
Unveiling Eurora - Thermal and Power
Characterization of the most Energy-Efficient

Supercomputer in the World

Andrea Bartolini∗§, Matteo Cacciari∗, Carlo Cavazzoni†, Giampietro Tecchiolli‡ and Luca Benini∗§
∗DEI, University of Bologna, Italy, {a.bartolini, matteo.cacciari, luca.benini}@unibo.it

§ISS, ETH Zurich, Switzerland, {barandre, lbenini}@iis.ee.ethz.ch
†SCAI, CINECA, Italy, c.cavazzoni@cineca.it

‡Eurotech SpA, Italy, giampietro.tecchiolli@eurotech.com

Abstract—Eurora (EURopean many integrated cORe Archi-
tecture) is today the most energy efficient supercomputer in the
world. Ranked 1st in the Green500 in July 2013, is a prototype
built from Eurotech and Cineca toward next-generation Tier-0
systems in the PRACE 2IP EU project. Eurora’s outstanding
energy-efficiency is achieved by adopting a direct liquid cooling
solution and a heterogeneous architecture with best-in-class
general purpose HW components (Intel Xeon E5, Intel Xeon
Phi and NVIDIA Kepler K20). In this paper we present a
novel, low-overhead monitoring infrastructure capable to track
in detail and in real-time the thermal and power characteristics
of Eurora’s components with fine-grained resolution. Our exper-
iments give insights on Eurora’s thermal/power trade-offs and
highlight opportunities for run-time power/thermal management
and optimization.

I. INTRODUCTION & RELATED WORK

While electronics devices are facing critical technological
walls (i.e. Power/Thermal/Utilization Walls) that are limiting
the performance benefits of the transistor size scaling, the de-
mand for more powerful supercomputers continue to increase.
The TOP500 organization collects and ranks the worldwide
peak performance, measured as Flops (floating point operation
per second), of new supercomputer installations when running
Linpack Benchmarks. Trends in the last twenty years show an
exponential growth of peak performance that is predicted to
enter the ExaFlops (1018) scale in 2018 [7]. Today’s most
powerful Supercomputer, Tianhe-2, reaches 33.2 PetaFlops
with 17.8 MW of power dissipation that increases to 24 MW
considering also the cooling infrastructure [6]. These data
show that Exascale supercomputers cannot be built by simply
expanding the number of processing nodes of today systems as
their power demand would increase unsustainably (hundreds of
MW of power). According to [3], an acceptable value for an
Exascale supercomputer is 20 MW. To reach this target, current
supercomputer systems must achieve a significantly higher
energy efficiency pushing towards a goal of 50 GFlops/W.

With the aim to lead supercomputers to improve energy
efficiency, the Green500 organization ranks Top500 supercom-
puters by their energy efficiency [5]. In contrast to TOP500,
the Green500 list looks into an energy efficiency metric, the
GFlops per Watt (GOPS/W), for computers “big” enough to
be consider supercomputer-class, i.e. passing the threshold of
Top500. By looking from the Green500 perspective, the current
fastest supercomputer (Tianhe-2) is only 32nd by delivering
1.9 GFlops/W. In addition to power per computation, which
measures only the efficiency of the computational part, the
extra power costs due to the cooling infrastructure, necessary
to keep devices temperatures below dangerous values, must be
considered as they contribute to reduce the energy efficiency
of a supercomputer. To reduce this overhead there have been
a shift from air cooling toward liquid cooling.

The Eurora Supercomputer, developed by Eurotech and
Cineca [4] is today the most energy efficient supercomputer in
the world. In July 2013, Eurora ranked first in the Green500
list, achieving 3.2 GFlops/W on the Linpack Benchmark with a
peak power consumption of 30.7 KW, and improving by almost
30% the performance of the greenest supercomputer in the
world. Eurora has been supported by PRACE 2IP project [16]
and it will serve as testbed for next generation Tier-0 system.
Its outstanding performance is achieved by adopting a direct
liquid cooling solution and a heterogeneous architecture with
best-in-class general purpose HW components (Intel R© Xeon
E5, Intel R© Xeon Phi and NVIDIA Kepler K20). Eurora
cooling solution is highly efficient and enables hot water
cooling, that is suitable for hot water recycling and free-
cooling solutions [9]. For its characteristics Eurora is a perfect
vehicle for testing and characterizing next generation “greener”
supercomputers.

