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Abstract—The lack of accurate yet open to public simulation
infrastructure has puzzled researchers in the memcomputing area
for sometime. In this paper, we propose for the first time a
full tool chain called MSim that supports the cycle-accurate
microarchitecture level simulation for memcomputing studies.
With MSim, the performance gains of utilizing memcomputing
for arbitrary applications on user configurable computer system
architectures can be evaluated in high accuracy. In addition,
MSim provides flexible interfaces with pervasive object-oriented
design, which makes it well-suited as a good base platform for
researchers to explore new memcomputing technologies.

I. INTRODUCTION

The ever increasing demand for high performance computing
has introduced new challenges for computer systems. Among
these challenges, energy efficiency and system reliability have
emerged as major barriers to performance scalability for mod-
ern processors. Recently, the fascinating idea of in-memory
computing, or memcomputing (i.e., utilize existing memory
elements for computation purposes) has been proposed [7].
With rapid advancements in memory technologies, memcom-
puting presents a new dimension of exploration for computer
systems, and has already received wide interests from both
industrial and academic society.

The current studies are carried out in different levels. At
device level, novel memory elements are designed for compu-
tation purpose. For example, Ventra et.al. have proposed the
two-terminal electronic devices with memory (memelements),
namely, memristive, memcapacitive or meminductive systems
[9], to store and process information at the same physical lo-
cation. On the other hand, circuit or architecture level memory
technology innovations such as high-bandwidth 3D-integrated
memories [11], high-density non-volatile memories (NVMs)
[10] etc. have also been proposed and evaluated to carry out
computation tasks. Finally, new system computing paradigms
such as cache tuning [5] and reliability aware memcomputing
[8], etc. are also studied which demonstrate the promising
advantages of memcomputing.

However, although with the many researches in memcom-
puting as aforementioned, the validation of these memcom-
puting technologies are still performed by various in-house
tools. The lack of open simulation platform has created an
invisible barrier for those who newly enter this research field,
and the ad-hoc tool chains also make it difficult for research
collaboration (i.e., to fairly compare different memcomputing
technologies). Worse still, most existing in-house tools are de-
veloped in high levels of system abstraction/model for reduced

978-3-9815370-2-4/DATE14/(©2014 EDAA

development efforts but at the cost of lacking microarchitecture
level details, which is necessary to capture the true system
performance. Although there exist many microarchitecture
level simulators in the literature [4], [3] for computer systems,
none of them supports the idea of memcomputing. To meet the
need of researchers in the memcomputing area, we propose
in this paper a flexible yet open-to-public cycle accurate
microarchitecture level simulation platform MSim with the
hope to further promote studies in memcomputing.

In particular, the simulation platform consists of the follow-
ing tool chains as shown in Fig. 1: 1) A scheduler that statically
schedules the operations to be computed in-memory. This is
mainly done by profiling the instruction level data flow graph
(DFG) of the application and then solves the optimal resource
allocation and task scheduling problem. 2) An annotation
engine that extends the existing instruction set architectures
(ISAs) to support new memcomputing operations. Designed
in non-intrusive manner, the annotation results provide back-
ward compatibility with existing ISAs. 3) A cycle-accurate
microarchitecture level simulation engine based on gem5 [4]
that accepts the annotated application for detailed simulation.
Specifically, the extended memcomputing instructions are in-
ternally decoded to memory access micro operations of proper
width, and in-memory LUT data organization is correctly
handled. In addition, with well tailored object-oriented design,
the simulation engine also provides flexible interfaces for users
to assemble heterogeneous computing resources for design
space exploration, embedding and evaluating new memory
technologies for memcomputing, etc. 4) A report engine that
provides user friendly simulation results. This includes an
overall simulation summary for quick performance review and
a detailed cycle-based event traces for detailed performance
analysis and debugging.

