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Abstract—Writing correct parallel software for modern multi-
processor systems-on-chip (MPSoCs) is a complicated task. Pro-
grammers can rarely anticipate all possible external and internal
interactions in complex concurrent systems. Concurrency bugs
originating from races and improper synchronization are difficult
to understand and reproduce. Furthermore, traditional debug
and verification practices for embedded systems lack support
to address this issue efficiently. For instance, programmers still
need to step through several executions until finding a buggy
state or analyze complex traces, which results in productivity
losses. This paper proposes a new debug approach for MPSoCs
that combines dynamic analysis and the benefits of virtual
platforms. All in all, it (i) enables automatic exploration of
SW behavior, (ii) identifies problematic concurrent interactions,
(iii) provokes possibly erroneous executions and, ultimately, (iv)
detects concurrency bugs. The approach is demonstrated on an
industrial-strength virtual platform with a full Linux operating
system and real-world parallel benchmarks.

I. INTRODUCTION

Multi-processor systems-on-chip (MPSoCs) have spread
rapidly to all electronics industry sectors due to power and
thermal limitations of monolithic cores. Surveys state that
already around 50% of new design projects in 2012 used two
or more application processors [1], and this number will only
increase in coming years. The complement of multi-processor
hardware (HW) is efficient concurrent software (SW) so that
available computing resources can be fully exploited.

Concurrent software is essential for achieving the desired
system efficiency and provides a key product differentiator.
However, with SW aspects already accounting for more than
50% of the total design costs [2], new products are subject to
greater verification efforts and costs associated to concurrency-
related issues. Writing correct parallel SW is difficult. Con-
currency can lead to severe bugs when unintended interactions
occur among system units. To avoid this, programmers have to
take measures to keep all relevant concurrent actors in sync,
but this is in general hard to realize. Human beings are not
very good at understanding concurrent practical tasks [3] and
even the most experienced programmers make mistakes when
writing concurrent programs. Finding a concurrency-related
bug is just as hard. Most bugs remain unnoticed and surface
only after systems have been reliably running for months [4].
When they appear, they are extremely hard to reproduce.
Similarly, fixing a concurrency bug is also cumbersome. In
practical settings, many bug fixes released by programmers do
not remove the target bug but just keep it hidden, whereas
other fixes introduce more buggy behavior [5]. All this has
led to a huge need for tools that facilitate concurrent SW
development and debug for modern MPSoCs. In fact, the
design of concurrent SW is considered as a long-term “grand

challenge” for the electronics industry [2].

Being able to reproduce an exact buggy state in an appli-
cation substantially improves the debugging experience [4].
Furthermore, the entire debug process can be accelerated
by orders of magnitude when adding systematic exploratory
techniques that search for and trigger bugs. This can be
achieved through extensive monitoring and precise control of
the execution of all individual SW tasks and components on
the target so that on- or off-line algorithms can manipulate
them at will. Since off-the-shelf hardware has restricted debug
controllability and observability, Virtual Platforms (VPs) can
play an important role as substitutes for debugging concurrency
issues. By using them, it is possible to gain reproducibility and
have full non-intrusive inspection and control of a system that
closely mimics an MPSoC. Nevertheless, VPs provide only an
execution vehicle and on top of them it is still necessary to
deploy advanced concurrency monitoring and analysis.

Contributions. This paper introduces a new debug approach
covering all necessary steps to successfully find concurrency
bugs in MPSoCs, namely dynamic monitoring, control, anal-
ysis and replay. As a major achievement, it enables automatic
exploration of applications so as to find a wrong interaction
of system events leading to a buggy execution. Firstly, the ap-
proach includes a monitoring and control framework connected
to a target MPSoC VP. The monitoring abstracts relevant multi-
processing SW and HW interactions, and generates a high-
level event trace with semantic information useful for analysis.
Trace and concurrency analysis are also introduced that search
for non-deterministic behavior and event permutations (or
interleavings) potentially leading to a buggy execution. If
a potential execution is found that is likely to change the
application’s behavior, it can be explored by explicitly forcing
the program into the believed erroneous state using a con-
troller. This strategy improves the likelihood to generate task
interleavings with bugs that can occur during normal execution
but usually remain hidden. With the platform monitoring,
control and event analysis at hand, repeated program execution
becomes much more viable than other approaches for finding
bugs. Our debug approach, which is shown in Fig. 1 and
whose components are explained throughout this paper, will
be demonstrated with a quad-core ARM MPSoC with Linux
built in a commercial VP framework.