Today’s supercomputer cooling infrastructures are designed
to sustain the peak power consumption. However, during
everyday activity the machine load hardly reaches the 100%
utilization and the workloads submitted by the users are
characterized by different computational requirements [18].
This turns into cooling infrastructure over-design. In addition,
operating systems are today capable of adapting the cores
frequency according to the cores load to save energy. This
augment the power consumption variability.

To reduce overheads induced by cooling over-provisioning,
several works in the state-of-the-art propose to optimize the
job dispatching and the frequency mapping taking advantages
of non-uniformity in thermal and power evolutions [17], [11],
[10], [9], [2]. Unfortunately, most of them rely on simulations
and modeling assumptions and are not mature enough to
execute safely in a supercomputer in production. For these
reasons, a careful characterization is needed to highlight real
thermal and power behaviors for upcoming next-generation su-
percomputers based on heterogeneous architectures and ultra-
efficient liquid cooling.

Today’s general purpose HW components feature built-in HW
monitors [8], [14] directly accessible from the software stack
and capable to track on-line the status and activity of the
underlining HW. System administrators use a portion of these
sensors to monitor and store the supercomputer usage for de-
tecting failures and planning maintenance. IT monitoring tools
are optimized for on-line data visualizations and traces storage,
but usually disregard low-overhead fine-timescale sampling of
large sets of HW sensors and off-line machine assisted post-
processing [12], [1].

In this paper we first present a novel monitoring and data
collection framework specifically designed for finely sampling
all the Eurora HW sensors (load, frequency, power and temper-
ature) of all the primary HW components (i.e. CPUs, GPUs,
MICs) ensuring low-overhead and without perturbing the Eu-978-3-9815370-2-4/DATE14/ c© 2014 EDAA

N
o

d
e
 C

a
rd

 1

E
x
p

a
n

s
io

n
 C

a
rd

 1
C

o
ld

 P
la

te
 1

N
o

d
e
 C

a
rd

 2

E
x
p

a
n

s
io

n
 C

a
rd

 2
C

o
ld

 P
la

te
 2

N
o

d
e
 C

a
rd

 3

E
x
p

a
n

s
io

n
 C

a
rd

 3
C

o
ld

 P
la

te
 3

N
o

d
e
 C

a
rd

 4

E
x
p

a
n

s
io

n
 C

a
rd

 4
C

o
ld

 P
la

te
 4

N
o

d
e
 C

a
rd

 5

E
x
p

a
n

s
io

n
 C

a
rd

 5
C

o
ld

 P
la

te
 5

N
o

d
e
 C

a
rd

 6

E
x
p

a
n

s
io

n
 C

a
rd

 6
C

o
ld

 P
la

te
 6

N
o

d
e
 C

a
rd

 7

E
x
p

a
n

s
io

n
 C

a
rd

 7
C

o
ld

 P
la

te
 7

N
o

d
e
 C

a
rd

 8

E
x
p

a
n

s
io

n
 C

a
rd

 8
C

o
ld

 P
la

te
 8

CHASSIS

2.4 mm

Backplane
connectorsCold Plate

Node Card

8 mm

2
5

 m
m

12 mm

Accelerator 1 Accelerator 2 8 mm

Front Panel

Power Supply

Fig. 1. Eurora architecture

rora workload and behavior. Second, we use the developed
framework to characterize the power and thermal peculiarities
of the Eurora platform under production workloads. The pro-
posed framework is 100% compatible with the IT infrastructure
of a supercomputer center in production.

In the remainder of the paper, Section II presents an overview
of the Eurora Platform, Section III provides the details of
our measurement infrastructure, and Section IV shows the
results of our analysis. Finally, the conclusions are reported
in Section V.

II. EURORA ARCHITECTURE

The biggest building block of the Eurora prototype is the rack.
Each rack consists of up to 16 chassis, which host 16 node
cards or 8 node cards plus 16 expansion cards (two per node),
a root card, a backplane, liquid distribution pipes, and a touch
screen panel for monitoring and control.