The overall goal of MSim is to provide an open yet flexible
infrastructure for various memcomputing studies. It can either
be directly used to evaluate the performance of memcomputing
technologies in conventional computer systems, or as the
starting point to explore other architecture level or computing
paradigm innovations with minimal development efforts. The
inclusion of a scheduler into MSim provides the users with
the full tool chain, which can transparently transform normal
application executable (e.g., the one compiled by gcc that
is unaware of memcomputing) into the one that utilizes the
potential memcomputing resources. However, the scheduler
itself is optional and users have the freedom to make use of
the MSim’s microarchitecture level simulation engine indepen-
dently if desired. The full MSim package can be downloaded



< mov -08x(%ebp), %eax # mem:0x0
add $0x4d2, %eax
addl $0x1, -0x8(%ebp) # mem:0x0 !
cmpl $0x9, -0xB(%ebp)  # mem:0x0 |
fle 804866 <func+0x16> # mem:0x0

# mem:0x1

Annotation engine
Simulation engine

@ T
mem_usage 587708 :

Report engine

num_int_insts 12445 ;

num_memcomp_insts 1021

Fig. 1. The cycle accurate microarchitecture level simulation platform for
memcomputing

at http://web.mst.edu/~yshi/downloads.html.

The paper is organized as follows. The microarchitecture
level simulation engine as well as its interfaces, which are
the kernels of MSim, are introduced in Section II. Then the
scheduler of MSim is illustrated in detail in Section IIl. In
Section IV, we demonstrate the full usage of MSim through
a realistic case study. Finally, we provide a brief overview of
on-going works to further enhance MSim’s capabilities.

II. CYCLE ACCURATE MICROARCHITECTURE LEVEL
SIMULATION ENGINE FOR MEMCOMPUTING

To provide accurate performance evaluations for memcom-
puting, we introduce our cycle accurate microarchitecture
level simulation engine (i.e., MSim) in this section. In short
words, it is built on top of the popular gem5 simulation
infrastructure [4] by integrating specific memcomputing ISAs
into it. Thanks to the pervasive object-oriented design and
script-based configurations of gem5, such integration works out
in a natural way without the need to break any existing CPU
or memory models. In addition, MSim is capable of accepting
conventional application binaries (e.g., those compiled by gcc)
as long as the memcomputing scheduling is provided in some
manner (e.g., the scheduler to be introduced in Section III), and
thus does not require any explicit programming efforts from
the user side in order to utilize the memcomputing capability.
The major components of MSim are introduced in the rest of
this section.

A. Annotation engine

Accepting the outputs of the static memcomputing scheduling
results such as those provided by the scheduler to be introduced
in Section III, the annotation engine is in charge of generating
a flag for each ISA instruction indicating whether it should
be executed in-memory, or by the conventional function units
of CPU (e.g., ALU). To avoid deprecations, we choose not to
modify the original application binary (e.g., the one compiled
by gcc). Instead, the annotation engine produces a separate
annotation file containing the memcomputing flag correspond-
ing to each of the machine instruction, which will later be
parsed/decoded by the kernel simulation engine for annotated

instructions to be executed in-memory. In this manner, the
MSim is extended to support memcomputing without changing
the existing ISAs.

Fig. 2 shows an example of the annotated ISA. In the
second line, the memcomp flag is set to be 1, indicating this
addition instruction is scheduled to be executed in-memory.

mov —-08x (%ebp), %eax # memcomp:0x0
add $0x4d2, S%eax # memcomp:0x1
addl $0x1, -0x8 (%ebp) # memcomp:0x0
cmpl $0x9, -0x8 (%ebp) # memcomp:0x0
Jjle 8048ef6 <func+0x16> # memcomp:0x0

Fig. 2. An example of annotated ISAs, in which the memcomp flag annotates
whether this is a in-memory computation instruction.

B. Cycle accurate microarchitecture level simulation engine

The simulation engine of MSim mainly extends gem5 to sup-
port the execution of annotated memcomputing ISAs. In detail,
it consists of major extensions to instruction decoding, micro-
op assembling and memory content (i.e., LUT) organization.

