
Facilitating Timing Debug by Logic Path
Correspondence

Oshri Adler, Eli Arbel, Ilia Averbouch, Ilan Beer, Inna Grijnevitch
IBM Research Lab, Mount Carmel, Haifa, Israel, 31905

{oshria,arbel,iliaa,beer,innag}@il.ibm.com

Abstract—Synthesis tools for high-performance VLSI designs
employ aggressive logic optimization techniques in order to meet
physical requirements such as area and cycle time. During these
optimizations, the original structure of the design, which is usually
written in a hardware description language (HDL), is lost. It is
difficult, and often impossible, to relate signals after synthesis to
the original signals in the HDL code. Some signals only lose their
names while for others there are no equivalent counterparts in
the design after synthesis. Debugging timing problems is based
on timing reports which are usually represented in terms of the
post-synthesis design. Hence, it is difficult to relate critical paths
in the timing reports to the relevant paths in the HDL code
when a logic fix is needed. In this paper, we propose a different
approach for dealing with the correspondence problem: instead
of trying to relate signals we relate paths. Given a critical path
in a post-synthesis representation, our method is able to find all
corresponding paths in the pre-synthesis (HDL) representation.
As a result, locating the parts in the HDL which are relevant
to the given timing problem becomes trivial. A novel Sat-based
algorithm for dealing with the path-correspondence problem is
described. Experimental results on various industrial high-end
processor designs show the effectiveness of our algorithm in
substantially reducing the amount of paths in the HDL which
one will have to consider when debugging a given critical path.

I. INTRODUCTION

VLSI design is a multi-dimensional problem in which one
tries to optimize a given design against multiple objectives
such as area, power and performance. The purpose of a given
design dictates how each of the metrics the design is measured
against are weighed. For example, an SoC targeted for a mobile
device will be highly optimized for low power consumption
while possibly trading off performance. On the other hand,
in the area of high-end processor design, performance is one
of the major objectives. As high-performance hardware entails
very short cycle times, a major challenge in designing such
systems is meeting timing constraints. This usually involves
synthesizing the logic, analyzing and debugging timing results
and fixing timing issues. Hence, one of the most time con-
suming phases in high-end processor design methodology is
the one of timing closure [1].

In a typical timing closure methodology, a circuit designer
first analyzes post-synthesis timing reports in an attempt to
solve as many timing violations as possible at the circuit level.
This may involve looking at the RTL (Register Transfer Level)
as well, if the problem is suspected to be in the way the logic
was written. In the realization that fixing the timing problem
calls for a logic change, the critical path is then passed to the
logic designer owning that piece of logic. A fundamental issue

in this methodology is that the timing results are expressed in
terms of post-synthesis netlist, while the logic is expressed
in terms of RTL. This poses a real challenge: finding the
correlation between synthesis results and the RTL. This is
especially true when aggressive synthesis optimizations and
netlist transformations are used, in which case usually little
to no effort is spent in maintaining the original signal names
or logic structure. Thus, a way to relate the post-synthesis
results to the RTL representation is required. This will allow
the circuit designer, which is not familiar with the logic, to
easily identify the parts in the RTL which are relevant to the
current timing problem. Similarly, the logic designer, which is
also not familiar with all the physical constraints and the way
synthesis was run, can greatly benefit from such mapping.

Mapping synthesis results back to the RTL can be done
manually. However, in a reality where design sizes are getting
increasingly larger while time to market is shrinking, auto-
mated techniques which facilitate timing closure are required.
One approach for dealing with the problem is to rely on signal
correspondence, that is, back-annotate timing information on
a per-signal basis. The problem with this approach is that
commonly used logic optimization techniques, such as those
described in [2], [3] often destroy the netlist structure and
change signal names to the extent that signal correspondence
becomes very hard and even impossible. Another approach,
described by Mishchenko and Brayton in [4] suggests a
framework for recording history of synthesis transformations
in order to facilitate verification tasks. This approach may be
used as a basis for automatic back-annotation, however, many
current design flows are yet to employ such capabilities.