The Eurora system consists of a half-rack containing 8 stacked
chassis, each of them designed to host 8 node cards and
16 expansion cards (see Fig. 1). The node card is the basic
element of the system and consists of 2 Intel Xeon E5 series
(SandyBridge) processors and 2 expansion cards configured
to host an accelerator module. One half of the nodes use
E5-2658 processors including 8 cores with 2.0 GHz clock
speed (Max Turbo Frequency 2.8 GHz), 20 MB caches, and
95 W maximum TDP. The rest of the nodes use E5-2687W
processors including 8 cores with 3.1 GHz clock speed (Max
Turbo Frequency 3.8 GHz), 20 MB caches, and 150 W
maximum TDP. 58 nodes have 16 GB of ECC DDR3 1.6 GHz,
and a 160 GB SSD non volatile memory. The remaining 6
(with processors at 3 GHz clock rate) have 32 GB RAM. The
accelerator modules can be Nvidia Tesla (Kepler) with up to
24 GB of GDR5 RAM and up to 2 TFlop peak DP and 250 W
TDP, or, alternatively, Intel MIC KNC with up to 16 GB of
GDR5 RAM and up to 1.4 TFlop peak DP and 245 W TDP.

Each node of Eurora currently executes a SMP CentOS Linux
distribution version 6.3. The kernel is configured with NOHZ
function disabled, hiperthreading HW support disabled and
on-demand power governor [15]. These are common setting
for high-performance supercomputers. Eurora interfaces with
the outside world through two dedicated computing nodes,
physically positioned outside the Eurora rack. The login node
connect Eurora to the users. This node executes the batch job
dispatcher and connects to the same shared file system visible
directly accessible from all the computing nodes. The master
node instead is connected to all the root cards and it is visible
only to system administrators. In addition, both the login node
and master node are connected to a MySQL server.

With respect to networking, Eurora adopted the Unified Net-
work Architecture that consists of 3 different networks working
together on the same machine: 2 fast independent networks
(InfiniBand, 3D Torus) and a multi-level synchronization net-
work. Depending on the executing application, the 3D torus is
indicated for parallel user applications, the InfiniBand for I/O
traffic and for connecting Eurora to the outside Storage Area

Primary

circuit

Secondary circuit

Heat
ExchangerDry

Cooler

Pump Flow
meter

3 way
valve

Temperature
sensor

Rack
Input

Rack
Output

Chassis 1

Chassis 8

C
o

ld
 P

la
te

 1

C
o

ld
 P

la
te

 8

from secondary circuit

4 4

Fig. 2. Eurora simplified cooling circuit.

Network (SAN). The latter synchronizes the CPUs reducing
the OS jitter.

As its precursor Aurora, Eurora adopted a hot liquid cooling
technology, i.e. the water inside the system can reach up to
50◦ C. This strongly reduces the cooling energy required for
operating the system, since no power is used for actively
cooling down the water, and the waste-heat can be recovered
as energy source for other applications. A Siemens S7 PLC
supervises the water circuit, shown in Fig. 2. It regulates the
flow rate of the pump that pushes the water inside Eurora
in order to avoid overpressure (1 bar ≤ pressure ≤ 8 bar)
and keep the temperature gap between the inlet and outlet
water in the rack below 5◦ C. Moreover, it manages the
opening of a three-way valve that mixes the inlet and outlet
liquid in order to keep the temperature of the water close
to a set value (greater than 18◦ C to avoid condensation,
and lower than 50◦ C to prevent damage to the hardware).
The current Eurora deployment, due to its prototyping status
does not take advantage of free-cooling and the inlet water is
refrigerated. Future research and testing activities on Eurora
will characterize its behavior in free-cooling conditions.

The main water pipe inside the rack splits into four liquid
distribution pipes that run parallel to the stacked chassis. In
their tun, the pipes branch to reach each chassis according
to a parallel configuration. The coolant is steered to the root
cards and the cold plates that chill the computing hardware
again with a parallel circuit. Finally, the water is collected and
steered to the outlet pipes.

III. LOW-LEVEL MONITORING FRAMEWORK

In this section we describe the proposed framework for mon-
itoring with low-overhead and fine time resolution the Eurora
computational, energy and thermal performance. While the
operating system and the application layers expose some of
these values, key computational HW components have their
own performance policies that may take decisions differently
from the OS ones. As consequence of that the proposed
framework relies on measurements directly obtained from HW
counters that unveil behaviors that cannot be observed by high
level monitoring tools.

The proposed framework is composed by a set of applications,
daemons and scripts that collects at run-time the HW sensors
values from the different HW components in each node. The
generated traces are then off-line parsed and post-processed.
Fig. 3 shows the building blocks of our solution. As previously
introduced, Eurora is a heterogeneous architecture as the
different nodes can contain two sets of eight cores CPUs (with
nominal frequency of 2.1, 3.1 GHz)(CPU in figure) and two
sets of HW accelerators: namely Intel Xeon Phi (MIC in figure)
and Nvidia K20 GPU (GPU in figure).