Relation to Previous Work. Automatic concurrency-related
bug detection for high-end applications has been a hot topic in
the last decade. Dynamic analysis techniques and testing [4],
[6], [7], compared to static code analysis [8] and model
checking, usually serve to identify errors with higher accuracy
and are more applicable to real systems. More recently, debug
through symbolic execution [9] and hybrid static-dynamic978-3-9815370-2-4/DATE14/ c©2014 EDAA



checking [10] have shown to be very effective to classify and
find complex bugs (e.g., bugs involving concurrent accesses
to multiple variables). However, no analysis framework has
targeted specifically MPSoCs, and embedded developers still
rely on manual breakpointing and stepping of software. Fur-
thermore, most previous work relies either on instrumentation
with compilers (e.g., on source code, binary or bytecode) or on
modifications to parts of the target SW stack (e.g., a custom
OS scheduler). In contrast, our approach builds upon non-
intrusive monitoring of HW/SW events. Moreover, it achieves
bug exploration through controlled behavioral replay at the
lowest granularity level (i.e., event pairs). This is compatible
with MPSoC programming where VP frameworks, such as
Synopsys Virtualizer [11], help by providing full-system repro-
ducibility, controllability and visibility. Besides the framework
for interrupt-related bugs in [12], systematic or analytical ways
to debug concurrency issues in MPSoCs are scarce.

Outline. This paper is organized as follows. Section II presents
the problem formulation. Section III discusses concurrency
analysis techniques that help to find non-deterministic behav-
ior. This is complemented by our approach to unveil bugs
through iterative behavior exploration in Section IV. Section V
presents results of our debug approach when used with a
commercial multi-core ARM VP running Linux. Results cover
examples of applications used for benchmarking of parallel
systems. Finally, Section VI concludes this work.

II. EVENT-BASED DEBUGGING: PROBLEM FORMULATION

A programmer may simply forget to insert synchroniza-
tion artifacts (e.g., locks and semaphores) in critical sections
when writing parallel code, such as for a multi-task OS. In
consequence, bugs related to data races might occur, e.g., (i)
when a certain code section must execute atomically with
regard to other concurrent actors but this is not respected
(i.e., an atomicity violation), or (ii) when the semantic order
between two or more code sections is flipped (i.e., an order
violation) [5], [10]. Finding the cause of these bugs is very
problematic due to both their non-deterministic nature and
their random effects. They often appear at some point in
time without any reference to the originating instruction. In
embedded systems, the variety of processing elements and
communication mechanisms significantly increases the sources
of concurrency issues as well as debug complexity. Program-
mers, coding from drivers to high-end applications, have to
ensure proper interaction among concurrent SW tasks and
a plethora of HW-dependent features (e.g., direct memory
access, interrupts and mailbox devices). This demands for a
mechanism to handle concurrency-related system events.

A. Debug Abstractions

We adopt the strategy of looking at an application as
an event trace T = {e1, ..., en} which is a sequence of
concurrency-related system events that reflects their occur-
rence order. This notation was first introduced by Lamport [13]
to deal with causality in distributed systems. Later algorithms,
such as [14], enable computing timestamps to discover exact
partial order relations between event pairs. This notation
provides an abstraction of the system which allows applying
high-level debug algorithms. Extensions and new definitions
are presented in this paper in order to adapt the formalism to

Fig. 1: Iterative bug exploration flow

events that can be non-intrusively obtained and controlled in
a VP on the fly.

Definition 1 (Atomic event). An atomic event e ∈ T is a 5-
tuple (t, p, c, a, d), where t is a timestamp, p is the associated
physical component, c is a logical execution context (e.g., SW
task “X”), a is a concurrency-related action (e.g., task creation
or shared memory access), and d represents action-specific data
(e.g., a memory address or a lock ID).

