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Abstract—In its simplest form, a parameterized block based
statistical static timing analysis (SSTA) is performed by assuming
that both gate delays and the arrival times at various nodes
are Gaussian random variables. These assumptions are not true
in many cases. Quadratic models are used for more accurate
analysis, but at the cost of increased computational complexity.
In this paper, we propose a model based on skew-normal random
variables. It can take into account the skewness in the gate
delay distribution as well as the nonlinearity of the MAX
operation. We derive analytical expressions for the moments of
the M AX operator based on the conditional expectations. The
computational complexity of using this model is marginally higher
than the linear model based on Clark’s approximations. The
results obtained using this model match well with Monte-Carlo
simulations.

I. INTRODUCTION

Integrated circuits today have significant process parameter
variations that affect the timing and hence operating frequency
of the chip. Traditionally static timing analysis (STA) was
performed over multiple process corners. However, this corner
based approach assumes circuit to be operating at worst case
values of process parameters, which have very low probability
of occurrence in real conditions. This makes the corner based
STA overly pessimistic. Moreover, as the number of sources
of variation increases, the number of timing runs required for
validation increases exponentially. To overcome the problems
with STA, a statistical static timing analysis (SSTA) is used.
Either a path based or block based SSTA can be performed.
A path based SSTA finds the maximum of all the path delays
in the circuit, which becomes computationally inefficient as
the circuit size grows. A block based SSTA involves a PERT-
like traversal of the circuit graph and is computationally more
efficient [1], [2].

In its simplest form, a parameterized block based analysis
is performed by assuming that gate delays and the arrival
times at various nodes are Gaussian random variables. This
essentially means that all process parameter variations can be
represented as Gaussian random variables and the gate delay
and the arrival times are linear functions of these variations.
To handle globally correlated sources of variation, spatial
correlations are usually modelled using quad-trees as in [1],
[3]. In addition to these global sources of variation, spatially
uncorrelated variations are taken into account by adding a
single independent Gaussian random variable to the canonical
delay model. This often results in a significant error in the
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arrival time due to reconvergent paths in the circuit [4]. The
extended canonical form proposed in [4] attempts to correct
this error, but at the cost of some computational overhead.
The gate delay variation is more accurately modelled as a
quadratic function of the process parameter variations. The
delay distribution therefore has a significant skewness that
cannot be ignored. In addition, the M AX operation that is
used to propagate the arrival times is inherently non-linear.
The quadratic models attempt to take both these non-linearities
into account by matching the skewness in addition to the mean,
standard deviation and correlations. While the overall errors do
reduce, it is at the cost of significant additional computational
complexity [5], [6], [7]. The models in [6], [7], [8] also handle
non-Gaussian sources of variation. The other method used to
reduce the error in the standard deviation of the circuit delay
(and hence the yield) is to assume that the arrival times have a
joint skew normal distribution [9]. Using a procedure similar to
the one used by Clark, they find the tightness probability and
the moments of this distribution. However, the method used to
compute the moments is complicated and the details of how
it was used to match moments when the standard canonical
form is used is not clear.

In this paper, we propose a skew-normal canonical form
that can be used to represent both the delay and the ar-
rival times. This canonical form is a merger of the standard
canonical model for the delay and the standard skew-normal
representation proposed in [10]. We assume that the process
parameter variations are Gaussian. However, SPICE simula-
tions indicate that the resulting gate delay distributions exhibit
a skewness. We show that these delay distributions can be fitted
well to a skew-normal distribution. We derive the moments of
the M AX of skew-normal random variables by integrating
the conditional distribution. This turns out to be a much
simpler method than the method used in [9]. The moments
and the tightness probability are written in terms of the CDF
of the standard normal distribution and the Owen’s T-function
[11]. Standard computer routines are available for both these
routines. Computation of these moments has marginally higher
complexity than use of Clark’s formulas. With respect to
a quadratic model it has the advantage of a significantly
lower computational complexity, while matching the first three
moments.

The paper is organized as follows. Section II contains a
review of the models used for the arrival times and the gate
delays. Section III introduces skew normal representations and



contains some properties that are used for SSTA. In section 1V,
we describe the skew-canonical model and derive the tightness
probability and the moments of the M AX of two skew normal
variables. We also describe the moment matching procedure
to obtain the coefficients of the canonical form. Section V
contains the results and section VI, the conclusions.

II. CANONICAL MODELS - REVIEW

There are several models for the delay and the arrival time
that have been used in the literature. In this section we briefly
review these models.