In respect of nominal Eurora operating conditions our moni-
toring framework introduces five new on-line software com-
ponents. Each of them is responsible to extract over time the
sensors values from the main HW modules and save them as
log traces in the shared filesystem repository. These software
modules are time triggered, and for each node they concur-
rently monitor the power, the temperature and the activity
of the two CPUs (cpu stats), of the two GPUs (gpu stats),

CPU
1

CPU
2

GPU
1

GPU
2

CPU
1

CPU
2

MIC
1

MIC
2

Root Card

Login Node

Master Nodemysql

DB

gmond

cpu_stats

Shared filesystem

traces

USERS

cpu_stats

gpu_stats

mic_statsboard_stats

Node Node

Chassis

Eurora

trace_parser

post_processing

Monitoring

Framework On-line

Off-line

Fig. 3. Monitoring Framework

of the two Xeon Phi cards (mic stats) and of the two board
temperature sensors. In addition, we have designed two off-line
software modules that parse and then post-process the collected
data traces and enable statistical evaluation and modeling.
As we will clarify in the following subsections, the software
components have been designed to have negligible overhead
on the computing nodes and to execute in userspace avoiding
kernel modules and patches, not suitable for supercomputer in
production phase. This characteristic enables our framework to
work transparently during everyday supercomputer activities,
unveiling real usage behaviors. In the following subsections we
give more insights both on the on-line and off-line software
components.

A. On-line Node Monitoring

1) cpu stats: This daemon, is written in C language,
and executes with root privileges in each active node. The
daemon is sequential and thus executes only in one core
of the two CPUs present in each node. At each sample
interval (TsCPU), cpu stats reads the current date, opens in
sequence all the msr device drivers (one for each active core
- “/dev/cpu/coreId/msr”) in the node, writes the raw data to
a per-node trace file in the share filesystem (MSRnodeId),
and finally sleeps until the next sample time. For each of
them it reads the values of the available performance counters
(UnHalted Core Cycles, Instructions Retired and UnHalted
Reference Cycles) in the Performance Monitoring Unit (PMU),
of the core temperature sensors, and of the time-step counter.
Moreover, it reads the monitoring counter (power unit, core
energy, dram energy, package energy and package temperature)
present in the Intel Running Average Power Limit (RAPL)
interface, respectively of the core 0 and 8 that belong to the
two different physical CPUs. Table I shows for each counter
the name and the quantity probed. Data are collected at the

TABLE I. PMU AND RAPL SENSOR LIST

PMU Sensor Description Size [bit]

UnHalted Core
Cycles

Counts the active cycles expired at the
current applied frequency

48

Instructions Retired Counts the number of instruction retired 48

UnHalted Reference
Cycles

Counts the active cycles expired at the
reference frequency

48

Time Step Counter
Counts all (including idle) the cycles ex-
pired at the reference frequency

64

Digital Temperature
Sensor

Calibrated temperature sensors with accu-
racy of ±1

◦
C

7

RAPL Sensor Description Size [bit]

power unit Energy counter resolution 4

core energy Integrates the core energy consumption 32

dram energy Integrates the dram energy consumption 32

package energy
Integrates the full-chip energy consump-
tion

32

package temperature Hottest core temperature 7

beginning of each sample period, then all the msr are read in
sequence for each core (16cores×(4msr read+1tsc read)+
2CPUs × 4msr read) and only at the end of this operation
all the values are written to the per node CPU trace file. This
reduces the jitter between the different cores measurements.
The values extracted allow to compute the following run-time
per-core metrics: clocks per instruction, core load, core real
frequency, core temperature. These metrics are generated off-
line by the trace-parser basing on the raw trace files. Counter
overflow detection and correction is offloaded to the off-line
trace-parser. Every TsCPU , the cpu stats daemon has an
average execution time overhead of 13 ms on a single core
out of 16 available for each node. We choose TsCPU = 5s in
the data reported in the experimental results Section.