In this paper we suggest a new approach for finding
correlation between a post-synthesis and pre-synthesis netlist
of the same design. Instead of relying on signal correspon-
dence or structural similarities to perform back-annotation,
our method works in the path level. Given a path in one
representation level of a design, our proposed algorithm au-
tomatically finds the corresponding logic paths in the other
representation level. The proposed analysis is based solely
on functional properties of the logic, which are invariant to
logic structure changes and name mangling. The algorithm is
based on analyzing the functional behavior of the design in its
different representation levels and finding paths which have
similar sensitization properties. Our algorithm is implemented
using a Sat solver, thus it is highly efficient, even on large and
complex designs. Experimental results show that our algorithm
is able to substantially reduce the number of paths which are
needed to be considered, compared to all possible paths a
timing problem may involve with.978-3-9815370-2-4/DATE14/ c©2014 EDAA

AND 0 1 v̄ v

0 0 0 0 0
1 0 1 v̄ v
v̄ 0 v̄ v̄ 0
v 0 v 0 v

XOR 0 1 v̄ v

0 0 1 v̄ v
1 1 0 v v̄
v̄ 0 v 0 1
v 0 v̄ 1 0

Fig. 1. Examples of truth tables of simple logic operator for symbolic
representation

The rest of the paper is structured as follows. In Section II
we give some preliminaries. A high-level description of our
path correspondence algorithm is given in Section III followed
by the details of implementing the algorithm with a Sat solver
in Section IV. Results of applying it on some real high-
end processor design examples are given in Section V and
conclusions are drawn in Section VI.

II. PRELIMINARIES

In this section we briefly describe some of the concepts
used in this paper. A netlist C = (V,E) is a graph representa-
tion of the logic which consists of gates (V) and wires (E). A
netlist may describe a combinational circuit, in which case V
consists of Boolean gates only (AND, OR, XOR etc.), or it can
describe a sequential circuit where V also includes sequential
elements. We use the term latch to describe a memory element
(e.g. flip flop). The edges E of the graph represent wires and
can be classified as internal (gate to gate), primary inputs
or primary outputs. The terms wires, nets and signals are
interchangeably used in this paper. A pre-synthesis netlist is
the netlist generated after compilation and elaboration of the
RTL (e.g. VHDL or Verilog). The pre-synthesis netlist may be
comprised of high-level gates such as muxes and adders and
its structure is similar to the RTL structure. Furthermore, as the
pre-synthesis netlist usually undergo very minor optimizations,
it is fairly easy to correlate the signals and structures in the
pre-synthesis netlist to their RTL counterparts.

A logic path in a given netlist is an ordered list of
signals (s1, s2, ..., sn) where si is an input signal of some
combinational gate whose output is si+1, for each i ∈ [1, n−1].
The end-points of the path, s1 and sn, are called the starting
point and the ending point of the path, respectively. In the
context of timing debug, the starting point of a given path
corresponds to either a latch output or a primary input, and
the ending point of the path corresponds to either a latch input
or a primary output.

Boolean Satisifiability is the problem of deciding whether
there exists a truth assignment to a given Boolean formula. A
Sat-solver is able to find truth assignments to Boolean formu-
lae, commonly given in CNF (Conjunctive Normal Form). A
CNF formula is a conjunction of clauses, where each clause
is a disjunction of literals, and each literal is an instance of
a variable or its negation. If a given Boolean formula has a
truth assignment, we say it is satisfiable (SAT), otherwise it is
unsatisfiable (UNSAT).

Symbolic evaluation is a method for representing multiple
valuations of a given Boolean formula by assigning several of
its variables with symbols instead of concrete Boolean values.
A netlist representing a Boolean network can be extended to
support symbolic evaluation by mean of dual-rail encoding [5].
Each net defined over the Boolean domain {0, 1} is represented

by 2 nets in the dual-rail encoding for holding the symbolic
domain values {0, 1, v, v̄}, where v and v̄ are symbols rep-
resenting a variable and its negation, respectively. Given a
net n in the Boolean netlist, we denote nd and nv as n’s
domain and value bits, respectively, allowing us to represent a
symbolic value as a combination of the domain and value bits.
For example, consider δ : {0, 1}2 → {0, 1, v, v̄}, an encoding
function from the Boolean domain to the symbolic domain.
Then one possible encoding may be: (0, 0) → (0), (0, 1) →
(1), (1, 0) → (v̄), (1, 1) → (v). In this encoding the first
bit acts as the domain bit, signifying whether the encoded
value is Boolean or symbolic, and the second bit signifies the
polarity, or the concrete value under the given domain bit. The
truth tables of logic gates are also extended to support correct
computation over the symbolic domain as can be shown in
Figure 1.