A. Linear models

The two operations that are required for SSTA are the
SUM and the M AX operations. If the sources of variation
are Gaussian random variables and the model is a linear
model, the SUM operation is a straightforward operation. The
M AX operation is nonlinear, but it is linearized using Clark’s
formulas to match the first and second order moments [12].

1) Canonical model (CM): In this model, the arrival time at
node i (A;) is represented in terms of the principal components
of the process parameters (£;) and an independent standard
normal random variable as follows [2]

Ai = a0+ Y aié; +pimi e

Jj=1

a;; represents the sensitivity to the 4" principal component at
node . Clark’s formulas are used to determine the sensitivities
and the mean. p; is adjusted so that the standard deviation
of the arrival time matches the standard deviation computed
using Clark’s formula. It is therefore an artificial term that
is added to match moments. However, n; can also represent
an actual independent source of variation for each gate. In
this case, p; is also determined using the tightness probability.
The coefficients a;; and p; are then scaled to match standard
deviation obtained using Clark’s formula [13].

2) Extended Canonical model (ECM): In the canonical
model, each arrival time has only one independent source
of variation. This gives rise to large errors when the circuit
has many reconvergent paths [4]. To circumvent this, in the
extended canonical model, each independent component is
carried forward. Therefore, arrival time is now represented as

n N
A; = ap + Z a;;&; + Zpijﬁj 2
j=1 j=1

Therefore, for an N gate circuit, there are N independent
sources of variation. Each of the sensitivities is determined
using the tightness probability [4], [13]. The sensitivities are
then scaled to match the standard deviation using Clark’s
formula. While the extended canonical model gives more
accurate results, it has a significant computational overhead.

B. Quadratic models

The two main problems with the linear models is that
they do not take into account the non-Gaussian nature of gate
delay distributions and the inherent non-linearity of the M AX
operator. As a result, the arrival time exhibits a significant

skewness. One way to account for the skewness is to use
quadratic models for the arrival time. This has the further
advantage that each gate delay can also be modelled similarly.
The arrival time at node 7 is now written as [5], [6], [7], [14]

A; = a0+ A+ ETBE + pim; 3)

The SUM operation continues to be straightforward since
each individual component can be added. The M AX operation
is more involved since we now need to compute the moments
of the M AX of two quadratic functions. The actual moment
matching involves numerical integrations and convolutions
(using FFT) [5] or approximation using a Fourier series along
with a table lookup [6] or fitting of a quadratic model along
with moment matching [7]. There is significant increase in
computational complexity and in most cases, the cross terms
are ignored to speedup computations. However, the quadratic
delay models in [6], [7] are very general models that can
handle non-Gaussian process parameter variations.

C. Other models

The other ways to take skewness into account are localised
Monte-Carlo sampling [4] and using the moments of a skew-
normal distribution to propagate skewness [9].

III. SKEW NORMAL RANDOM VARIABLES

A standard skew normal random variable has a PDF given
by [10]
f(z2) = 26(2)@(A2) @

where ¢(z) and ®(z) are the PDF and the CDF of the
standard normal random variable. The parameter A\ determines
the skewness of the distribution. The moments can be adjusted
using a location and a scale parameter. The CDF is given by

F(z;0) =®(2) —2T(z;A), A>0 )

where T'(z; \) is the Owen’s T-function. Standard computer
routines are available to compute this function. The properties
of the Owen’s T-function can be used to get the CDF for A < 0
(negative skewness).

There are several representations of the skew normal ran-
dom variable that have this PDF [10], [15]. The representation
that we are interested in is

Z=a+BX (6)

where
A 1

X = Ul + \%4
e Ut e

where U and V are independent standard normal random
variables. The moments as well as several interesting properties
of the skew normal random variable can be found in [10], [15].
The properties that are of interest to us are

(N

1. The sum of a skew-normal and a normal random
variable is also a skew normal random variable.

2. If Xi = a V5 + b1|U| and Xy = asVs + b2|U‘,
then X3 = X1 + XQ = a3V3 + (b1 + b2)|U|, where
az = \/a? +a3. Vi, Va, V3 and U are independent
standard normal random variables. X3 is also a skew-
normal random variable.



3. The conditional distribution f(z|u) is a normal dis-
tribution.

4. X4 = X7 — X5 is therefore also a skew-normal
random variable and P(X; > X3) can be found from
the CDF of the skew-normal distribution [15], [16].

5. The maximum skewness of the skew-normal random
variable is 0.995272.

These properties also hold true when the skew-normal random
variables have an arbitrary location and scale factor.