For concurrency analysis, it is important to have events that
(i) contain properties revealing their location and nature and (ii)
represent atomic actions influencing the overall global program
state. Furthermore, having order relationships between events
in a trace is of utmost importance.

Definition 2 (Occurred before). An occurred before relation,
denoted as ei ≺ ej ; ei, ej ∈ T , exists iff during tracing ei was
observed to occur before ej . The relation “≺” is transitive.

Definition 3 (Happens before). A happens before relation,
denoted as ei → ej; ei, ej ∈ T , exists iff ei is considered
to always occur before ej in all feasible interleavings (i.e.,
interleavings that could be observed during tracing).

(T,≺) and (T,→) correspond to partially ordered sets
(posets). The “≺” relation contains observed events in the
order that they were actually recalled during execution. The
“→” relation, if found for a trace, contains event orderings
which are always enforced by program order, synchronization
and/or transitivity. For program order, it is understood that
two events ei and ej emitted sequentially within the same
execution context c will never occur in swapped order. For
synchronization, it is understood that either using inter-thread
synchronization (e.g., signal/wait) or the creation/deletion of
a new context c can enforce a specific order (e.g., an event ej
within a task will only happen after the creation, say ei, of that
same task). Finally, if ei → ej∧ej → em holds, then ei → em
follows by transitivity. Based on the “→” relation, it is also
possible to infer when two events are concurrent (“↔”):

ei ↔ ej ⇔ ej ↔ ei ⇔ ei 6→ ej ∧ ej 6→ ei
Definition 1 states that each event e maps to a precise

spatio-temporal location through t and p. The semantic infor-
mation (i.e., the triple (c, a, d)) of most concurrency-related
actions, however, cannot be derived from a single instantaneous
state change extracted at runtime. This is particularly true when
the target is to be monitored non-intrusively, as is the case with
VPs. The only events that can be non-intrusively traced are
the very simple HW-level events which are observable with
a traditional debugger (e.g., a machine instruction execution
or a signal change). Under these circumstances, programmer-
introduced multi-processing artifacts and OS decisions, such as
a semaphore lock or a task preemption, are high-level events
(HLE) that do not correspond to a single observable event but
to a set of them (e.g., several instruction execution and shared
memory access events in a certain order).
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Fig. 2: Event monitoring

Definition 4 (HLE). A high-level event is a composition

of HW-level events ê = (E ⊂ T, t̂, p̂, ĉ, â, d̂) that can be
non-intrusively observed in a target.

To give meaningful information, an analytical debugger
must operate on traces of HLEs. We formulate this as:

Problem 1. Given a low-level trace T = {ei}, obtain a high-

level trace T̂ = {êj} that captures spatio-temporal location and
semantic information of T with programmer-relevant events.

This problem can be decomposed into, (i) grouping: How
to group low-level events into programmer-relevant events,
and (ii) propagating: How to propagate spatio-temporal lo-
cation and semantic information to these HLEs (i.e., how

to compute t̂, p̂, ĉ, â and d̂). Notice that whether or not an
event is relevant depends on the programmer abstraction (e.g.,
firmware or OS). Similarly, event semantic information can
be propagated, enriched and generated at different HW/SW
layers. For instance, several memory accesses and instructions
executed at the HW level can become an OS-level event for
creating a new task. We therefore define a layered approach to
grouping events according to typical abstraction levels (e.g.,
HW, OS, middleware and application).

To solve Problem 1, the debugging framework has a layer-
aware system monitorM connected to the target (see Fig. 1).
The monitor is composed of modules, one for each HW/SW
layer, that processes events as they come from the system,
producing HLEs. Each module Mi ∈ M receives low-level
events in T and HLEs from all previous layers (produced
by M1, ...,Mi−1), and generates a set Ti of HLEs that are
relevant at layer i. Formally, a module can be seen as a pair
Mi = (FSTi, Fi), where FSTi is a finite state transducer, in

charge of grouping, with input alphabet Σi ⊆ T ∪ (
⋃i−1

l=1
Tl)

and output Γi ⊂ P(T ). Since HLEs can be nested (e.g., OS
I/O function calling a synchronization primitive), all FST s are
provided with a stack. Fi is a function in charge of propagat-

ing, so that ∀E ∈ Γi : Fi(E) = (t̂, p̂, ĉ, â, d̂). After a sequence
of modules for monitoring L layers, the desired high level trace
is available for further processing in the bug exploration flow. It
is defined by the HLEs produced by the last module (TL), i.e.,

T̂ = {ê = (E, t̂, p̂, ĉ, â, d̂);E ∈ ΓL ∧ (t̂, p̂, ĉ, â, d̂) = FL(E)}.
The logical connection of the monitors is shown in Fig. 2.