Finally, the Boolean difference of a function f w.r.t a
variable x is defined as ∂f

∂x ≡ f |x=0 ⊕ f |x=1, that is the
negative cofactor of f w.r.t x Xor’ed with the positive cofactor
of f w.r.t x. A Path sensitization function [6] is a Boolean
function representing the conditions (e.g. the set of all inputs
vectors) under which a signal can propagate from the starting
point of the path to its ending point through the signals
comprising the path.

III. PATH CORRESPONDENCE ALGORITHM

In this section we provide a high-level description of
our path-correspondence algorithm. Details of our Sat-based
implementation are given in Section IV. We describe the
algorithm in the context of classical timing debug method-
ology, that is considering a path given in post-synthesis netlist
(a critical path) and finding its corresponding paths in pre-
synthesis netlist (RTL).

In order for our path-correspondence algorithm to work
properly, it is assumed that combinational equivalency [7], [8]
holds between the pre-synthesis and the post-synthesis netlist
representations of the design to be processed. This assumption
imposes one-to-one latch mapping, as well as primary input
and output mapping between the given representation levels of
the design. This is a fair assumption in many synthesis flows
where the methodology does not permit sequential optimiza-
tions in order to ease ECO [9] and post-silicon validation, and
to reduce verification complexity [6].

A. Extracting the Path Sensitization Function

The properties of Boolean functions of signals in a given
netlist remain the same, regardless of the combinational
transformation used to optimize the logic. For example, the
conditions under which a given function evaluates to true,
the number of truth assignments and the probability of the
function being one, are all invariants of the function. In
particular, the observability conditions of an input variable
w.r.t a given function do not depend on logic implementation.
More formally, given a function f and some input variable
of f denoted as x, ∂f

∂x is invariant to the logic structure
implementing f . Hence, path sensitization functions lie in the
heart of our path-correspondence algorithm and are key in
making our algorithm robust to netlist transformations.

x3x2x1

y

a

b

Fig. 2. An example path: (x2, a, b, y)

Given a critical path in the post-synthesis level of the
design, the first step of our algorithm is to extract the path
sensitization function of this path. The path sensitization
function of a given path can be calculated by conjuncting
the Boolean difference functions of each path signal w.r.t the
variable corresponding to starting signal of the path.

Consider the path (x2, a, b, y) in Figure 2. We compute the
Boolean difference functions of the signals along the path as
follows: ∂x2

∂x2
= 1, ∂a

∂x2
= (x1∧0)⊕(x1∧1) = x1, ∂b

∂x2
= ((x1∧

0)∨x3)⊕((x1∧1)∨x3) = x1∧¬x3 and ∂y
∂x2

= ((x1∧0)∨x3)⊕
((x1∧1)∨x3) = x1∧¬x3. Conjuctiong the Boolean difference
functions, we get hpost = ∂x2

∂x2
∧ ∂a

∂x2
∧ ∂b

∂x2
∧ ∂y

∂x2
= x1 ∧¬x3.

Note that although in the example above hpost = ∂y
∂x2

, the
Boolean difference of y w.r.t x2 only represents the conditions
that x2 is observable at y. However it does not constrain x2
to propagate through a particular path, but rather through any
possible path from x2 to y. This is why we use the conjunction
of the Boolean difference functions of all the signals along the
path. In addition, the function hpost represents the necessary
conditions for activating the given path, however it does not
constrain signal x2 from propagating to y through other paths.

Recall that our goal is to find which paths in the pre-
synthesis level are sensitized by hpost. However, hpost is
expressed in terms of the post-synthesis netlist signal variables
(x1, x2 and x3 in the example given in Figure 2). Thus hpost
should be mapped to be over the pre-synthesis netlist variables.
Recall that the pre-synthesis netlist is a graph representation
of the RTL in which signal names are preserved and its logic
structure is similar to the RTL structure. Since combinational
equivalence holds between the 2 representation levels, this
mapping is done trivially by replacing each occurrence of a
post-synthesis variable (corresponding to either a primary input
or a latch output) with its corresponding pre-synthesis variable.
We denote the mapped path sensitization function as hpre.