IV. SKEW CANONICAL DELAY MODEL

We propose a modification of the canonical form to a skew-
canonical form as follows:

n
A; = aip + Zaijij + pini + ¢ 7| (8)

j=1
Therefore, the standard canonical form is augmented by the
addition of a globally correlated random variable |z|, where z
is standard normal random variable, independent of §; and 7;.
A; is therefore a skew normal random variable. This form is
much simpler than the quadratic or semi-quadratic forms that
are used and matches the same number of moments, namely
the mean, standard deviation and the skewness. As will be seen
later, it is possible to represent gate delay distributions in terms
of skew-normal random variables. In fact, given any quadratic
delay model, it is possible to get a skew normal delay model
by matching the appropriate moments. It can also be viewed as
a particular case of the generalized canonical model described

in [8].

The two operations that are required for SSTA are the
SUM and M AX operation. If A and B are two delay vari-

ables represented in the skew-canonical form and S = A+ B,
the coefficients of S can be computed as,

n

S =50+ Zszfz + st + qs2]
1=1

so = ag + by

s; =a; +b;, for

ps = /P2 + P}
Qs = qa + qp

We wish to represent the result of the M AX operation in the
skew-canonical form. To achieve this, we either need to find
the moments of the joint PDF of two skew normal random
variables and follow the method in [9], [12] or integrate the
conditional distribution as is done in [8]. We use the latter
method since the conditional distribution, given z, is a normal
distribution, which makes it possible to use Clark’s formulas
to get the conditional moments. Since z ~ N (0, 1), the actual
moments can be found by integrating the conditional moments
along with the PDF of the standard normal. Analytical forms
of all moments can be obtained in terms of the Owen’s T
function and the CDF of the standard normal. We illustrate
this for the first moment. If C = M AX (A, B), the conditional
expectation given the value of z is obtained from Clark’s
formula as

E{C|Z} = pc1z = a1 zT Aoy + 1B12(1 = Ta )
+0(a-p)z¢(0) 9)

i=12n

where § = LA=BIZ 4pq
oa-p)z
ta-B)z = (a0 = bo) + (qa — @)|2| (10)
n
O(A-B)|z = Z(ai—bi)2+p3+p2 (11)
i=1
Ty, , =0 (M(A—B”Z) (12)
T(a-B)|Z

To evaluate the first moment, we need to evaluate integrals of
the form

o0

/qb(z) ®(a+bz) dz, /z d(z) P(a+bz) dz

0 0

/d)(z) dla+bz) dz (13)
0

The first integral can be evaluated using the analytical ex-
pression for the unconditional tightness probability given by
property (4) of the skew-normal random variables. Therefore,

Ty = / Ta.., P(z)dz=2 [ ®(a+bz) ¢(z) dz
—00 0
=®(r)+2 T(7,b) (14)
where,
_ag—bo  Ga—
a=—--, b= —,
0(A-B)|Z 0(A-B)|z

a
VI
and T'(h,a) is the Owen’s T function [11], given by

1 fe2a+a?)
e
1) = 5 [ e
0

The third integral can be evaluated in terms of ®(-). Since
% = —z¢p(z), the second integral can be obtained by inte-
grating by parts. Using this, the first moment can be written

as

M, = (ao — bo)q)(T) + 2(&0 - bo) T(T, b)

2 2b
+ \/;(qa — @) ®(a) + 5 (da — @)$(7)2(~b7)
20
+ T(b(T)(I)(—bT) + bo + 2%
where ¢ = +/1 + b2. It can be easily verified that it reduces to
Clark’s formula when ¢, = g, = 0.

All the higher order moments can be obtained similarly
and using the fact that 22¢(z) and 23¢(z) can be written in
terms of ¢(z) and its derivatives.

If the mean, standard deviation and the skewness of C' are
denoted by ., 0. and 7., the coefficients of the canonical
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Fig. 1. Centered delay distribution of a NAND gate - Monte-Carlo
simulations, its Gaussian and a skew-normal fit.

form can be found as follows

Ge = (15)
co = (16)
ci=a; Th+0b (1 — TA) (17)
Pe =V (paTa)? + (pp(1 — Th))? (18)

The coefficients ¢; and p. are scaled to match the standard
deviation. The scaling factor s is found as follows

o, = \/azqz (1 i) (19)

So = (20)
g
= _£ 21
5<%, 21
V. RESULTS

Assuming a 10% variation in V and W and a 5% variation
in L, we performed Monte-Carlo simulations using SPICE and
obtained the gate delay distribution for some of the gates in
the standard cell library for both 90 and 180nm technology.
The skewness in the gate delays of these gates were between
0.1 and 0.4. Based on the first three moments, we obtained a
skew-canonical model for these gate delays. Fig.1 contains a
comparison of the delay distribution of a NAND gate in 180nm
technology, indicating it is a good fit. Also shown in the figure
is a Gaussian fit to the distribution. Although there seems to
be only a small difference, it results in a significant skewness
in the final circuit delay as will be seen later.

