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Abstract—Recently, many works have shown that adjustable
delay buffer (ADB) whose delay is adjustable dynamically can
effectively solve the clock skew variation problem in the designs
with multiple power modes. However, all the previous works of
ADB allocation inherently entail two critical limitations, which
are the adjusted delays by ADB are always increments and the
low cost buffer sizing has never been or not been primarily
taken into account. To demonstrate how much overcoming the
two limitations is effective in resolving the clock skew constraint,
we characterize the two types of ADBs called CADB (capacitor
based ADB) and IADB (inverter based ADB) and show that the
adjusted delays by IADB can be decremented, and show that
the clock skew violation in some clock trees of multiple power
modes can be resolved by applying buffer sizing together with
using only a small number of IADBs and CADBs.

I. INTRODUCTION

Considerable research effort on the clock tree optimization,
for example, clock topology generation, clock routing, clock
buffer insertion and sizing, and wire sizing has been made
to optimize the clock skew. Those works have a common
assumption that the synthesized clock tree is to be used in
designs of a single voltage mode condition. For designs of
multiple voltage or power mode designs, the signal delay on
a clock path may vary as the power mode applied changes.
This implies that a clock tree synthesized to meet the clock
skew constraint in a power mode may not meet the clock skew
constraint in other power modes. Even if the existing works
may take into account the clock skew constraint for all power
modes, it is very likely that the synthesized clock tree requires
a long wirelength or there exist no clock trees that meet the
clock skew constraint for all power modes.

On the other side, post-silicon tuning (e.g., [1]–[4]) such as
inserting adjustable delay buffers (ADBs) is a widely accepted
strategy to handle the timing problem caused by the process
and environment variations. Since the delay of an ADB can be
adjusted by the delay control inputs, the clock skew variation
caused by process variation can be tuned by properly inserting
ADBs after manufacturing is completed. The idea of using
ADBs in the clock tree of multiple power modes is to replace
some of normal clock buffers with ADBs so that the clock
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(a) Capacitor based ADB. Delay can increase as more capacitors in
the capacitor bank are switched on.
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(b) Inverter based ADB. Delay can decrease as more inverters in the
inverter chain are switched on.

Fig. 1: The logic structures of ADB implementation: (a)
capacitor based ADB (CADB) [8], [10]; (b) inverter based
ADB (IADB) [7], [11].

skew constraint on all power modes should be satisfied. The
ADB allocation problem has been intensively investigated by
many works [5]–[9]. Our work overcomes two fundamental
drawbacks of the previous works, which are always using
ADBs with delay increment only and no attempt to applying
(the low cost) buffer sizing to replace the role of ADBs.

II. CHARASTERZATION OF DELAY ADJUSTABLE BUFFERS

Two widely used structures of ADBs are the capacitor
based ADB (CADB) in Fig. 1(a) and the inverter based ADB
(IADB) in Fig. 1(b). A CADB in Fig. 1(a) is composed of two
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Fig. 2: The delay ranges of CADB, IADB, and normal buffers.

inverters, a capacitor bank, and a capacitor bank controller.
If the capacitor bank contains uniform sized capacitors, the
CADB delay is linearly proportional to the number of ca-
pacitors activated in the bank. That is, as more capacitors
are activated, the CADB delay will increase due to the more
output load of the leftmost transistor. On the other hand, an
IADB in Fig. 1(b) is composed of two inverters and a set
of chained inverters with SEL pins. The SEL signals provide
several driving modes, by which the IADB delay is adjusted.
For example, when all the SEL signals are set to logic 0, the
inverters connected to the corresponding SEL pins are turned
off. Thus, only the leftmost and the rightmost inverters with no
SEL pins are turned on and drive output. The delay of ADB
can be adjusted by setting some of the SEL signals to logic
1 to activate their chained inverters; Unlike to the CADB, as
more SEL signals are enabled, the IADB delay will decrease
due to the more wide distribution of charge and discharge of
current.

We preformed HSPICE simulation for the implementations
of CADB and IADB in Fig. 1 together with two normal buffers
BUF X8 and BUF X16 in 45nm Nangate Open Lell Library.
Fig. 2 shows the delay characteristics of CADB, IADB, and the
two buffers. It is observed that unlike the delay of the buffers,
the CADB delay linearly increases as the number of capacitors
turned on increases, whereas the IADB delay decreases as the
number of chained inverters turned on increases. The curves
in Fig. 2 clearly show that rather than using CADBs only
to optimize the clock skew in the design of multiple power
modes, carefully using a mixture of IADBs and buffer sizing
as well as CADBs will provide a better quality of design,
reducing the design overhead significantly.