B. Finding Corresponding Paths

Given the path sensitization function hpre, expressed in
terms of the pre-synthesis netlist according to the previous
section, the algorithm begins by checking which paths in the

S

T

Fig. 3. Diamond of S and T : Intersection of fanout cone of S and fanin
cone of T (gray area)

pre-synthesis netlist are sensitized by hpre. Denote S and T
as the pre-synthesis signals which correspond to the starting
and ending points of the path, respectively. Note that since the
two representation levels of the design are combinationally
equivalent, S and T can be easily located. Only paths starting
with S and ending in T are candidates for being corresponding
to the given path. Other paths need not be checked at all. Thus,
only a small portion of the logic, called the diamond of S and
T , is analyzed in this step. The diamond of S and T is defined
as a set of signals obtained by taking the intersection of the
combinational fanout signals of S and the combinational fanin
signals of T , both in the pre-synthesis netlist. See Figure 3 for
an illustration.

For a path to be sensitized by hpre, it means that S is
observable to T through all the path signals. Thus in order
to check which paths are sensitized, the algorithm checks at
which signals in the diamond of S and T , S is observable
under hpre. This is accomplished as followed: for each net n
in the diamond of S and T , f(n), the Boolean function rep-
resenting n is computed. Then the algorithm checks whether:

∂g

∂S
6= 0 (1)

where g ≡ f(n) ∧ hpre.

In case Equation 1 evaluates to false, S cannot propagate
to n under hpre, thus all paths starting with S and passing
through n cannot correspond to the original path. Otherwise,
there exists a condition under which S is observable at n,
making n a candidate net for being part of some pre-synthesis
path which correspond to the post-synthesis one. In rare cases
the check of Equation 1 may result false for all the nets in
the diamond of S and T . This can occur due to S not being
observable at T , i.e. there are some redundancies in the circuit,
or because hpost has no truth assignments. In the latter case
the algorithm finds a candidate false path, i.e. the path is
functionally false, but not necessarily a real false path as our
path correspondence algorithm does not consider wire delays
[10].

Once all the nets in the diamond of S and T are classified
according to the check given in Equation 1, the final step is
to extract the actual paths which start with S and end in T
which correspond to the original critical path. This is done
by traversing the pre-synthesis netlist in a DFS order starting
from S and continuing the traversal only on nets for which
Equation 1 evaluates to true. Each time we encounter T during

the DFS traversal, the list of signals of the current DFS stack
comprise one corresponding path. We collect all paths this way
until the DFS traversal is complete.

IV. SAT-BASED IMPLEMENTATION

The path-correspondence algorithm described in Section III
heavily relies on Boolean reasoning. In particular, it employs
the notion of symbolic evaluation with the use of symbolic path
sensitization function and the Boolean difference operator. The
algorithm can be readily implemented using Binary Decision
Diagrams (BDDs) [11]. However, in order to achieve better
efficiency and scalability, we describe in this section how those
ideas can be implemented using a Sat solver.

The main challenge in implementing the algorithm using
a Sat solver is to efficiently encode the path sensitization
function, as well as the conditions which express the checks
according to Equation 1. Naively, one could implement the
Boolean difference operations which are involved in the com-
putation directly according to definition, that is by Xoring
the two cofactors of each Boolean function. This is, however,
highly inefficient, especially when a distinct application of the
Boolean difference operator is required for each path signal
and for each net in the diamond of S and T . Instead, in our
implementation we use dual-rail encoding [5] for describing
the observability constraints expressed by the Boolean differ-
ence formulation. Both the pre-synthesis netlist and the post-
synthesis netlist are first transformed to dual-rail encoding
over the domain {0, 1, v̄, v} to efficiently support symbolic
evaluation using a Sat solver.