The internals of the FST s and the F functions depend
on implementation details of each corresponding HW/SW
layer. They require system information, such as which event
sequences represent task creation and which memory accesses
affect OS data structures. The grouping mechanism (FST )
is similar to how debug awareness layers work in source
debuggers (e.g. the thread layer in GDB). It requests break-
points and watchpoints on binary symbols and variables that
are related to a certain HLE (e.g., for Linux, a call to func-
tion copy_thread marks thread creation). The propagating
mechanism (F ) is more involved. For a given group E ⊂ T ,
the location information is obtained from a so-called anchor

event ek ∈ E, i.e., (t̂ = tk, p̂ = pk). For example, given a set
of events representing the creation of a task, the anchor event
corresponds to the last event: the return from copy_thread.

The semantic information (ĉ, â, d̂) is generated based on the
layer-specific knowledge and the information contained in the
low-level events. For example, a sequence of events with a
HW context c, a memory access a and related addresses d,
can be transformed into an HLE with thread context ĉ, mutex
acquire action â and mutex object ID d̂.

A monitor, as described here, requires a retargetable and
extensible debugger back-end connected to a VP. For instance,
by using the debugger from [15], one can define a hierarchy of
debug components to extract information from system layers.

For two HLEs êi, êj ∈ T̂ with different anchor events
eki

, ekj
∈ T , the “≺” and “→” relations can be defined on

T̂ as follows:

êi ≺ êj ⇔ eki
≺ ekj

êi → êj ⇔ eki
→ ekj

In case êi, êj have the same anchor ek = eki
= ekj

, it does
not make sense to order them. Considering their location, they
are effectively the same event. Nevertheless, their respective
semantic information is still useful for analysis. For the sake
of simplicity, and without loss of generality, we refer to all
events as e ∈ T in the rest of this paper.

B. Software Behavior Control

An event trace, if complete (i.e., every inter-task commu-
nication and non-determinism source is captured), precisely
represents the behavior of a given execution. Hence, the system
can behave the same if a controller C is added that forces the
platform to produce such a trace again (see Fig. 1). A different
(and possibly buggy) behavior can also result if the controller
forces the production of a slightly different trace.

To affect the overall system state, the controller can inject
a set of control operations Z = {z1, ..., zm} which cause
the system to delay or anticipate the occurrence of events.
To that end, either asynchronous or synchronous operations
might be needed depending on the event’s nature. Synchronous
operations are bound to synchronize with a specific execution
context (e.g., restoring a register of task “X”), whereas asyn-
chronous are not (e.g., unconditionally writing data to a global
register). Control operations may refer to different contexts and
different points in time. For instance, deliberately scheduling a
task to force an event’s occurrence is done through a function
call injection, which involves writing to memory, changing
register values and restoring registers on function return.

Behavior control is achieved by enforcing a specific order
of events from a reference trace T . Let B ⊂ T 2 be the set of
control constraints, i.e., a set of event pairs that have to be
enforced during execution to trigger a given behavior. Using
the set B as an input, the controller C produces appropriate
actions Z = C(B) that steer the system behavior accordingly
(see Fig. 1). The controlled execution of a system can be then
seen as a function ξ(C, Z,B) = Ṫ , where Ṫ = {ei} denotes
the resulting trace. The problems of how to deterministically
replay an execution and how to provoke bugs reduce to that
of determining the right control constraints (ei, ej) ∈ B.
For instance, a strict replay is achieved if B = ≺, i.e.,
ξ(C, Z,≺) = T . In this case, the controller would serialize
the whole platform execution by forcing all events in T to
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appear in the same order through iteratively suspending and
resuming execution contexts as needed. This strategy, albeit
possible, significantly reduces the execution speed due to
the serialization of contexts and the overhead caused by the
excessive number of control interactions. A better strategy is to
serialize only inter-task dependencies, as serializing contexts
and/or events that do not interfere is unnecessary. In general,
the amount of serializations implied by the set B should be
minimized. All in all, an oracle is needed that determines a
suitable B which leads first to a deterministic replay or, if
manipulated, provokes a bug as shown in Fig. 1.