Since a separate annotated ISA file is provided for mem-
computing, the decoding stage of gem5 is hacked to load this
annotation file in addition to the binary executable. However,
to achieve seamless integration, we utilize the ISA description
language in gem5 to characterize the meaning of an instruction,
and an example is illustrated in Fig. 3. Note the operation
width can be decided by the instruction postfix as well the
width of operand registers so no other explicit hint is needed.
In addition, the decoding process is described in C++-like
manner, and thus we can reuse the internal gem5 parser to
automatically generate C++ code to be compiled for instruction
decoding. Currently, six integral in-memory operations includ-
ing, addition(ADD), multiplicationMMLU), square-root(SQR),
division(DIV), sinusoid(SIN) and cosine(COS) are supported
to be consistent with the scheduler to be introduced in Section
III.

decode MEMCOMP {
0x0: Integer::add({{Ra = Rb + Rc;}})

0x1: Memcomp: :memadd ({{
Ra = load(translate(
Rb, Rc,MEM_ADD) ) ;
P

Fig. 3. An example description to decode the in-memory addition instruction.
In particular, if the memcomp flag is set to 1, the addition is transferred into
a memory load, where the effective address is calculated by the translate()
function based on the operands and the operation type.

For CISC ISAs like X86, an additional micro-op assembler
is needed to translate the specific ISA instruction into a
few fine-grained micro operations which are actually exe-
cuted on CPUs. Similarly to the decoding stage, the micro-
ops! each ISA instruction corresponds to is described in a
specific python-like language as illustrated in Fig. 4. Note
due to the exponential increase in memory space needed for
wide operands, the micro-op assembler is also capable of

IThe full list of supported micro-ops in gem5 can be found in [2]




decomposing large arithmetic operations into smaller ones (i.e.,
decompose 32-bit addition into a few 8- or 16-bit additions).

def microop memadd(Ra, Rb, Rc) {
sll Rb, Rb, 8
add Rb, Rb, Rc
1d Ra, base_sig, base_sib, Ra

}

4201000: Fetch: PC:0x8048ef9
4201000: cpu0 : MemAdd : D=0x4d2
4201000: Event_20: tick @ 4201500
4201000: Fetch: PC:0x8048efb
4201500: cpul IntAlu : D=0x3F
4201500: Event_20: tick @ 4202000

Fig. 4. An example description for micro-op assembly for the in-memory
addition instruction. Assuming the memory look-up-table is organized as a
continuous two-dimensional array with starting address described by base_sig
and base_sib and 8-bit wide operands, the effective address containing the
result for adding Rb and Rc is Rb << 8 4+ Rc. Thus, the in-memory addition
can be decomposed into three micro-ops, where the first two compute the
address in LUT and the result is calculated simply by fetching the memory
content there.

Furthermore, the Msim simulation engine must be in charge
of organizing and initiating memory contents to be looked
up for in-memory computation. The current implementation
organizes the LUT as a two-dimensional array for dual-operand
operations (e.g., addition) and an one-dimensional array for
single-operand operations (e.g., sin). Following similar calcu-
lations in [6], the memory space needed for an 8-bit addition
is only 32KB.

Finally, to achieve extreme performance gains from mem-
computing, we also implement the idea of having a specific
memcomputing cache as suggested in [6]. In other words,
this cache is used exclusively to accommodate LUTs for in-
memory computation, and this is achieved by inheriting the
Cache class and assembling it to the system through the
flexible python-enabled configuration scripts in gem5. Note
however, the memcomputing cache is not a necessary in MSim,
but can be thought of as a solid example to demonstrate the
capabilities of MSim to perform design space exploration for
memcomputing aware computer microarchitectures.

C. Report engine

To enable full system analysis as well as to provide debugging
aids, MSim is designed to dump out different levels of details
for the simulation. As shown in Fig. 5, the summary report
collects information of the entire run such as number of
memcomputing instruction executed and simulated runtime of
the application. This gives a quick overall system performance
analysis database.

sim_seconds 0.57
mem_usage 587708
num_int_insts 12445
num_memcomp_insts 1021

Fig. 5. A snippet of the simulation summary

For those who requiring more information, the detailed
report can also be generated to contain the events happed
at each cycle. As shown in Fig. 6, this report is similar
to the tracing information provided by gem), but with extra
information on how memcomputing instruction is fetched,
decoded and executed. With these details, users are able
to locate the bottlenecks/bugs in the current memcomputing
paradigm, which is the basis for future improvement.