The general flow of our Sat-based path-correspondence
algorithm is depicted in Algorithm 1. The inputs to the
algorithm are the two netlist representations already in dual-
rail encoding, a mapping between netlists input and latch
points (M) and the path to be analyzed (P). The algorithm
produces a set containing all nets in the diamond of S and
T which pass the check of Equation 1. The fanin cone in
the post-synthesis netlist is first encoded to CNF in lines 3-4.
We used the logic clausification scheme described by Tseitin
in [12] in our implementation. The constraints expressed by
the path sensitization function are encoded in lines 5-7, by
constraining the dual-rail domain bit (see Section II) of each
path signal to be 1, that is enforcing it to be a symbol. Note
that S, the starting point of the path is also included in P .
Constraining all the domain bits of the path signals to 1 is
equivalent to requiring that S will propagate through all those
path signals, equivalently to constructing the conjunction of
Boolean difference functions of the path signals. The polarity
of S (i.e. its value bit) remains unconstrained.

Next, the fanin cone of the signal T in the pre-synthesis
netlist is encoded to CNF in line 10. Now we have two sets of
CNF clauses: the first describes the path-sensitization function
and the second originated from the pre-synthesis fanin cone
of T . We correlate the two sets using the input and latch
output signals map M in lines 13-15, by encoding a pairwise
equivalence constraint for each logic input which appears in
the two cones of logic. Note that preIns 4 preOuts (the
symmetric difference) may not necessarily be empty, that is
some inputs may appear in one cone of logic but not in the
other. In this case those input nets are left uncorrelated and

Algorithm 1 Sat-based path correspondence
Input: preNL, postNL, P : critical path, M : {E × E} /*

input and latch boundary mapping */
Output: σ : a set of nets

1: σ ← ∅
2: CNF← ∅
3: Tpost ← endingPointOf(P, postNL)
4: CNF← CNF ∪ encodeToCnf(Tpost)
5: for all n ∈ P do
6: CNF← CNF ∪ (domainBitOf(n) = 1)
7: end for
8: Spre ← startingPointOf(P, preNL,M)
9: Tpre ← endingPointOf(P, preNL,M)

10: CNF← CNF ∪ encodeToCnf(Tpre)
11: preIns← inputsOf(Tpre) /* combinational input nets */
12: postIns← inputsOf(Tpost) /* combinational input nets */
13: for all i ∈ preIns ∩ postIns) do
14: CNF← CNF ∪ correlateInput(i,M, preNL, postNL)
15: end for
16: for all i ∈ (preIns ∪ postIns)\S) do
17: CNF← CNF ∪ (domainBitOf(i) = 0)
18: end for
19: for n ∈ diamondOf(Spre, Tpre) do
20: res← callSat(CNF, domainBitOf(n) = 1)
21: if res = SAT then
22: σ ← σ ∪ n
23: end if
24: end for

treated as non-deterministic inputs. The equivalence constraint
is encoded only for the value bit of each input.

All input nets which are not S are encoded to be over
the Boolean domain only, by setting their domain bit to be
0 (lines 16-18). This way we ensure that only S is encoded
as symbolic, which guarantees that the symbolic evaluation
is modeled correctly using the dual-rail encoding with its
extended gate operators.

The last step of the algorithm is to check which nets in
the diamond of S and T can observe the symbol of S under
the path-sensitization constraints. This check, shown in lines
19-24, is performed using a Sat solver. In our implementation
we used MiniSat [13]. In each iteration we ask the solver to
find an assignment in which the domain bit of the current net
is constrained to 1. Since S is the only symbol in the given
CNF (all other inputs were constrained to be Boolean), finding
a true assignment for the given CNF instance means that S is
observable at this net under the path-sensitization function. In
our implementation we used MiniSat incrementally by sending
the CNF only once before the last for loop, and calling it each
iteration with an assumption vector containing the positive
literal of the domain bit of the current net. All the nets adhering
to the check of Equation 1 are collected in line 22 into σ and
returned by the procedure. Finally, the actual corresponding
paths are constructed based on the nets in σ as was described
in the end of Section III-B.