Problem 2. Given the poset (T,≺), find an oracle O that

determines B ⊂ T 2, such that ξ(C, Z,B) = Ṫ , Ṫ ≡b T
and |B| is minimized. The relation ’≡b’ denotes that T and Ṫ
represent the same execution behavior but do not necessarily
contain the same events or order. Behavior is checked by
comparing program output (e.g., file I/O) or exit codes.

III. ANALYSIS AND CONSTRAINT-BASED REPLAY

Dependency extraction. Without inter-task dependencies, the
execution order would not matter for parallel programs. The
search for dependencies in an event trace is a key concept of
concurrency analysis [10], [16].

Definition 5 (Dependency). Two events ei =
{ti, pi, ci, ai, di}, ej = {tj , pj , cj, aj , dj} ∈ T are dependent
iff they reference at least one common object o, ci 6= cj and
if inverting the order of ei ≺ ej has an effective change on
the program behavior.

We model each identified shared object o (e.g., shared
memory address or semaphore) as a list of versions o =
{m1, ...,mn}, where each version is a triple m = (eo, d, V )
consisting of an owning event eo, some object specific data d
and a list of visitor events V . Dependencies for every o are
extracted with an online algorithm based on [17]. A shared
object is initialized with a null version with V = ∅. Every
access to a shared object o from an event e can be recorded
either as a modification or a visit operation. A modification
indicates a change which is observable by other contexts and
adds a new version to o (i.e., o ← o ∪ mnew = (e, d, ∅)).
Visiting means that the event only reads the object’s value;
the event is added to the visitors list of the newest version
(i.e., Vlast ← Vlast ∪ e;Vlast from mlast). Given an object o, our
algorithm marks an event pair (ei, ej) as dependent if (i) the
events own different versions mi,mj ∈ o (modify−modify),
(ii) if ej happens to be in the visitor list Vi of an mi owned
by ei (modify−visit) or (iii) in the visitor list of any version
mp preceding mi (visit−modify). Finally, let D ⊆ ≺ be the
set of all dependencies.

Synchronization extraction. Dependencies are harmless if they
are synchronized. Synchronized dependencies are those ei ≺
ej ∈ D for which the execution order cannot be reversed, for

they comply with ei → ej (see Definition 3). Finding the “→”
relation on T is possible since all synchronization primitives
(e.g., mutexes, signals, messages) and context maintenance
actions (e.g., task creation and deletion) are exposed by a
corresponding HLE. For computing “→”, we use distributed
clocks, which are similar to vector clocks in [14]. An event
ecreate (e.g., a thread create), for instance, updates the local
timestamp of the calling context (i.e., the context where the
function is executed) and then creates a new context which
inherits its timestamp. The very first event of the new context,
efirst, is aware of the progress of ecreate and thus they are
synchronized: ecreate → efirst. Distributed clocks apply to task
create and join operations, but also to shared objects that
enforce absolute synchronization and can transport a sender’s
clock, such as messages (or signals). Mutexes, however, do
not enforce an absolute order but rather a local one (e.g., a
mutex acquire will only succeed after the owner releases it).
We use the aquire-release semantics of mutexes to extend the
set “→”: Considering eai

≺ eri are a mutex acquire and its
corresponding release happening in context ci, if context cj
emits an acquire event eaj

such that eai
→ eaj

, then eri → eaj

holds. Let Du = (D\→) ⊆ ≺ be the set of all unsynchronized
dependencies.

Dependency set pruning. After extracting synchronization,
the set Du can be further minimized. In fact, there can be
a dependency ei ≺ ej which is always executed in order
given that the controller C enforces the execution order of
another dependency el ≺ em. This is possible due to (i)
the transitivity of “≺” and to (ii) synchronization between
the events ei, ej , el, em. A similar consequence of transitivity
is that a virtual dependency can be introduced to force the
execution order of two real dependencies from Du. For this,
domination and false-dependencies, shown in Fig. 3(a) and (b)
respectively, are introduced.