Fig. 6. A snippet of the detailed simulation report.

III. MEMCOMPUTING AWARE TASK SCHEDULING

To supply the simulation engine of MSim with what part of
the application to be computed in-memory, we propose a static
scheduler in this section. Note this scheduler is an optional
part of MSim in the way that users of MSim can provide their
own task allocations for memcomputing by various techniques.
However, for researchers who focus on memcomputing archi-
tecture studies, the proposed scheduler will save much of their
efforts by providing a reasonably efficient transformation of
conventional applications (e.g., those compiled by gcc) into
memcomputing applications.

Given an application, we transform it into the equivalent
data flow graph (DFG) representation. Then, our proposed
static scheduler optimizes the application execution latency
by mapping and scheduling of tasks? on various resources
(including CPUs or memcomputing resources). The available
resources for memcomputing (i.e., how much memory is
assigned for memcomputing and for what types of operations)
can be decided either through application profiling, or can be
set up by the user directly. Given the available memcomputing
resources and CPU resources, an MILP formulation is used to
decide the task mapping and scheduling.

A. MILP for task mapping and scheduling

We assume a task graph G(V, E) is given to represent the
application, where the nodes V' represent a set of relatively
fine-grained atomic operations and the edges E indicate data
dependency. The nodes in V are classified into two sets:
computing node set Vo and memory node set Vi, ie. V =
Ve UV Ve NV = ).

We also define a set of computing resources Rc = Rp U
Ry (Rp N Ry = @), where Rp is a set of processor nodes
and R)s is a set of memory computing nodes. Note that in
this formulation, we assume the division between the memory
computing nodes and the regular storage memory is given,
and the configuration of the memory computing nodes is also
given and will not change during the execution. R;; only
includes the memory computing nodes and not the regular
storage memory.

For any v; € Vi, we use R,, € R¢ to denote the set
of resource nodes that v; can be mapped to, including either
processor nodes or memory computing nodes. For r; € R,,,
Cl, r; denotes the computation time of v; when it is mapped
to r;. For any v; € Vs, we assume the access time to regular
storage memory is given as C,,, which depends on the data
size of the transaction (more accurate model may be developed
later).

2Here, each task corresponds to one machine instruction to be executed.




For any v; € V¢, we define binary variable ay, ., to
represent whether v; is mapped to resource node 7. s, and f,
denote the starting time and finishing time of v;, respectively.
Pred(v;) C V is the set of nodes that immediately precede
v;, meaning there is an edge from v; to v; if v; € Pred(v;).

For any v;,v; € Vg, hv,;,vj denotes whether v; and v; are
mapped to the same resource node in Rc. py, v, represents
whether v; has higher priority than v;.

I, is the latency of path p and v, is the last node on path
P. lmaz 18 the maximum latency of all paths.

The MILP formula can be defined as follows:

min.  lmae e))
Y e, =1 VeVe Q)
TJ'ERW
f'ul = Sy, T+ Z Cvi,r]' X Qo Y, € Vo (3)
TjERui
Sv; 2 fo; X Mo, w; X Doy, V0,05 € Vo )

5v, > fo; Yvj € Pred(v;) 5)
fo; = S, + Co, Vv, € Viy (6)
+ ay; r,, — 1 Yo, 05 € Vo 7
= Oy 1 Yo, v5 € Vo )
Ty < Qo = Qo 1 V3,05 € Vo )
Doy, =1 Yuj € Pred(v;) Avi,v; € Vo (10)

Duiv; TPy =1 Yuj,v5 € Vo oo (11)

DPu; v > Pv;,v; +p’Uj,Ukr -1 vUiavj eVe (12)

lp = fv, (13)

Imaz = Iy (14)

Tm

h'ui,,vj > Ay,

h’U,;,’Uj S av,,rm

Constraint (2) enforces node v; € V¢ to be mapped to only
one computing resource node. Constraints (3, 4, 5) compute
the starting and finishing time of v; if v; € Vo. Constraints (5,
6) compute the starting and finishing time of v; if v; € Vjy.
Constraints (7-9) determine whether v; and v; are mapped to
the same computing resource r,,. Constraints (10-12) enforce
the internal consistency of the priority assignment for each
node v; € V. Constraints (13—-14) compute the latency of
each path and the maximum latency of all path.