III. MIXED ADB ALLOCATION ALGORITHM COMBINED
WITH BUFFER SIZING

ADB-based clock skew optimization problem: Given an
initial buffered clock tree T , power modes m1, m2, · · · ,
and mK , clock signal arrival time information on all power
modes, and clock skew bound, apply CADB allocation, IADB
allocation, and buffer sizing to the nodes in T such that the
following quantity of ∆Atot is minimized:

∆Atot = area(CADB) + area(IADB) + area(BS) (1)

where area(CADB), area(IADB), and area(BS) represent
the increases of areas by the allocation of CADBs, the allo-

cation of IADBs, and the buffer sizings, respectively while the
clock skew constraint is satisfied on every power mode.

We solve the ADB allocation and buffer sizing problem
step-by-step based on the following observations: (1) Since
as stated in [8], IADB is suited for coarse-grained delay
adjustment while CADB is suited for fine-grained delay ad-
justment, which is also validated from the data in Fig. 2,
which shows that IADB has relatively sharp delay curve (with
delay adjustment from -12ps to +42ps) than that of CADB
(with delay adjustment from +14ps to +23ps), we place higher
priority into IADB allocation than CADB allocation to reduce
long clock signal delays in some power modes by using a
small number of IADBs first; (2) Since buffer sizing has a
relatively much simpler design complexity (e.g., no control
lines and switching logic) than that of ADB allocation and
requires much less area overhead, we place higher priority
into buffer sizing than IADB and CADB allocations.

Based on the above observations, our proposed ADB
allocation algorithm combined with buffer sizing, called ADB-
mix, performs the following four steps to minimize ∆Atot in
Eq.(1): (Step 1) buffer sizing is applied to the initial buffered
clock tree. If the clock skew constraint is satisfied, ADB-
mix returns the result and stops the execution: (Step 2) IADB
allocation is applied to the clock tree obtained in Step 1. If
the clock skew constraint is met during the IADB allocation,
ADB-mix returns the result and stops the execution; (Step 3)
CADB allocation is applied to the clock tree obtained in Step
2. (Step 4) ADB-mix computes the final delay increments or
decrements for each clock node on which both of an IADB
and a CADB have been allocated, and determines the type and
size of an ADB to be finally inserted to the node.

• Step 1 (Buffer sizing to minimize area(BS) in Eq.(1)):
There exist a number of noticeable works in the literature that
addressed the buffer sizing problem to minimize clock skew
(e.g., selecting optimal buffers from buffer library using dy-
namic programming or determining buffer sizes for minimum
delay/power zero clock skew) in designs of single power mode.
However, it is unlikely that the existing works can be applied
to the designs of multiple power modes since minimizing the
clock skew in a particular power mode by sizing buffers does
affect the clock skews in the other power modes. In this work,
we propose a greedy algorithm: For each buffer in node ni

in the clock tree, we attempt to resize the buffer by using a
buffer, bufj , in the buffer library and compute a gain g(·):

g(ni, bufj) =
∑

mi∈M

(sk(mi)− sk′(mi))/BS(ni, bufj) (2)

where M is the set of power modes, sk(mi) and sk′(mi) are
respectively the clock skews after and before the buffer sizing
in mi, and BS(ni, bufj) is the amount of area increase by
sizing the buffer in ni with bufj .

Then, we select, among all the possible buffer sizings that
reduce the total clock skew in the clock tree, the buffer sizing
which has the least value of gain g(·) if BS(ni, bufj) < 0
or has the largest value of gain g(·) if such a buffer sizing of
BS(ni, bufj) < 0 does not exist, and perform the sizing, i.e.,
replacing the buffer in ni with bufj . We repeat this iteration
until the reduced clock skew meets the skew constraint or no
further buffer sizings can be applied. For example, the values
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(a) Step 1: sizing the buffer in n1 reduces clock skew from 16 (=
24-8) to 15 (= 24-9) in Mode-1 and from 16 (= 23-7) to 11 (=

23-12)) in Mode-2.