V. RESULTS

To evaluate the effectiveness of our algorithm, we applied
it on synthesis results of 21 different IBM design blocks,

Fig. 4. Total paths in diamond vs. paths marked by our algorithm

belonging to two high-end processors. The examples were
chosen to represent designs at various project levels, such
that we would have both mature designs with relatively low
number of timing violations and designs at their early stages
that may have a higher number of longer critical paths. In order
to make sure that our algorithm implementation is correct, we
hand-validated the path-correspondence results of many timing
problems to make sure that they point to the correct parts in the
RTL. This section, however, contains quantitative validation of
our algorithm. The algorithm was incorporated into an in-house
synthesis flow. In this flow, the pre-synthesis netlist was saved
just after the RTL elaboration, i.e a technology independent
netlist. The post-synthesis netlist, technology mapped, was also
used for the analysis. For each of the 21 designs, an end-point
report was generated by the synthesis tool (in terms of the post-
synthesis netlist), listing the worst slack paths up-to some given
slack threshold. Overall our benchmark set has total of 13351
critical paths. A pre-synthesis netlist diamond is considered as
trivial if it consists of a single path connecting its endpoints.
Obviously there is no need to run our path correspondence
algorithm on these cases. In our measurements, about a half
of the diamonds were trivial. It is worth noting that about 6%
out of the total paths were classified as functionally false paths.

Figure 4 shows an overall view of the path counts for all
the non-trivial diamonds before and after applying our path-
correspondence algorithm. The solid line shows the path count
in the original pre-synthesis diamonds while the dashed line
shows the number of paths marked by our algorithm for each
case. Each point on the x axis represents a critical path and the
actual count numbers are given in the y axis, in logarithmic
scale. Note that the values of the original path counts and the
number of marked paths were separately sorted, so the two

Fig. 5. Average number of paths in the logic diamond vs. number of marked
paths, per design

Fig. 6. Total statements in diamond vs. statements marked by our algorithm

curves on the diagram do not correlate, but rather demonstrate
the quantitative comparison between the two parameters over
the entire data set. In the vast majority of the non-trivial cases,
our algorithm managed to significantly reduce the number of
paths to examine: out of 3649 cases where the number of paths
to examine exceed 5, 3087 cases (84%) were reduced to have
only 5 or fewer paths to examine by our algorithm. In 3418
cases, our algorithm managed to mark a single path out of a
non-trivial diamond.

Figure 6 shows similar quantitative comparison in terms
of the source code RTL statements. From user perspective, it
is convenient to show the corresponding paths in terms of a
collection of RTL statements. Since the pre-synthesis netlist
retain the RTL signal names and most of its structure, it is
fairly straight forward to perform back-annotation from it to
the RTL itself. Thus, one of our path-correspondece algorithm
outputs is the RTL statements (e.g. concurrent assignments)
related to the signals of the corresponding paths. From our
experience, it is fairly difficult to visualize (and understand)
a logic diamond that contains more than a dozen of RTL
statements. Before applying the algorithm there are 3177 cases
having more than 15 statements in the diamond out of which
the algorithm was able to reduce 2511 to have 15 or less
statements (79%).

To further understand how our algorithm behaves on
different types of designs, we show, for each design, the
average reduction in the number of paths and in the number
of statements in Figure 5 and Figure 7, respectively. For
example, designs number 2 and 3 include complex arithmetic
computation logic written using low-level statements. In these
cases, our algorithm was able to find very few corresponding
paths in each diamond. On the other hand, designs 8-9 are data

Fig. 7. Average number of RTL statements in the logic diamond vs. number
of marked RTL statements, per design

Fig. 8. Run time distribution

path logic written using higher level statements which exhibit
small number of paths and statements in the pre-synthesis
diamond.

Next, we examined the run time behavior of our algorithm.
For our tests, we used a dedicated machine with Intel 2.33
GHz Core 2 Duo processor and 4GB of RAM, running 64
bits RedHat 5.6 Linux. Figure 8 shows the distribution of the
run time, given in milliseconds, over the cases in our data
set. In the vast majority of the cases, our path-correspondence
algorithm took less than a second, which makes it very suitable
for integration into an interactive timing debug environment.
The fact the algorithm is very efficient, even on relatively
large cones, i.e. on large CNF instances, is attributed to the
incremental nature of the problem and the way MiniSat was
used incrementally. Out of 13351 paths, only in 47 cases it took
more than 5 seconds. The longest one took about 35 seconds.