2) gpu stats: This daemon, written in python, executes
with normal user privilege in each active node. The daemon
uses the python bindings for the NVIDIA management library
(pyNVLM). At each sample interval (TsGPU), the gpu stats
reads first the current date, then the GPU temperature, the GPU
and Memory utilization, the GPU power consumption and
the Graphics (Shader), Streaming Multiprocessor and Memory
clock frequency in sequence for all the GPU cards present in
the node. Once all the values are collected, it writes them to the
per node GPU trace file (GPUnodeId) and sleeps until the next
sampling interval. Every TsGPU , the gpu stats daemon has an
average execution time overhead of 23 ms, on a single core
out of 16 available for each node. We choose a TsGPU = 5s
in the data reported in the experimental results Section.

3) mic stats: Differently from other HW components the
Intel Xeon Phi co-processors do not feature all the HW
sensors directly available from an open driver or a management
library. It has some management utilities that runs on the
host operating system mapped to a small subset of sensors.
It instead exports all the HW sensors through a proprietary
Ganglia plugin1. As consequence of that, and differently from
previous daemons, we designed the mic stats to periodically
(every TsMIC) read the Ganglia telnet xlm stream and extracts
the entry related to the only Xeon Phi Cards. For each Xeon
Phi Card found the mic stats searches for the valid sensor
name from a predefined sensor to monitor list and extracts
the related numerical values. Then, it orders them consistently
with the sensor to monitor list and print them to a unique
MIC text trace file in the shared filesystem repository. Table II
shows the monitored sensors. This daemon, written in bash
and python, executes in the login node. Differently from
cpu stats and gpu stats daemons that execute N (N=#active
nodes) concurrent instances of the same daemon on each

1Ganglia is an open source scalable distributed monitoring system for high-
performance computing systems.

TABLE II. INTEL
R© XEON PHI SENSOR LIST

Sensor Type Value

Temperature
Core Rail Memory Rail Uncore Rail

Fan Inlet Die Fan Outlet GDDR Card

Power
2x3 Plug 2x4 Plug PCIE

Memory Rail Inter-
nal Supply

Core Rail Total Con-
sumption

Uncore Rail

Load

Total Number of
running processes

Total number of
CPUs

One minute
load average

Bytes in per second Bytes out per second Cached memory

DVFS CPU Speed Memory Frequency Core Voltage

active node and stream the sensors output to the per node
traces in the shared file system, the mic stats is centralized
and runs on the login node. Nevertheless mic stats is only
a collector point of values sent from the Ganglia monitor
daemon gmond that is distributed across all computing nodes.
It must be also considered that mic stats overhead does not
impact the Eurora overall performance as it executes in the
login node that is not performance constrained. The mic stats
daemon has an average execution time overhead of 2.010 s
every TsMIC . This overhead is compensate within the daemon
code to really sampling the MIC sensors every TsMIC . We
choose TsMIC = 5s in the data reported in the experimental
results Section.

4) board stats: As node temperature sensors are only
available from each chassis root-card, and root cards are
visible only from the master node for security reasons, we
have decided to use a MySQL database as collector point. In
the master node a daemon executes which periodically (each
TsBOARD) reads for all the nodes in a chassis the two board
temperature sensors and writes these values to a dedicated table
in the database. Then, the board stats periodically executes on
the login node and copies the new entries to a per node board
sensor trace. The MySQL database is also used in parallel
for thermal emergency monitoring from the administrator of
CINECA. The board stats daemon has an average execution
time overhead of 2 s for reading all the board sensors for all
the nodes every TsBOARD. We choose TsBOARD = 5s in
the data reported in the experimental results Section.

B. Off-line Data Post-Processing

1) trace parser: When triggered by the user, the off-line
trace parser reads the traces collected in the shared filesystem
repository and converts them to a set of intermediate trace files
that are more suitable to be loaded and processed by higher
level processing tools. The operation that are performed are:

• For each CPU trace (one for each active node), the
trace parser reads the file line-by-line and writes
the content in two files: the first contains only the
RAPL related metrics for the two CPUs, the second
contains only the MSR related metrics for the total 16
cores. The RAPL raw measurements contain energy
counters values. The parser computes the increment in
energy from previous reads, detects and compensates
possible overflow, computes the power by dividing
the increment by the number of cycles counted from
the previous measurement, and saves them to the
intermediate file. For each line the parser returns the
average power per sampled period (TsCPU) of the
package, the core, and the DRAM of the two CPUs.
The MSR raw measurements contain the absolute
values for the PMU fix counters. The trace parser
reads these values line by line and computes the
increments with respect to previous reads. In this
phase, counter overflows are compensated. From the
increments, the parser computes the following output

metrics: clocks per instruction, core load, core real
frequency, core temperature.