Definition 6 (Domination). Given two pairs bi = (ek, el), bj =
(em, en) ∈ T 2, we say bi dom bj iff (ek ≡ em ∨ em → ek) ∧
(el ≡ en ∨ el → en). This indicates that bj is a redundant
element w.r.t. bi. The relation “dom” is transitive.

Definition 7 (False-dependency). Given bi = ek ≺ el, bj =
em ≺ en ∈ Du, the set of all false dependencies for the
pair (bi, bj) is given by fdep(bi, bj) = {bfalse ∈ (T 2 \Du) |
(bfalse dom bi) ∧ (bfalse dom bj)}. Every false dependency bfalse
can replace bi, bj ∈ Du and keep their respective orders. Let
Dfalse be the union of all elements in the image of fdep, which
contains all false dependencies.

Recalling Problem 2, the oracle O needs to create the
sets Du and Dfalse, and then check for domination in order
to construct B. The solution set B is expressed as:

Theorem 1. Given the poset (T,≺), the least set B ⊂ T 2

which ensures that ξ(C, Z,B) = Ṫ ∧ Ṫ ≡b T is given by:

B = (Du ∪Dfalse) \Ddom, where

Ddom = {by ∈ (Du∪Dfalse) | ∃bx ∈ (Du∪Dfalse) : bx dom by}

Proof: By definition, every unsync. dependency bi ∈ Du

must be considered or the program behavior could change.
This is enforced by bi or other bj ∈ B; bj dom bi. False
dependencies and considering “dom” on all bi, bj ∈ B en-
sure that there is no other element that can further min-
imize |B|. By contradiction and without lose of gener-
ality, consider two elements by, bz ∈ B. Consider also a



bx that can replace by, bz further reducing |B|. Then,
(bx dom by) ∧ (bx dom bz) should hold. If by, bz ∈ Du ⇒
bx ∈ fdep(by, bz) ⇒ bx ∈ Dfalse ⇒ by, bz ∈ Ddom, thus con-
tradicting by, bz ∈ B. If by, bz ∈ Dfalse, then ∃bp, bq ∈ Du :
(by dom bp) ∧ (bz dom bq) ⇒ (bx dom bp) ∧ (bx dom bq) ⇒
bx ∈ Dfalse ⇒ by, bz ∈ Ddom, thus contradicting by, bz ∈ B.
When by ∈ Du and bz ∈ Dfalse, bx, by ∈ B is also contradicted,
merging the two cases above.

So defined, the set of control constraints B corresponds to
unsynchronized dependencies which represent races (except
for false dependencies). Races in B can still be either harmful
or harmless [9]. For the latter, order does not have to be
enforced to achieve Ṫ ≡b T (i.e., they do not affect program
correctness). Therefore, it can be argued that harmless races
could be removed from B. This does not contradict the mini-
mality requirement of |B| however, but rather shows the limits
of pure dynamic concurrency analysis. Identifying harmful
races needs additional semantic information, e.g., extracted by
a compiler [9].

Constraint-based replay. Given the set of control constraints
B, we implement the controller as a set of parallel routines
that interact with the system simulator. Each routine controls
the execution of a single context c by using the algorithm
shown in Fig. 4 on a per-context filtered trace Tc ⊂ T . In
order to steer execution, the controller needs to be able to (i)
suspend the current context and resume others associated to
an event, (ii) determine a match between two events and (iii)
provide input necessary for the system, if any, such that an
event is generated (e.g., for events associated to random input).
If a given routine expects an event which is a constraint’s
second event esecond, it must suspend execution if its first event
efirst has not occurred yet. Complementarily, if efirst happens,
the context of the corresponding esecond (i.e., context(esecond))
is resumed and its routine unblocked in case that it is already
waiting for efirst. This way, two routines cooperate to enforce
the execution of a single constraint which is always associated
with two different contexts. Suspend/resume both work by
managing an internal queue for every context such that repeti-
tive calls are cumulative but the action is done only once (i.e.,
suspend with the first call, resume when the queue is empty).
Due to the properties of B, this algorithm will repeatedly and
deterministically yield the same execution behavior captured
by the original event trace T .