Finally, in order to visually illustrate the merit of our path-
correspondence algorithm, we show some non-trivial diamond
in Figure 9 in form of a graph. The starting point of the path
is the left square, the ending point is the right square and each
internal round circle represents a concurrent RTL assignment
statement. This logic diamond consists of 29 RTL statements
which form 27 possible paths. Our path-correspondence algo-
rithm found 1 corresponding path, marked in dark nodes.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a novel approach for dealing
with the problem of correlating a timing problem expressed
in terms of post-synthesis netlist, to the pre-synthesis de-
sign representation (RTL). We described a Sat-based path-
correspondence algorithm which is based on functional analy-
sis of the design, thus making it robust to name mangling and
structural changes a design may undergo during the synthesis
process. Experimental results show that our algorithm is both
efficient and effective in reducing the number of paths, and
correspondingly the number of RTL statements, one would
have to consider when debugging a given timing problem. The
algorithm can be easily incorporated into existing synthesis
flows as a post-processing step, requiring the pre-synthesis
and post-synthesis netlists and primary input and latch output
correspondence as its inputs.

In the future we plan to enhance even more the path
reduction strength of our algorithm by adding constraints
that can prune paths which do not correspond to the given
critical path but are still sensitizable by the given path sen-
sitization function. Furthermore, we plan to investigate how
our algorithm can help solving other problems such as ECO
localization and general back-annotation.

Fig. 9. Example of path-correspondence result: corresponding paths are
marked in dark nodes

REFERENCES

[1] R. Berridge, R. Averill, A. E. Barish, M. Bowen, P. Camporese,
J. DiLullo, P. Dudley, J. Keinert, D. W. Lewis, R. D. Morel, T. Rosser,
N. Schwartz, P. Shephard, H. Smith, D. Thomas, P. Restle, J. Ripley,
S. Runyon, and P. Williams, “Ibm power6 microprocessor physical
design and design methodology,” IBM Journal of Research and De-
velopment, vol. 51, no. 6, pp. 685–714, 2007.

[2] R. Brayton, Logic Minimization Algorithms for VLSI
Synthesis, ser. a Kluwer international series in engineering
and computer science: VLSI, computer architecture, and
digital signal processing. Springer, 1984. [Online]. Available:
http://books.google.co.il/books?id=VT2kzZBPvz4C

[3] G. D. Hachtel and F. Somenzi, Logic synthesis and verification algo-
rithms. Springer, 2006.

[4] A. Mishchenko and R. Brayton, “Recording synthesis history for
sequential verification,” in Proceedings of the 2008 International
Conference on Formal Methods in Computer-Aided Design, ser.
FMCAD ’08. Piscataway, NJ, USA: IEEE Press, 2008, pp. 4:1–4:8.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1517424.1517428

[5] T. Schuele and K. Schneider, “Three-valued logic in bounded model
checking,” in Formal Methods and Models for Co-Design, 2005.
MEMOCODE ’05. Proceedings. Third ACM and IEEE International
Conference on, 2005, pp. 177–186.

[6] H.-C. Chen and D.-C. Du, “Path sensitization in critical path problem,”
in Computer-Aided Design, 1991. ICCAD-91. Digest of Technical
Papers., 1991 IEEE International Conference on, 1991, pp. 208–211.

[7] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in Design Automation Conference, 1997. Proceedings of the
34th, 1997, pp. 263–268.

[8] Y. Matsunaga, “An efficient equivalence checker for combinational
circuits,” in Design Automation Conference Proceedings 1996, 33rd,
1996, pp. 629–634.

[9] S.-L. Huang, W.-H. Lin, P.-K. Huang, and C.-Y. Huang, “Match and
replace: A functional eco engine for multierror circuit rectification,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 32, no. 3, pp. 467–478, 2013.

[10] J.-J. Liou, A. Krstic, L.-C. Wang, and K.-T. Cheng, “False-path-
aware statistical timing analysis and efficient path selection for delay
testing and timing validation,” in Design Automation Conference, 2002.
Proceedings. 39th, 2002, pp. 566–569.

[11] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677–691, 1986.

[12] G. S. Tseitin, “On the complexity of derivations in the propositional
calculus,” Studies in Mathematics and Mathematical Logic, vol. Part II,
pp. 115–125, 1968.

[13] N. Eén and N. Sörensson, “An extensible SAT-solver,” Theory and
Applications of Satisfiability Testing (SAT), vol. 2919, pp. 333–336,
2003. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-24605-
3 37