Note that constraint (4) is not linear (shown in its current
form for readability), but it can be converted to a set of linear
constraints.

IV. A CASE STUDY OF MSIM USAGE

To illustrate the usage of MSim, we here go through one
typical example as a case study. The application we tar-
get is a second order differential equation solver, hal [1],
whose instruction-level DFG is shown in Fig. IV. The major
architecture parameters and settings the scheduler used in
MSim simulation are summarized in Table 1. For hal, three
8-bit dual-operand operations (ADD, MLU, DIV) and three
16-bit single-operand operations (SQR, SIN and COS) are
candidate operations for memcomputing, and the full memory
space needed to build the LUT for each operation is 128KB.

‘/IMP\
3 /

/\/

DIV /TMP™ s
\ 10 / \ 1 /
DIV /TSINTY
15/ 16/
v EXPY
/TSIND 25/
19/
/EXP
24/
/€os™
21/
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\‘77272//

Fig. 7. The data flow graph of a second order differential equation solver
TABLE L. ARCHITECTURE PARAMETERS USED IN MSIM
ISA X86
CPU frequency 2GHz
CPU model AtomicSimpleCPU, TimingSimpleCPU
L1 data cache size 32KB
L1 data cache assoc 4
L2 cache size 1MB
L2 cache assoc 2
Main memory size 512MB
Assumed idle memory size 512KB
Memcomp instructions ADD, MLU, SQR, DIV, SIN, COS

However, as mentioned in [6], it is not necessarily to load the
entire LUT into memory due to the prevalence of operands
locality existing in the application. As such, this is an upper
bound of the memory space needed for memcomputing.

Table II illustrates the simulation results (in terms of
performance speedup) of MSim for hal under different mem-
computing configurations® with and without memcomputing,
and two observations are worth noting. Firstly, a maximum 2x
speedup can be achieved with proper memcomputing configu-
rations, which demonstrates the strong capability of in-memory
computing in improving application performance. Secondly, it
is shown that different memory configurations have obvious
impact on the final application, and the use of MSim is useful
for such design space exploration.

V. FUTURE WORK

While the current implementation of MSim provides reason-
ably adequate capabilities for accurate simulation platoform

3A memcomputing configuration is defined as the operations the memory
is configured to perform, or in other words, the contents in LUTs.

TABLE II. SCHEDULING AND SIMULATION RESULTS OF hal WITH AND
WITHOUT MEMCOMPUTING
w/o memcomputing | w/ memcomputing
ADD, MLU, SQR, SIN 1.0x 1.50x
ADD, MLU, DIV, SIN 1.0x 1.20x
ADD, SQR, COS, SIN 1.0x 1.80x
ADD, DIV, COS, SIN 1.0x 1.38x
ADD, MLU, DIV, COS 1.0x 1.29x
ADD, MLU, SQR, COS 1.0x 1.64x
MLU, SQR, COS, SIN 1.0x 2.00x




for memcomputing, we are also working the developing a few
additional features including:

[2]

[3]

[4]

[5]

[6]

[8]

[9]

(10]

(1]

The dynamic memcomputing scheduler. Although the
static scheduler proposed in Section III provides rea-
sonably efficient task assignment, it is not adapt to
runtime changes and thus can become inefficient when
the context changes. As such, a run time scheduler
that dynamically assigns instructions (i.e., operations)
into memory based on current resource availability and
data dependency is desired. This includes memcom-
puting prediction, integration with normal out-of-order
executions, etc.

Runtime reconfigurable memcomputing resources.
Similarly, the statically allocated memory LUTs may
become inappropriate at different stages of appli-
cation’s lifetime. Consequently, we are working on
developping the infrastructures to support runtime
memory reconfiguration and evaluation such that the
memcomputing resources can change adaptively ac-
cording to the characteristics of applications current
running.

With the prevalence of multi-core systems, we are also
making efforts to extend MSim to support multi-core
platforms. This involves advanced support for cache
coherence, etc.
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