
of these methods multiplies when the design problem is extended to
multiprocessor systems with complex cache hierarchies (see Fig. 3).
Multiprocessor cache hierarchies bring additional concerns into the
simulation problem. For example, most last level caches are shared
among processors, and their dimensioning must consider interleaving
of memory accesses from all processors. If the target system executes
communicating applications and includes a coherency controller for
the private caches, then the effects of cache block invalidations due
to maintaining coherency must also be taken into account for precise
hit rate calculations. Simulation methods such as [12] which combine
these factors tend to be several times slower than uniprocessor cache
design space exploration methods. The extraction of memory trace in
multi-level multiprocessor cache hierarchy becomes more challenging
as multiple memory access traces from various points in the MPSoC
memory subsystem need to extracted to accurately capture the memory
access behavior. This process become very slow and practically infeasi-
ble when traces have to be extracted repeatedly to perform consecutive
simulations of large cache hierarchies. The authors of [13] recently
presented a hardware based cache simulation core to mitigate the
problems of software simulation through the use parallel processing
offered by FPGA logic. However, [13] explored the design space of
cache in a uniprocessor only.

In this paper, we present the first ever hardware based methodology
to rapidly perform exploration of the cache design space for a multi-978-3-9815370-2-4/DATE14/ c©2014 EDAA
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Fig. 2: Software simulation of 44 cache configurations for MPEG2 encoder.

level multiprocessor cache hierarchy containing private and shared
caches. We eliminate the need for repeated extraction of memory access
traces by obtaining the memory access traces in real-time from different
points of MPSoC memory subsystem. Those memory access traces are
processed in hardware cache simulator core to precisely calculate the
cache hits and miss rates. A demonstration is presented targeting a
two-level cache hierarchy with private level 1 data caches and a shared
level 2 data cache for a quad-core system executing non-communicating
applications on an FPGA. Our novel contributions are:

• We present the first ever hardware based rapid design space
exploration of multiprocessor cache hierarchies containing pri-
vate and shared caches, to select suitable cache configurations.

• We propose a method to flexibly connect many instances of a
hardware simulator core to different points in the memory hi-
erarchy of an MPSoC in an FPGA, thereby enabling extraction
of memory accesses in real-time as experienced by individual
caches. The memory accesses are processed in parallel to the
MPSoC execution, to calculate precise cache hit and miss rates
for different cache configurations. Finally, a suitable cache
hierarchy is selected based upon the hit and miss rates.

The rest of this paper is organized as follows: Section II presents a
concise analysis of the literature; Section III identifies the target MPSoC
architectures of the proposed method; the methodology is detailed in
Section IV; hardware implementation details are presented in Section V;
Sections VI and VII present a demonstration of the proposed hardware
based method.

II. RELATED WORK

Exact simulation methods to explore the cache configuration design
space have evolved with many advancements over the years. They
are characterized with providing the precise hit rate for many cache
configurations at once, given a memory access trace. Several different
approaches have been proposed to accelerate the software based simu-
lation methods focusing on L1 caches for uniprocessor systems. Dinero
IV by Hill [14] is one of the most widely used simulators which analyses
the hit rate for a single cache configuration at a time by using a memory
access trace. Based on the Forest Simulation technique introduced by
Hill et al. in [7], Janapsatya et al. proposed a method to simultaneously
assess hits and misses for a large group of cache configurations [2].
There, collections of binomial tree structures representing different
cache configurations are traversed top down for each memory access in
the trace, and correlation properties between cache configurations are
exploited to improve the simulation speed. Subsequently, Tojo et al.
proposed enhancements [15] to Janapsatya’s algorithm by introducing
more correlation properties between cache configurations. Out of many
methods, Cheetah simulator [6] by Sugumar et al. and SuSeSim [9] by
Haque et al. are two of the fastest implementations to date which are
based on the forest of binomial tree structures.

Viana et al. tackled the problem using a different approach in their
work [16]. They determined whether a memory access is a hit or a miss
by keeping track of how many unique addresses were accessed using
stack and table data structures. In [10], Zang et al. extended the same
concept to exclusive two level caches, where the content of the two
caches are disjoint sets. The assumption of exclusivity allowed Zang et
al. to view the two cache levels as one single cache and use a single
memory access trace rather than extracting different access traces.