• The trace parser reads the MIC trace by each line and
splits the content in several intermediate files, one for
each active MIC node.

• The trace parser reads the Board trace by each line
and splits the content in several intermediate files, one
for each active node.

• GPU traces (one for each active GPU-node) are not
parsed as they contain already the final metrics.

2) post processing: The post-processing exploration task
has been executed in Matlab [13] as it enables high level
and powerful data management, plots and statistical toolboxes.
The Matlab script first loads the traces from text files and
then generates well structured “.mat” files that contains the
computed metrics for each node and for each computational
engine (CPU,GPU,MIC). Then, it directly uses the “.mat” files
for computing the Eurora Characterization.

IV. EXPERIMENTAL RESULTS

In this section we show a characterization of the overall Eurora
Thermal/Power performance in a production workload. We
obtained the characterization data by means of the framework
described in Section IV. All the data presented refer to a
sampling window of two days of normal Eurora production
activity. For each node, the dataset is composed by a sets of
structures, one for each of the following elements: CPU, MIC,
GPU, Board. Each of these structure contains a set of timing
traces. Each time traces is a vector representing a sampled
physical quantity/metric collected by the framework. Within
each structure, vectors are aligned and time consistent. Missing
node entries are due to off-line nodes in the sampled windows.
During measurements inlet cooling water is set to 24◦C and
outlet-inlet temperature difference is set to 5◦C.

We conducted three main explorations on the extracted data.
The first one analyzes the spatial efficiency of the Eurora
thermal dissipation/cooling system. The second one evaluates
the worst-case thermal conditions, these are evaluated as
maximum thermal gradients and peak temperatures. Finally,
the third exploration evaluates how the Eurora computational
to power efficiency changes with the workload.

A. Eurora Cooling Efficiency

To evaluate the spatial difference in the Eurora cooling ef-
ficiency, for each node and for each structure (CPU, MIC,
GPU), we have extracted from the dataset the trace portion
that refers to zero load activity (< 1%). On this data we
computed the per node and per structure average. In Fig. 4
we plot the average temperature and average power. In both
the plots on the x-axes is reported the nodeId while in the y-
axes is reported the HW component. We have two sets of HW
components the cores, and the HW accelerators. The cores
are indexed from 1 to 16. Cores in the 1 to 8 range refers
to one physical CPU whereas cores in range 9 to 16 refers
to the second CPU. Along the nodes we have three different
Intel Xeon E5 processors stepping: nodes 1-16 & 25-32 have
a maximum frequency of 2.1GHz (CPUs-2100), nodes 17-
24 have a maximum frequency of 2.2GHz (CPUs-2200), and
nodes 33-64 have a maximum frequency of 3.1GHz (CPUs-
3100). For the accelerators we have two entries since we have
two accelerators per node. Nodes from 0 to 32 embed Intel
Xeon Phi accelerators, whereas nodes from 33 to 64 embed
Nvidia Kepler GPUs. The plot on the left shows on the z-axes
the absolute temperature with linear scale, while the plot on
the right shows on the same axes the total power consumption,
using a logarithmic scale.

From the power plot (on the right) we can notice that within
each class of computing engine (CPUs, MICs, and GPUs) the

Nodes

Cores

Te
m

p
er

a
tu

re

Nodes

CPU1

P
o

w
er

CPU2

Idle Mean Temperature Idle Mean Power

Accelerators

Fig. 4. CPUs, GPUs, MICs mean temperature (a) and power (b) during idle phases

idle power consumption is almost constant, whereas CPUs and
GPUs have similar idle power consumption ≈ 10W , MICs
have significantly higher idle power consumption ≈ 100W . We
must notice that within each processing element class the idle
power consumption is homogeneous. The picture changes if we
look at the die temperature plot (on the left). While the MICs
have higher idle temperatures than the GPUs and this is due to
the different idle power consumptions, the cooling efficiency
for the CPUs varies between the different nodes. Indeed, we
can notice that for the same idle power consumption the nodes
with CPUs-2100 have the lowest temperatures, while the high-
est ones are with CPUs-2200. By correlating this plot with the
power plot we can notice that this is not caused by external heat
interference as the coldest CPUs-2200 are the one positioned
in the same node with the MIC accelerator, that is hotter than
the GPUs. This leads to the following considerations valid
for minimum low power consumption ranges. First, there is
no thermal interference between the different computational
engines. Second, within the same die, cores have similar
thermal efficiency. Third, the nodes have different thermal
efficiency accordingly to the processor stepping. This could
be explained by a different package form factor or a different
manufacturing yield of the cold plate. This last point justify
the benefits of thermal-aware job-dispatching optimizations.