IV. BEHAVIOR EXPLORATION FOR BUGS

A more interesting usage of the previous concepts, and
the main goal of this paper, is to automatically explore the
system’s behavior for bugs. Every race obtained after con-
sidering dependencies, synchronization and domination (but
excluding false dependencies) might indicate a conflictive
order-dependent inter-task interaction, which might lead to a
bug. Let B′ = B|Dfalse=∅ = Du\Ddom, i.e., the set produced

by the oracle without false dependencies. Every si ∈ B′ is a
candidate conflict for bug exploration. The controller can apply
several strategies to use each si in order to trigger a latent bug.

Simply swapping a constraint could unveil an atomicity
or order violation bug (if the constraint represents a harmful
race in a semantically atomic or ordered application section).
Violations affecting the semantic correlation of application
variables [9] can also be provoked by swapping several races
that lead to break multi-variable correlation. To provoke and

1: while Tc 6= ∅ do

2: eexpected ← pop first(Tc)
3: provide input(eexpected)
4: for all s = (efirst, esecond = eexpected) ∈ B do

5: mark s
6: suspend(c)
7: end for

8: ecurrent ← (... wait for next event in c from the target)
9: if ¬matches(ecurrent, eexpected) then
10: replay error
11: end if

12: for all s = (efirst = ecurrent, esecond) ∈ B do
13: if s is marked then

14: resume(context(esecond))
15: end if

16: B ← B \ s
17: end for

18: end while

Fig. 4: Constraint-based replay routine for a single context

find bugs, we implemented a pseudo-random constraint swap-
ping algorithm for iterative bug exploration. The algorithm
works by iteratively reversing the order of a random constraint
sx = (ei, ej) ∈ B′ into sswapped = (ej , ei) and letting the
controller replay the application. Note that this order reversal
does not lead to a cycle in the happens-before relation (which
would be an inevitable deadlock). If it did, there would
be a redundant path from ei to ej , which disagrees with
Theorem 1. However, sx may dominate other dependencies.
Since swapping affects the original order, it leaves previously
dominated dependencies ignored. To avoid this, additional
repair constraints are added to recover the order of adjacent
dependencies. Assuming Pei and Sej are the respective sets
of events immediately preceding and succeeding the events ei
and ej of the selected constraint sx, then the repair constraints
after swapping sx are (see Fig. 3c):

{ep ≺ ej |ep ∈ Pei} ∪ {ei ≺ es|es ∈ Sej}

If the application fails during replay, the latest swapped con-
straint is most probably involved in the bad behavior. If the ap-
plication succeeds, the new trace is used for the next iteration.
A swapping history must be kept to minimize the chance of
replaying the same execution. Despite the randomness of this
strategy, we believe its search space is promising. In contrast to
blind heuristics such as Chess [4], each swap actually considers
a dependency which is likely to change program behavior. On
the other hand, since it only explores the outermost visible
dependencies, the algorithm has an effect similar to tools that
randomly cause slight schedule changes. If an application is
completely synchronized by dependencies, but the analysis is
unaware, the heuristic will try to swap synchronization points
again and again. The exploration approach can be improved
by using application semantic information (e.g., to identify
harmless races) or clues about a sought bug (e.g., bug patterns).

V. TEST CASES AND RESULTS

To test our approach, we implemented a debug framework
that connects to a Synopsys VP of the ARM Versatile Ex-
press CoreTile board. The VP consists of four instruction-
set-accurate Cortex-A9 cores, an AXI bus and a set of pe-
ripherals (e.g., USART, LCD controller). It supports boot-
ing a SMP Linux 3.4.7 kernel. On it, we ran different
C applications to test our framework under different code
complexity levels. The debug framework is able to non-
intrusively monitor and abstract events related to OS thread



management (e.g., via Linux thread_info), process/library
loading (i.e., via vma_link), signals (e.g., SIGSEGV) and
file input/output (i.e., read and write). Pthreads calls for
mutexes (e.g., pthread_mutex_lock) and barriers as well
as shared memory accesses are also monitored. We also built
the execution controller from Fig. 4 for the target Linux.
It uses debug and control VP interfaces so as to externally
inject calls (i.e., manipulating/saving/restoring registers) to
kernel routines which induce task suspension (i.e., schedule,
sched_yield) and resumption (i.e., wake_up_process).
Finally, the analysis proposed in Section III was added.