Mode-1

Mode-2

9

12

11

22

20

23

24

22

14

12

13

19

14

21

15

15

13

12

15

20

16

15

13

12

Skew bound = 10

g = 0 g = −4

g = +3

g = −2 g = −2

g = 0 g = −2g = −2

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

n7 n8 n9

n1 n2 n3 n4 n5 n6

sizing
+5/+5

-2

-2

-2

-2

IADB
-2/-2

(b) Step 2: allocating an IADB to n4 in the tree in (a) reduces
clock skew from 15 (= 24-9) to 13 (= 22-9) in Mode-1 and from 11
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(d) Step 4: examples of determining the final ADB types for
overlapped ADB allocation in a node of clock tree.

Fig. 3: An illustration of the step-by-step procedure of our
proposed ADB allocation algorithm ADB-mix: (a) Step 1:
applying buffer sizing to reduce clock skew; (b) Step 2:
allocating IADBs to reduce the clock skew by decreasing the
latest clock delay; (c) Step 3: allocating CADBs to reduce the
clock skew by increasing the earliest clock delay; (d) Step 4:
finalizing the ADB types in the nodes where both of IADB
and CADB are allocated.

of gain g for each node in a clock tree is shown in Fig. 3(a),
in which the resizing at n1 with gain g = +6 is selected,
increasing the times at FFs s1 and s2 to 14 and 13 in Mode-
1 and to 12 and 19 in Mode-2, respectively. The increase of
earliest delay leads to reducing the clock skew from 16 to 15
in Mode-1 and from 16 to 11 in Mode-2.

• Step 2 (Allocating IADBs to minimize area(IADB) in
Eq.(1)): The IADB allocation problem is to allocate a minimal
number of IADBs, taken from the library of IADBs, to satisfy
the clock skew constraint. We use a greedy algorithm, which
is essentially identical to that in Step 1. The only difference
is the gain function g(·):

g(ni, IADBj) =
∑

mi∈M

(sk(mi)− sk′(mi))/area(IADBj)

(3)
where sk(mi) and sk′(mi) are respectively the clock skews
after and before the allocation of IADBj in mi, and
area(IADBj) is the amount of area increase by the insertion
of IADBj . For example, in Fig. 3(b) the allocation of IADB
at n4 reduces the times at s7 and s8, resulting in the clock
skew from 15 to 13 in Mode-1 and from 11 to 10 in Mode-2.

• Step 3 (Allocating CADBs to minimize area(CADB) in
Eq.(1)): Since there are many existing algorithms that have
addressed the CADB allocation, we can use any of the
conventional algorithms. In our flow, we use ADB-Pullup [9]
which optimally allocates CADBs for each power mode. In
our context, ADB-Pullup accepts as input the clock tree which
may have buffers that have been sized in Step 1 and IADBs
that have been allocated in Step 2. The role of ADB-Pullup
is just to determine if a delay increment is required at each
node in the clock tree in every power mode and compute the
value of delay increment if needed. For example, allocating
one CADB at n3 in Fig. 3(c) reduces the clock skew from
13 to 9 in Mode-1 and unchanges the clock skew in Mode-2,
meeting the clock skew bound on all power modes.

• Step 4 (Refinement by determining ADB types): This step
is to resolve the overlapped allocation of IADB and CADB
in a node of clock tree. We examine the delay decrements
and increments computed in each node in Steps 2 and 3,
and deterime the type of ADB to be finally allocated in
the node. For example, Fig. 3(c) does not have nodes with
overlapped ADB allocations, thus, the ADB allocation are
completed. However, for the overlapped allocations as depicted
in Fig. 3(d), it is required to determine the ADB types: the
upper one in Fig. 3(d) shows an example where CADB with
delay increment should be finally allocated; the lower one in
Fig. 3(d) shows an example where IADB with delay decrement
should be finally allocated.

IV. EXPERIMENTAL RESULTS

We have implemented our proposed algorithm ADB-mix
and the algorithm ADB-Pullup in [9] using C++ on a system
with 8 2.5Ghz Intel Xeon CPU with 8GB memory. All
input clock trees are generated using Synopsys IC Compiler
with 45nm Nangate Open Cell Library. We have tested the
benchmark circuits in ISPD’09 clock network synthesis con-
test. For each benchmark, we partitioned it into 6∼10 power
subdomains, each of which can operate in two different voltage
levels: 0.95V and 1.1V. We assumed to use four different power



TABLE I: Comparison of ADB allocation results produced by our ADB-mix and ADB-Pullup [9].