By incorporating an FPGA device in the simulation process, the au-
thors of [13] designed a hardware simulator core to accelerate exploring

of cache configuration design space for a single cache in a uniprocessor
system. It uses LRU (least recently used) replacement policy for set-
associative cache configurations. The configurable logic allows several
cache configurations to be analysed in parallel for each memory access,
significantly reducing the simulation time (upto 53 times faster than
Cheetah simulator [6]). It is the fastest design tool presented yet
to explore the cache configuration design space of a uniprocessor
cache. The simulator core itself operating in hardware enables the
possibility of real-time extraction of memory access information from
a processor working in the same FPGA, eliminating the tedious process
of extracting the memory access trace beforehand. The work in [13] is
targeted at reducing the logic footprint of the hardware simulator core,
to encompass more cache configurations into the design space.

With many computing systems adopting multiprocessors, recent
literature looks at methods to explore the design space of cache
hierarchies for such systems. DIMSim [12] by Haque et al. presents
a two stage methodology to find the suitable cache configurations for
a system as in Fig. 3, containing private L1 caches and a shared L2

cache. They extract the combined memory access trace as observed
by the main memory and use that to derive separate memory accesses
contributed by different processors. The first stage of the simulation
explores the design space for the shared L2 cache using the combined
trace, and the second stage simulates the configurations for each L1

cache. Assuming that the two cache levels are inclusive, the misses
in the selected L2 configuration are considered to be misses in all L1

configurations. However, once the selected L1 caches are in the system,
the accesses seen by the L2 cache change. Therefore, the method does
not guarantee the optimal configuration. In [17] Haque et al. perform
a simualtion starting from L1 caches, and then combining the traces to
simulate configurations for a shared L2 cache. Rawlins et al. present
a dynamic reconfiguration of L1 caches based on a control system for
a dual-core processor in their work [18]. It is a run-time approach and
doesn’t provide the designer with information on all concerned cache
configurations.

To the best of our knowledge, no work has been presented yet to
explore the design space of multi-level cache hierarchies for multipro-
cessor systems using specialised hardware to accelerate the exploration
process.

III. TARGET MULTIPROCESSOR SYSTEM ARCHITECTURE
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Fig. 3: Multiprocessor cache hierarchy with private L1 caches and a shared L2 cache.

This work focuses on shared memory multiprocessor systems with
multi-level cache hierarchies containing private and shared caches, as
depicted in Fig. 3. A hierachy can contain n levels of caches and each
level Li can contain mi caches. The system used for demonstrations
contains four processor cores with four private L1 caches and one
shared L2 cache. We assume that the memory accesses produced by
the processors are blocking, and that the caches used in the system do
not implement advanced techniques such as block pre-fetching, similar
to the prior works [6, 2, 10, 12]. These assumptions allow deterministic
simulation of cache hits and misses. It should be noted that we consider
a cache hierarchy where no coherency controlling is performed (and it
is out future work). Unlike the works in [10] and [12], we do not make
assumptions as to inclusiveness or exclusiveness between cache levels
which makes our method applicable in a broader range of problem
instances.

IV. METHODOLOGY

In this section we present the proposed methodology to explore the
design space of a multiprocessor cache hierachy, highlighting the use
of hardware modules to accelerate the simulation.



A. Hybrid Simulation Platform

Many state-of-the-art design time methods tend to use Hybrid
Simulation where the repetitive and time consuming portions in the
design process are accelerated using assisting hardware components
[19]. The hybrid simulation methodology presented in this paper utilizes
an FPGA device connected to a host PC, as illustrated in Fig. 4.
Target MPSoC exists in the FPGA, with hardware cache simulation
modules (hSim). Input data for the applications running on the MPSoC
are provided by the Host PC. The hSim modules extract the memory
accesses generated by the MPSoC in real-time, calculate the hit rates of
different configurations for each cache, in parallel to the execution of
the applications. The resulting hit rates are sent to the Host PC where
analytical models are used to estimate the timing and energy measures.
Details about the hSim modules and how the memory access extraction
is done in real-time are presented in Section V.

FPGA Device

Performance and 
Energy Models

Input Data for MPSoC

Host PC

MPSoC with hSim modules

Cache configuration 
selection

Fig. 4: Hybrid simualtion platform where cache hit rates are calculated on FPGA.

Initially, the MPSoC doesn’t contain any cache. The cache hierarchy
is explored in n stages, starting from the L1 caches and moving
down the hierarchy until the last cache level Ln. In the ith stage,
configurations for all mi caches in level Li of the hierarchy are explored
in parallel to calculate the hit rates. After the results (the hit rates for
all the configurations in the design space, for each cache in level i)
are sent to the Host PC, timing and energy values are estimated for all
configurations and a selection is made based on minimum energy or
maximum performance. Afterwards, caches with selected configurations
are put into the ith level in the cache hierarchy and the system is re-
synthesized before simulation moves on to level i+ 1.