Three different applications were analyzed. Ocean (sim-
ulation of ocean movements) and fmm (n-body interaction
simulation) were taken from the SPLASH-2 benchmark [18].
Pigz [19] (compression), which is used in mobile devices,
was also used. Table I shows amount of lines-of-code (LOC),
threads, events (both low-level and HLEs) and all extracted
conflictive races (races on mutex objects and shared memory).

For the three applications, only two races were shared
“memory races” (in ocean). Such races could relate to atom-
icity violations (the most common type of bugs [5]) and
are deemed to be more problematic. Races on mutexes
denote relative orderings of critical sections and are less
likely related to bugs. However, bug exploration with our
tool did not trigger a buggy state for ocean and fmm. This
was expected as SPLASH-2 is a stable benchmark. Later,
we manually confirmed (in several man-days) that the two
memory races in ocean were harmless. Then, we decided to
randomly remove a pair of mutex acquire/release and observe
the effect. Fmm b and ocean b in Table I correspond to the
mutex removal in fmm and ocean from fmm.C:169-172

and slave1.C:516-518 respectively. Exploring ocean b
for bugs, now with 3 memory races, immediately led to
a buggy state. The constraint swapping algorithm decided
to swap the order of the new conflictive race. A bug was
identified by comparing the program output to a reference
(the resulting “residual norm” output differs). Similarly the
first bug exploration in fmm b, now with 2 memory races,
caused the program to fail with an error message and return
(-1) as exit code. This is fortunate considering the randomness
of our swapping algorithm but an exhaustive exploration of
all races would also be possible. Our tool is also aware of
the swapped event order (including actions, contexts and extra
data) causing the bugs, thus it provides comprehensive debug
output for a programmer (e.g., source location, thread IDs and
buggy interleaving). We repeated the random removal of mutex
acquire/release pairs several times with similar results. For
pigz, the situation was different. The identified “mutex races”
were explored trying to find an order-violation bug. However,
after 200 exploratory iterations no bug was found. Later, by
inspecting pigz manually, it was discovered that it is in fact
correctly synchronized. Thus, our tool was just swapping syn-
chronization points that are not recognized as such. Not finding
bugs in pigz is consistent with the developer’s repository log,
where concurrency-related issues are not mentioned.

Exact behavior replay, another useful feature of our debug
approach, worked successfully for all applications. Table I
shows the simulation performance, given as the ratio between
simulation and wall-clock time, for the original and the re-
played run. A slowdown of ∼10x to ∼77x was seen during
replay w.r.t. the original. Our monitoring and control injection

Statistics Events Races Sim./Wall-clock

Name LOC
Thr-

eads

HW-

level
HLE

Total

|B|
Sh.

Mem

Ori-

ginal

Re-

play

fmm 3255 3 29994 21697 8 0 0.05 0.005

ocean 4198 2 151580 139759 31 2 0.07 0.0008

pigz 5333 3 19679 18075 10 0 0.019 0.0018

fmm b 3253 3 23425 18925 9 2 0.05 0.0049

ocean b 4196 2 149511 138240 31 3 0.07 0.0009

TABLE I: Analysis of selected applications

for automatic debug naturally has a cost on simulation speed.
Still, it is less than with a strict replay (i.e., serialization of all
events), which yields ∼1600x slowdown in ocean. Parallel or
hybrid simulation [20] can be used to mitigate the slowdown.

VI. CONCLUSIONS

This paper presented a debug approach which monitors,
controls and explores behavior of MPSoCs. The approach is
based on dynamic abstraction and analysis of non-intrusively
monitored events in VPs. The analysis identifies conflicting
concurrent interactions which can either be used to reproduce
a behavior or manipulated to provoke bugs. An iterative ex-
ploration process based on random constraint swapping, which
helps to detect actual bugs, completes the debug approach.
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