B. Eurora Worst-Case Temperature

This subsection shows the Eurora worst working conditions
from both temperature and power perspectives.

20

0

40

60

80

100

CPUs
2100

CPUs
2200

CPUs
3100

MICs GPUs

Maximum temperature and Power

[
*C

]

[
W

]

40

0

80

120

160

200
Temperature
Power

Fig. 5. CPUs, GPUs, MICs, Boards maximum absolute temperature

Fig. 5 shows on the x-axes the different classes of computing
engine and in the y-axes reports both the maximum registered
power consumption and temperature. From the figure we
can notice that the peak powers and the peak temperatures

vary significantly among the devices as well as the cooling
efficiency (peak temperature over peak power). CPUs-3100
has almost the same peek power consumption of MICs, but
almost the double of the die temperature. MICs and GPUs
behave similarly and remain significantly colder than CPUs
that can reach more than 90◦C of peak temperature. The worst
registered board temperature is almost 20◦C higher than the
inlet water temperature.

CPUs
2100

CPUs
2200

CPUs
3100

MICs GPUs Boards

Maximum temperature variation over time

[
*C

]

0

10

20

30

40

Fig. 6. CPUs, GPUs, MICs, Boards maximum temporal thermal gradient

In addition to peak temperatures we computed the maximum
variation of temperature between two consecutive samples,
that means 5 s for CPUs, MICs, GPUs and 60s for Boards.
In Fig. 6 we show the maximum registered values for each
class of computing engine. We can notice that these strongly
depends on the computing engine class considered and are
correlated with the peak power consumption. The maximum
value registered is for the CPUs-3100 that may have almost
40◦C of temporal thermal gradient. This justifies the benefits
of fast dynamic thermal-aware control algorithms.

C. Eurora Power Efficiency

The final test we have performed evaluates the Eurora power
efficiency with respect to different load conditions. We focused
this analysis only on the CPUs class of computing engine.
Fig. 7a shows on the x-axes the average load on the different
cores of a CPU, while on the y-axes shows the CPU power
consumption. The plot shows that, as the load increases, the
power consumption increases as well, but differently for each
CPU stepping. Within each CPU stepping family, the power
shows significant variations. This can either be due to workload
properties as well as physical differences. At full load the
CPU families consume significantly different. This is due to
the different maximum frequency. We can also notice that the

120

100

80

60

40

20

0
0 20 40 60 80 Load 40 50 60 70 80 Temperature

P
o

w
er

 [
W

]

P
o

w
er

 [
W

]

P
o

w
er

 [
W

]

120

100

80

60

40

20

0
0

50
100

1000 2000 3000

120

100

80

60

40

20

0

3650

3600

3500

3450

3350

3300

3250

Frequency

Temperature vs PowerFrequency vs PowerLoad vs Power

(a) (b) (c)

CPU 2100 MHz
CPU 2200 MHz
CPU 3100 MHz

CPU 2100 MHz
CPU 2200 MHz
CPU 3100 MHz

Fig. 7. CPUs, power efficiency (versus load)

power consumption saturates at higher loads. Fig. 7b shows,
for the same results, on the x-axes the average real frequency
within each core of the node, on the y-axes the nodeId and
on the z-axes the total power consumption. We can notice that
power consumption increases with the frequency and the peak
power consumption depends on the CPUs stepping. Moreover,
both the CPUs-2200 and CPUs-3100 are often in turbo mode as
their average real frequency is higher than the maximum one.
During these turbo mode periods their power consumption has
an higher variability than when frequencies are lower. This is
explained in Fig. 7c where we plot on the x-axes the average
temperature of the cores in the same CPU and on the y-
axes the CPU power consumption. This plot contains only the
values for CPUs-3100 that are running at a frequency higher
than 3.2GHz. We can notice a strong correlation between
temperatures and power consumptions. But surprisingly we can
notice that higher power values happen at lower frequencies,
while higher frequencies are located at the lowest powers.
This can be explained considering the turbo mode internal
logic that selects higher frequencies when less cores are active
in the CPU. From the same plot it must be noted that for
a large portion of the trace (frequency @3350MHz) the
turbo policy selects a lower frequency with respect to the
maximum allowed, even if the CPU is far from the maximum
thermal limits and TDP budget. This seems to suggest that the
internal turbo logic is pessimistic and there are opportunities
to improve its behave for systems with highly efficient cooling.