B. Selection of Cache Configurations

The calculated hit rates for different cache configurations that
are provided by the hSim modules are used for analysis of Average
Cache Access Time (Tcache) and Average Access Energy Consumption
(Ecache). Tcache and Ecache are normalized values per single access
to the cache. These two measures are used to select a suitable cache
configuration depending on the requirement. The model for Tcache is
described in (1) and provides a time estimate for accessing a cache with
a given configuration.

Tcache = taccess + (1− hc)× tmiss (1)

Ecache = eaccess + (1− hc)× emiss (2)

The term taccess represents the time required to make a single
access to the cache, which encompasses the parameters of the cache
configuration such as associativity and set size. Hit rate for the
configuration is given by hc and the time penalty for a cache miss
is given by tmiss. Similarly, (2) provides an average energy measure
for accessing a cache with a given configuration. Energy required to
make a single cache access is given by eaccess , representing the effects
of the configuration, and the energy penalty for a cache miss is given
by emiss.

For all the configurations in the design space, the values of taccess
and eaccess are obtained by using the detailed cache analysis tool
CACTI 6.5 [20] by Muralimanohar et al. It should be noted that any
analytical model can used for this purpose depending on the designer’s
requirement, and the performance and accuracy of the model used is

Algorithm 1: Configuring an n-level Cache Hierarchy with mi

caches at level Li

1 for each cache level Li where i:=1 to n do
2 for each cache Lj

i
in level Li where j:=1 to mi do

3 Calculate hit rates (hc) for all the configurations c
L
j
i

using real-time

extracted memory access traces. (Done in parallel on the FPGA)

4 for each cache Lj
i

in level Li where j:=1 to mi do
5 for each configuration c

L
j
i

do

6 Estimate taccess and eaccess for c
L
j
i

7 if i < n then
8 Estimate tmiss and emiss for c

L
j
i

, using tfetch and

efetch values of Li+1

9 else if i = n then
10 Estimate tmiss and emiss for c

L
j
i

, using tfetch and

efetch values of DRAM

// Find c
L
j
i
−selected

for the cache Lj
i

11 if best performance then
12 Select c

L
j
i

with minimum Tcache

13 else if least energy consumption then
14 Select c

L
j
i

with minimum Ecache

15 Include a cache Lj
i

with configuration c
L
j
i
−selected

, into the MPSoC

16 Re-synthesize the MPSoC on the FPGA

beyond the scope of this work. Since hc is provided by the simulation
done in hardware, the only unknown terms are tmiss and emiss.

tmiss = tfetch + twrite (3)

emiss = efetch + ewrite (4)

Equations (3) and (4) describes time and energy penalties incurred
in a cache miss. Terms tfetch and efetch respectively represent time and
energy spent on retrieving the missing cache block from the next level
in the memory subsystem, while twrite and ewrite include the time and
energy to write the fetched block to the cache. For the caches in the
ith level of the hierarchy (Li), miss penalties depend on the properties
of the next cache level (Li+1). Penalties for the misses occurring at the
last cache level (Ln) depends on the properties of the DRAM. However,
while configuring the caches in Li, there are no caches existing in the
level Li+1. Using the timing and energy values from the DRAM for
tfetch and efetch in a level Li (where 1 ≤ i < n) yield unrealistic
values for Tcache and Ecache. This is because a next level cache will
exist in the final system, and access times and energy for a DRAM
is several orders higher compared to a cache. Therefore we assume a
miss in the current cache level Li will be a hit in level Li+1, only to
calculate tfetch and efetch. Values for the four parameters in (3) and (4)
are also obtained through CACTI 6.5 tool, which takes the contention
when accessing a shared memory device into account. Calculation of
tfetch and efetch need to be done only once for all the configurations
of a particular cache, since the penalties of fetching from the next level
will be the same for all current level configurations.