Circuits #FF #Buf Skew Latency Skew #ADB Latency #ADB Latency Red. of
(orig.) (orig.) bound [9] [9] (ADB-mix) (ADB-mix) #ADBs

F11 121 159 144ps 3010.7ps
90ps 30 3046.1ps 21 2630.1ps 30.0%
110ps 14 2968.1ps 14 2624.1ps 0.0%
130ps 3 2968.1ps 2 2744.1ps 33.3%

F12 117 143 126ps 2528.2ps
90ps 33 2684.7ps 12 2163.7ps 63.6%
110ps 31 2660.7ps 11 2152.7ps 64.5%
130ps 30 2616.7ps 1 2476.7ps 96.7%

F21 117 156 126ps 2969.2ps
90ps 31 3033.1ps 10 2568.1ps 67.7%
110ps 27 3013.1ps 9 2566.1ps 66.7%
130ps 9 2998.1ps 2 2719.1ps 77.8%

F22 91 90 126ps 2043.0ps
90ps 27 2197.3ps 14 1769.3ps 48.2%
110ps 15 2128.3ps 12 1757.3ps 20.0%
130ps 15 2128.3ps 10 1745.3ps 33.3%

F31 273 328 198ps 4236.9ps
90ps 39 4164.1ps 28 3719.1ps 28.2%
110ps 23 4157.1ps 17 3718.1ps 26.1%
130ps 14 4157.1ps 11 3706.1ps 21.4%

F32 190 262 198ps 4144.0ps
90ps 41 4313.0ps 26 3779.0ps 36.6%
110ps 39 4233.0ps 16 3782.0ps 59.0%
130ps 39 4233.0ps 11 3768.0ps 71.8%

F33 209 257 162ps 4147.9ps
90ps 23 4069.9ps 4 3830.9ps 82.6%
110ps 12 4029.9ps 4 3826.9ps 66.7%
130ps 5 4035.9ps 4 3826.9ps 20.0%

F34 157 210 198ps 4075.3ps
90ps 44 4305.6ps 11 3616.6ps 75.0%
110ps 26 4228.6ps 8 3616.6ps 69.2%
130ps 12 4208.6ps 8 3616.6ps 33.3%

F35 193 239 198ps 4268.9ps
90ps 37 4197.4ps 12 3649.4ps 67.6%
110ps 37 4197.4ps 9 3660.4ps 75.7%
130ps 2 4153.4ps 1 4126.4ps 50.0%

Ratio 1 1 0.437 0.885 56.3%

modes and found the worst clock skew over the whole power
modes. We have also assumed that each ADB can be adjusted
with a granularity of 10ps. We rounded off the delay values
obtained by ADB-mix and the algorithm ADB-Pullup in [9]
to reflect the discrete delay adjustment of each ADB.

Table I summarizes the comparison of the results produced
by ADB-Pullup [9] and our ADB-mix. The seventh and eighth
columns show the number of ADBs (i.e., CADBs) to meet
skew bound and the maximum clock latency used by ADB-
Pullup [9], respectively. The last three columns show the
number of ADBs (i.e., CADBs and IADBs) and the maximum
clock latency used by ADB-mix, and reduction of ADBs
(in percent) by ADB-mix over that by ADB-Pullup [9]. We
can clearly see that the ADB reduction is consistent for
all testcases. The ADB reduction by ADB-mix is 56.3% on
average for clock skew bound of 90ps∼130p with even much
shorter clock latencies, i.e., 11.5% shorter than that by ADB-
Pullup. For example, for F21, 31 ADBs with latency of
3033ps are required to meet skew constraint of 90ps under
all power modes for ADB-Pullup [9] whereas ADB-mix uses
21 less ADBs with 465ps shorter latency to meet the skew
constraint. It is also observed that the area increase by buffer
sizing is very minimal, less than 0.1%. However, its impact is
significant. For example, see the allocation of 1 or 2 ADBs
after buffer sizing in F12, F21, and F22 in Table I.

V. CONCLUSION

This work proposed a new algorithm to solve the problem
of clock skew optimization using adjustable delay buffers

(ADBs) under multi-voltage design environment. This work
showed that the use of mixed types of ADB as well as buffer
sizing could lead to much economical designs.
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