In our first experiment, the gate delays were modelled using
skew-canonical form. ISCAS85 benchmarks were synthesized
using the standard cells for 180nm technology. In our exper-
iment, L, W and Vppy variations were considered as normal

TABLE 1. PERCENTAGE ERROR IN p, 0, v AND 95% YIELD POINT OF
CIRCUIT DELAY USING THE SKEW CANONICAL MODEL

[ Circuit [ Dolberr [ %0 crr [ oY err [ 95%Y Py ]

c1355 -0.059 -0.403 -0.009 -0.282

cl7 -0.165 0.383 -2.909 -0.258

c1908 0.050 0.310 -0.153 -0.027

€2670 -0.345 0.140 -1.832 -0.398

¢3540 -0.136 0.665 -2.934 -0.144

c432 -0.756 0.167 -0.270 -0.646

c499 -0.049 -0.938 -0.639 -0.285

c5315 -0.545 0.454 -4.210 -0.559

c6288 -0.373 -0.176 -3.460 -0.511

c7552 -0.451 0.142 0.303 -0.427

c880 -0.234 0.051 -0.918 -0.317

[Avg.er | 0361 | 0430 | 2.165 | 0390 |

0.25
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Delay(ns)
Fig. 2. Delay PDF of c6288 circuit. MC: Monte-Carlo simulations; SCM:

Skew-Normal SSTA

random variables with o/ of 5%, 10% and 10% respectively.
The skewness in the gate delay was randomly assigned a
value between 0.2 and 0.3. For each of the parameters, a
four layer quad-tree with equal weights in each layer was
used to model correlations. 5% of the variation was assumed
to be due to an independent variation. Table I shows the
results of this experiment. The values obtained using SSTA are
compared with Monte-Carlo simulations performed using 10°
samples. The errors in p and o are similar to that obtained
using the quadratic delay model [7], but the error in ~ is
significantly lower. Fig. 2 shows the plot of circuit delay
PDF for c6288 benchmark obtained from this SSTA algorithm
and from Monte-Carlo simulation. The delay PDF is seen
to have a significant skew and matches well with Monte-
Carlo plot. Although we have not used the extended canonical
form, the match with Monte-Carlo simulations is very good.
This is partly because the weight for the independent random
variable is smaller than the weights for the correlated intra-die
variations. A similar good fit is observed in [7] for slightly
smaller total variation.

As discussed in the previous section, the sensitivities c;;
and p. are scaled to match the standard deviation. Table II
shows the statistics of the scale factor. The mean is seen to
be very close to one and the probability that the scale factor
is less than 0.98 is very small. This indicates that the error
in the correlation with the principal component of the process
parameter is also very small.



TABLE IL

STATISTICS OF THE SCALING FACTOR s = <<

o

b~

So

Ratio of o, to Sp

Probability of the ratio in each range

Circuit [ [ ¢ | minimum | maximum | <0.98 T [0.98,0.99] [ (0.99.1.0) [ [1.0,1.0I] | >1.01
c1355 [ 0.9988 [ 0.0093 0.9394 1.0303 0.0230 0.0967 0.1566 0.6451 0.0783
cl7 0.9992 | 0.0123 0.9832 1.0249 0.0 0.2857 0.0 0.5714 0.1428
c1908 | 1.0001 | 0.0063 0.9802 1.0427 0.0 0.0416 0.1958 0.7166 0.0458
2670 | 0.9991 [ 0.0065 0.9644 1.0469 0.0191 0.0383 0.1823 0.7389 0.0211
3540 | 0.9990 [ 0.0067 0.9542 1.0582 0.0198 0.0338 0.2686 0.6507 0.0268
432 1.0001 | 0.0031 0.9867 1.0306 0.0 0.0068 0.1586 0.8275 0.0068
c499 | 0.9996 | 0.0082 0.9774 1.0366 0.0092 0.1059 0.1152 0.6958 0.0737
c5315 | 0.9988 | 0.0072 0.9403 1.0331 0.0215 0.0467 0.2048 0.6999 0.0269
c6288 | 0.9992 | 0.0046 0.9506 1.0152 0.0129 0.0323 0.3166 0.6371 0.0009
c7552 | 0.9994 | 0.0042 0.9641 1.0198 0.0102 0.0232 0.1931 0.7660 0.0074
c880 | 0.9974 | 0.0072 0.9346 1.0168 0.0348 0.0696 0.1811 0.7108 0.0034
TABLE III. PERCENTAGE ERROR IN 4 AND 0 USING THE CANONICAL TABLE IV. RUN TIME COMPARISON OF CLARK’S MAX(CM) AND