The complete flow of the selection process is described in Algo-
rithm 1, which iteratively explores the cache hierarchy. In a single
iteration (lines 1-16) the algorithm finds the suitable configuration for
all mi caches in the level Li. Parallel exploration of design spaces for
all caches in a given level, to calculate cache hit rates for different
configurations, is given in lines 2 and 3. This step is carried out
in the FPGA using hSim modules, simultaneous to the execution of
application in the MPSoC. Lines 5-10 describe the estimation of energy
and performance measures using analytical models. When assessing
the miss penalties, access time and energy of the next cache level is
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Fig. 5: Overview of the simulation methodology used to explore the design space of a
multiprocessor cache hierarchy and determine suitable configurations.

considered. In the case of the last level cache, the access time and
energy of the main memory is used. Making the selection of a cache
configuration is given in Lines 11 to 14 and line 15 represents event
of putting the selected cache into the MPSoC on the FPGA. Once all
the caches in the level Li are configured in this manner, the system is
re-synthesized and the process moves to the level Li+1. Figure 5 shows
the flow of the exploration process for a 2-level cache hierarchy with
private L1 caches and a shared L2 cache (Fig 3).

V. IMPLEMENTATION

A multi-level cache hierarchy in an MPSoC requires memory
accesses to be extracted from different points in the memory subsystem
in order to carry out the simulation of cache configurations. Therefore,
we design a hardware cache simulator module (hSim) using the
simulation core by the authors of [13] such that it can be connected to
different positions in the memory subsystem of the MPSoC operating
on the FPGA device. The module was designed using VHDL. Figure
6 illustrates the interfacing details of hSim, which consists of three
ports. The first port connects to the previous cache level of the memory
hierarchy (to receive memory addresses) and the second port connects
to the next level. The third port is used for control signals such as
enabling and disabling of the hSim module. The control signals can be
sent from any processor in the MPSoC. Address and data widths for
the ports are parameterized and hence customizable upon requirement.
With these ports, a number of hSim module can be flexibly connected
to different points in the memory hierarchy. There are two clock signal
inputs associated with the hSim module: main system clock for interface
operations; and a separate clock for simulator core. The schematic
symbol of an hSim module as implemeted in Altera Qsys system
integration tool [21] is shown in Fig. 7. The ports can be adapted to
other interconnect architectures using bridging components.

The module can be connected in the place of a cache memory,
to simulate different configurations for that particular cache in the
hierarchy. The memory accesses, which are coming from the processor
or the previous cache(s) in the hierarchy, are passed through to the next
level cache. Accesses coming from different sources can be connected
in combination to the input port of the hSim module, which enables
it to simulate configurations for shared caches. Multiple instances of
the hSim module can be connected to the MPSoC memory hierarchy
as shown in Fig. 8, to simulate configurations for a set of private L1

caches in parallel by using addresses extracted at real-time, making the

Simulator 
Core

Address In Address Out

Data Data

Control Address

ControlData

System Clock

Simulator Clock

Fig. 6: Operation and interfacing overview of the hSim module.

Fig. 7: Detailed schematic symbol showing all signals for the hSim module as implemeted
in Altera Qsys system integration tool [21]. Widths of the address and data signals are
configurable.
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Fig. 8: Multiple hSim modules connected to a multiprocessor system on FPGA, illustarting
how the module can be used to simulate private/shared/level1/level2 cache configurations.

simulation accurate compared to software methods where each access
trace is derived from a combined trace [12].

VI. EXPERIMENTAL SETUP

We used the target system of Fig. 3 in our experiments to demostrate
the process of cache exploration. Since we do not assume a hardware
cache coherence mechanism to be present in the final system and hence
do not calculate cache misses occurring due to maintaining coherency,
separate application programs were executed on the four processors.
Even though data aren’t shared between programs, the sharing of L2

cache affects the hit rates of different configurations on L1 and L2.
The MPSoC was built using Altera Qsys system integration tool [21],
with four Nios II/f embedded processor cores [22] at 200MHz, and was
deployed in a Stratix V GX FPGA on an Altera DE5-NET board [23].
We used 1 gigabyte of DDR3 SDRAM at 800MHz on the DE5-NET
board as the main memory for the set of processors.

We used 6 benchmark applications from SPEC2006 benchmark
suite (bzip2 compression, bzip2 de-compression) and MiBench suite
(lame mp3-encoding, lame mp3-decoding, rijndael aes-encryption, jpeg)
to create two groups of four applications each. Table I shows the two
groups of applications, the sizes of the data inputs used and the memory
accesses generated by each application.