V. CONCLUSION

In this paper we have presented a low-overhead framework
for monitoring and collecting data to unveil the power-thermal
trade-offs and peculiarity of Eurora, the “greenest” supercom-
puter in the world. Our monitoring framework enables fine
samplings for all the Eurora HW sensors (load, frequency,
power and temperature) and for all the primary HW compo-
nents (i.e. CPUs, GPUs, MICs) with low-overhead and without
perturbing the Eurora workload and behavior. The proposed
framework is 100% compatible with the IT infrastructure of
a supercomputer center in production. We then used the de-
veloped framework to characterize the power and thermal pe-
culiarities of the Eurora platform under production workloads.
The conducted analysis evaluate the Eurora cooling efficiency,
the worst case operating conditions, and, finally, its power
efficiency. Results of these analysis show nice opportunities
for run-time energy/thermal optimizations at all the software
levels (i.e. thermal aware job dispatching, dynamic frequency
control and turbo mode).

ACKNOWLEDGMENTS

This work was partially supported by the FP7 ERC Ad-
vance project MULTITHERMAN (g.a. 291125) and by the
PRACE 2IP EU project (g.a. RI-283493).

REFERENCES

[1] Zabbix: An enterprise-class open source distributed monitoring, May
2013.

[2] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini. Thermal and energy
management of high-performance multicores: Distributed and self-
calibrating model-predictive controller. IEEE Transactions on Parallel
and Distributed Systems, 24(1):170–183, 2013.

[3] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler,
D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely,
T. Sterling, and R. S. W. K. Yelick. Exascale computing study:
Technology challenges in achieving exascale systems. Technical report,
09 2008.

[4] C. Cavazzoni. Eurora: a european architecture toward exascale. In
Proceedings of the Future HPC Systems: the Challenges of Power-
Constrained Performance, page 1. ACM, 2012.

[5] W. chun Feng and K. Cameron. The green500 list: Encouraging
sustainable supercomputing. Computer, 40(12):50–55, 2007.

[6] J. Dongarra. Visit to the National University for Defense Technology
Changsha, China. Technical report, University of Tennessee, 06 2013.

[7] J. J. Dongarra, H. W. Meuer, E. Strohmaier, et al. Top500 supercomputer
sites. Supercomputer, 13:89–111, 1997.

[8] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Devel-
opers Manual. Number 325462-046. March 2013.

[9] J. Kim, M. Ruggiero, and D. Atienza. Free cooling-aware dynamic
power management for green datacenters. In High Performance
Computing and Simulation (HPCS), 2012 International Conference on,
pages 140–146, 2012.

[10] J. Kim, M. Ruggiero, D. Atienza, and M. Lederberger. Correlation-
aware virtual machine allocation for energy-efficient datacenters. In
Proceedings of the Conference on Design, Automation and Test in
Europe, DATE ’13, pages 1345–1350, San Jose, CA, USA, 2013. EDA
Consortium.

[11] D. Kudithipudi, Q. Qu, and A. Coskun. Thermal management in many
core systems. In S. U. Khan, J. Koodziej, J. Li, and A. Y. Zomaya,
editors, Evolutionary Based Solutions for Green Computing, volume
432 of Studies in Computational Intelligence, pages 161–185. Springer
Berlin Heidelberg, 2013.

[12] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed
monitoring system: design, implementation, and experience. Parallel
Computing, 30(7):817–840, 2004.

[13] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick,
Massachusetts, 2010.

[14] Nvidia Corporation. NVML API REFERENCE MANUAL. Number
5.319.43. August 2013.

[15] V. Pallipadi and A. Starikovskiy. The ondemand governor. In
Proceedings of the Linux Symposium, volume 2, pages 215–230. sn,
2006.

[16] PRACE. Partnership for Advance Computing in Europe.

[17] M. Sabry, A. Sridhar, J. Meng, A. Coskun, and D. Atienza. Greencool:
An energy-efficient liquid cooling design technique for 3-d mpsocs
via channel width modulation. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 32(4):524–537, 2013.

[18] H. You and H. Zhang. Comprehensive workload analysis and modeling
of a petascale supercomputer. In Job Scheduling Strategies for Parallel
Processing, pages 253–271. Springer, 2013.