AND SKEW-CANONICAL MODEL(SCM) AND SKEWNESS OF CIRCUIT

DELAY.
Yolierr o0 err

Circuit CM SCM CM SCM Skewness
c1355 -0.893 -0.412 5.962 1.918 0.16
c499 -0.848 -0.377 4.643 1.051 0.14

cl7 -0.400 -0.344 4.244 4.040 0.11
c1908 -0.954 -0.698 6.266 5.902 0.10
¢3540 -0.522 -0.411 6.253 6.666 0.08
c5315 -0.984 -0.783 4.209 4.383 0.16
¢2670 -0.848 -0.737 6.612 7.269 0.04
c432 -1.549 -1.430 9.981 11.376 0.05
c6288 -0.572 -0.506 3.116 5.013 0.05
c7552 -0.658 -0.645 5.297 5.564 0.01
c880 -0.440 -0.412 2471 3.138 0.01

[Avg e | 0847 | 0.682 | 5.708 | 5.782

[ - ]

In the second experiment, we modelled gate delays as
normal random variables. The skew-canonical form was used
to find the MAX of the arrival times. The variation in
the length and the threshold voltage is 6.67% of the mean.
The threshold voltage variation was modelled entirely by an
independent random variable and half the length variance was
independent as in [9]. The other half was correlated and a
four layer quad-tree was used to model the correlation. The
canonical model typically results in large errors in the standard
deviation when most of the correlation arises due the circuit
structure (due to reconvergent paths) rather than the quad-tree.
The actual numbers depended heavily on the correlations in
the process parameters, but some trends could be observed.

Table III shows the percentage error obtained when the
canonical and skew-canonical model is used. The skew-
canonical form can compensate partly for the error in the
standard deviation occurring due to reconvergent paths, if the
skewness is significant. From the table, it can be seen that this
is not the case for most circuits. Only c499 and c1355 benefit
from using the skew-canonical form. In the most cases, the
skewness is too small to make a significant difference and the
errors in the two cases are within 1-2% of each other.

Note that these errors occur due to reconvergent paths and
reduce considerably if the extended canonical form is used. In
fact, the skew canonical model can very easily be modified to
get an “extended skew-canonical model”.

Table IV shows the CPU times required for M AX op-
erations using the skew-canonical delay model and the linear
canonical delay model. It shows that use of the skew-canonical
model results in a marginal overhead in CPU times. Table V
has the comparison of the CPU times for computing the circuit

SKEW-NORMAL MAX(SNM), WHERE N BEING THE NUMBER OF RANDOM

VARIABLES.
] N \ ton (ms) \ tsnas(ms) \ LSNM_CM x 100%
1000 9.149 9.542 4.29
10000 90.65 93.47 3.11
100000 907.12 929.97 2.51

delay of the ISCAS85 benchmarks. The average overhead
in using the skew-canonical delay model is only about 7%,
indicating its computational efficiency.

TABLE V. RUN TIME COMPARISON OF SSTA USING CM AND SCM

] Circuit \ tear (ms) \ tsca(ms) \ LSO TAM  100%

c1355 2.045 2.132 4.25
cl7 0.027 0.029 7.40

c1908 2.590 2.678 3.39
c2670 3.310 3.452 4.29
¢3540 7.080 7.585 7.13
c432 1.364 1.461 7.11
c499 1.996 2.157 8.06
c5315 7.485 8.074 7.86
c6288 18.375 19.285 4.95
c7552 8.662 9.316 7.55
c880 1.999 2.191 9.60
Avg % increase in run-time 6.77

VI. CONCLUSION

In this paper, we have proposed a skew-canonical form
for the gate delay and arrival times to take into account
the skewness in the gate delay variation and the inherent
non-linearity of the M AX operator. The advantage of using
the skew-canonical form is that analytical expressions for
the moments of the MAX operation can be obtained in
terms of the CDF of the standard normal and the Owen’s T-
function. Standard computer routines are available for both
these functions. The computational complexity of evaluating
these moments is marginally more than using Clark’s formulas.
It is much simpler to use than the quadratic model and it
matches the first three moments. Practical examples show
that there is only a small error in the correlations with the
independent component of the process parameters.

However, it has the same limitations and advantages as the
canonical form. If the variations have a strong independent
component, an extended (skew) canonical form may be essen-
tial to account for reconvergent paths in the circuit. Some more
work is also required to see the effect of non-Gaussian process
parameter variations.
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