Four instances of the hSim module, each operating at 100MHz,
were connected to the cache-less MPSoC in order to simulate the cache
hits for L1 cache configurations for the four processors in parallel.
Each of the L1 hSim modules were parameterized to simulate 27
different configurations as described in Table II (27 configurations were
used since Nios II cache module is direct mapped only). Energy and
performance measures were calculated as described in Section IV using



TABLE I: APPLICATIONS USED IN OUR EXPERIMENTS

Experiment 1

rijndael aes

bzip2 de-compress

jpeg

lame decode

0

1

2

3

17

18

769

25

99,299,728

66,365,689

53,597,119

70,702,236

Application
Core Input 

size 
(KB)

Memory 
acesses

Experiment 2

lame encode

bzip2 compress

rijndael aes

jpeg

3

131

41

769

259,070,294

143,691,935

238,329,483

53,597,114

Application
Input 
size 
(KB)

Memory 
acceses

TABLE II: CONFIGURATIONS FOR PRIVATE L1 CACHES AND SHARED L2 CACHE

Set size Associativity

1 - 256 1

Block size 
(Bytes)

4, 16, 32

Set size Associativity

1 - 256 1 - 16

Block size 
(Bytes)

32 - 256

180 configurations for shared L2 cache27 configurations for each private L1 cache

the hit rates obtained from the hSim modules, and L1 caches were
put into the MPSoC based on the selected configurations (we used
minimum Ecache for experiment 1 and minimum Tcache for experiment
2). A single hSim module was connected to the MPSoC after the L1

caches, to simulate the cache hits for the shared L2 cache. L2 simulator
was parameterized to simulate 90 different configurations as described
in Table II.

VII. RESULTS

The results obtained from the simulations are presented in Fig. 9
and Fig. 10, with the Average Cache Access Energy (Ecache) on vertical
axis plotted against Average Cache Access Time (Tcache) on horizontal
axis. Each plot displays a subset of configurations in the respective
design space, with low energy and access time values. Crosses represent
different cache configurations explored. The configuration giving the
least energy in the design space is marked with a red triangle, whereas
the configuration giving the fastest access time is marked with a green
circle.

Figure 10 reports the results for all private L1 caches. A designer
can decide which configuration to select depending on the requirement
and constraints. For example, for jpeg, the configuration with block size
= 32 bytes, set size = 256 (8KB cache) gives the fastest access time
with 99.2 % hit rate; while the configuration with block size = 16 bytes
set size = 32 (512B cache) gives the lowest energy consumption, with
only 90.3% hit rate. It is worthwhile noting that rijndael aes application
observes minimum Ecache with two different configurations, using
different size inputs. When choosing L1 caches in the two experiments,
we selected configurations showing minimum energy for applications
in experiment 1; and configurations showing minimum access times for
applications in experiment 2. Details of these selected L1 configurations
are shown in Table III.

Using the selected configurations for private L1 caches in the
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Fig. 9: Energy Consumption against Access Time for shared L2 cache configurations.

bzip2_decompress

jpeg lame_decode

bzip2_ compress

rijndael_aes jpeg

lame_encode

EXPERIMENT 1

EXPERIMENT 2

rijndael_aes

Average Cache Access Time (ns)

A
ve

ra
ge

 C
ac

h
e 

A
cc

es
s 

En
er

gy
 (

p
J)

Average Cache Access Time (ns)

A
ve

ra
ge

 C
ac

h
e 

A
cc

es
s 

En
er

gy
 (

p
J)

Unique cache configuration

Configuration with min. energyConfiguration with min. access time

Fig. 10: Energy Consumption against Access Time for private L1 cache configurations.

MPSoC, Fig. 9 reports the results obtained for the shared L2 cache.
Details of L2 cache configurations with minimum energy and access
time are shown in Table IV. Experiment 1 obtained minimum energy
using a 16KB cache with 99.8% hit rate while minimum access time
was achieved by a 2KB cache with 98.9% hit rate.

Since this work focuses on calculating hit rates for the cache
configuration design space using specialized hardware, it is of impor-
tance to assess the time consumed by the hSim modules to produce
the results. In experiment 1, the simulation of 27 configurations for
each of the four private L1 caches took 30.6 seconds with 289.9
million accesses processed in total by the four hSim modules. With
the selected L1 configurations (giving minimum energy estimates) in
the MPSoC, the combined trace of L1 misses was 42.3 million accesses.
The hSim module simulating 180 shared L2 cache configurations took
6.3 seconds to process this trace. In experiment 2, four hSim modules
(each simulating 27 L1 configurations) took 84.3 seconds to process
a total of 694.7 million memory accesses. After the L1 caches with
minimum access time estimates were put into the MPSoC, the hSim
module simulating 180 shared L2 configurations observed just 23
million accesses. The L2 simulation in experiment 2 took 3.2 seconds
to calculate the hit rates. The time and trace size details are tabulated



TABLE III: PRIVATE L1 CACHE CONFIGURATIONS WITH MINIMUM ACCESS TIME AND ENERGY FROM EXPERIMENTS 1 AND 2

L1 Config. with min. Ecache

rijndael aes

bzip2 de-compress

jpeg

lame decode

32B

16B

16B

32B

Application
Block 
size

128

32

32

16

Set 
size

1

1

1

1

Assoc

0

1

2

3

Core

4KB

512B

512B

512B

Cache 
size

99.5%

93.9%

90.3%

96.6%

Hit 
rate 

Experiment 1

32B

32B

32B

32B

Block 
size

128

32

256

16

Set 
size

1

1

1

1

Assoc

4KB

1KB

8KB

512B

Cache 
size

99.5%

95.6%

99.2%

96.6%

Hit 
rate 

L1 Config. with min. Tcache L1 Config. with min. Ecache

lame encode

bzip2 compress

rijndael aes

jpeg

32B

16B

32B

16B

Application
Block 
size

16

32

4

32

Set 
size

1

1

1

1

Assoc

512B

512B

128B

512B

Cache 
size

98.3%

92.7%

86.8%

90.3%

Hit 
rate 

Experiment 2

32B

32B

32B

32B

Block 
size

16

64

128

256

Set 
size

1

1

1

1

Assoc

512B

2KB

4KB

8KB

Cache 
size

98.3%

96.9%

99.4%

99.2%

Hit 
rate 

L1 Config. with min. Tcache

TABLE IV: SHARED L2 CACHE CONFIGURATIONS WITH MINIMUM ACCESS
TIME AND ENERGY FROM EXPERIMENTS 1 AND 2

Shared L2 Config. with min. Ecache

1 (Group A)

 2 (Group B)

256B

128B

Experiment Block 
size

4

8

Set 
size

16

16

Assoc

16KB

16KB

Cache 
size

99.8%

99.8%

Hit 
rate 

256B

128B

Block 
size

4

1

Set 
size

16

16

Assoc

16KB

2KB

Cache 
size

99.5%

98.9%

Hit 
rate 

Shared L2 Config. with min. Tcache

TABLE V: SIMULATION TIMES TO CALCULATE HIT RATES IN HARDWARE

Experiment 1 – 4 private L1 caches

Experiment 2 – 4 private L1 caches

30.6

84.3

Simulation Time (s)

289,964,772

694,688,826

Total Memory 
Accesses

0.106

0.121

Time per Million 
Accesses (s) 

Experiment 1 – shared L2 cache

Experiment 2 –  shared L2 cache

6.3

3.2

42,360,645

23,943,761

0.149

0.133

in Table V. These values represents time taken purely for simulation as
in the prior works, excluding overheads of re-synthesizing the system
on FPGA. The observed time per million memory accesses taken by
hSim modules is from 0.106 seconds to 0.149 seconds. The software
based method in [12] takes 68 seconds per million accesses to explore
the design space of a similar multiprocessor cache hierarchy, with a
total time of 9468 seconds for 139 millions of memory accesses. In
comparison, our hardware based method took 87.5 seconds and 36.9
seconds for the two experiments demonstrated here, while processing
larger memory access traces. Therefore the hardware based calculation
of cache hit rates using hSim modules in the experiments is upto
456 times faster than software based simulation, owing to the parallel
simulation in hardware.

Additionally, simulation in hardware uses the real memory access
traces observed by caches in a multi-level hierarchy, as opposed to
software simulation where memory access traces are derived. It should
also be noted that simulation times are directly related to the number of
memory accesses processed. In hardware based simulation, increasing
the number of cache configurations to explore requires more FPGA
logic elements, rather than increasing the simualtion time.

VIII. CONCLUSION

In this paper, we presented a hardware based design space explo-
ration methodology to determine the cache configurations for a multi-
level cache hierarchy in an application specific MPSoC. The proposed
method significantly reduces the time taken during the design stages by
rapidly calculating the cache hits for all configurations using specialized
hardware. The hSim modules designed for this purpose can be flexibly
connected to different points in an MPSoC cache hierarchy on an
FPGA device, to extract and analyse the memory access information at
those points in real-time. With such fast and flexible simulation made
possible, designers can explore the cache hierarchy design space with
ease. An additional benefit offered by using hSim modules is that actual
memory accesses generated by processors can be observed at real-time.
This enables the possibility of accurately emulating coherent cache

behaviours. We aim to extend this work to examine the coherence of
caches.
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