
General and Efficient Response Time Analysis for
EDF Scheduling

Nan Guan and Wang Yi

Northeastern University, China
Uppsala University, Sweden

Abstract—Response Time Analysis (RTA) is one of the key
problems in real-time system design. This paper proposes new
RTA methods for EDF scheduling, with general system models
where workload and resource availability are represented by
request/demand bound functions and supply bound functions.
The main idea is to derive response time upper bounds by
lower-bounding the slack times. We first present a simple over-
approximate RTA method, which lower bounds the slack time by
measuring the “horizontal distance” between the demand bound
function and the supply bound function. Then we present an
exact RTA method based on the above idea but eliminating the
pessimism in the first analysis. This new exact RTA method, not
only allows to precisely analyze more general system models than
existing EDF RTA techniques, but also significantly improves
analysis efficiency. Experiments are conducted to show efficiency
improvement of our new RTA technique, and tradeoffs between
the analysis precision and efficiency of the two methods in this
paper are discussed.

I. INTRODUCTION

Response Time Analysis (RTA) is one of the most important
problems in real-time system design. RTA is not only useful
to perform local schedulability test on single-processors, but
also plays important roles in the analysis of more complex
real-time systems, e.g., distributed systems where the com-
pletion of a task generates outputs triggering computation or
communication tasks on subsequent infrastructures [15], [6],
[11], [12]. Since the completion time of the preceding task
decides the release times of subsequent tasks, one can use
RTA to bound the completion time of each task and decide
the “release jitter” of the subsequent tasks.

EDF is a widely used real-time scheduling algorithms. Spuri
[14] developed EDF RTA techniques for periodic tasks with
extensions of jitters and sporadic bursts. It turns out that the
RTA problem of EDF is more difficult than that of fixed-
priority scheduling. Although RTA for fixed-priority schedul-
ing has been extended to general workload and resource
models represented by request bound functions (arrival curves)
and supply bound functions (service curves) [10], no such
work has been done for EDF to our best knowledge.

Spuri’s EDF RTA technique relies on enumerating a (typi-
cally very large) number of concrete release patterns as the
candidates of the worst-case scenario. On one hand, this
requires high computational effort. On the other hand, this
complicates its extension to more expressive models, as the

technique needs to be customized to include new features of
each new model. This is particularly hindering when workload
and resource is specified in a rather abstract way (like the one
considered in this paper).

In this paper we present EDF RTA methods for general mod-
els with workload and resource represented by request/demand
bound functions and supply bound functions. These general
models are used in design and analysis frameworks such as
Real-Time Calculus [5] and SymTA/S [12]. The key insight is
that in EDF it is easier to derive response time upper bounds
indirectly by lower-bounding the slack times. This not only
allows us to perform RTA with general workload and resource
models, but also can greatly improve the analysis efficiency.

More specifically, we first present a simple over-
approximate RTA method, which lower bounds the slack times
by measuring the “horizontal distance” between the demand
bound function and the supply bound function. Then we
present an exact RTA based on the similar idea but eliminating
the pessimism in the first analysis. Experiments show that
the new RTA technique can greatly improve the analysis
efficiency comparing with Spuri’s RTA. We also discuss the
tradeoff between the analysis precision and efficiency of the
two methods proposed in this paper.

II. PRELIMINARIES

A. Resource Model
We consider a processing platform with capacity character-

ized by a supply bound function sbf(δ) [4], [13], which quan-
tifies the minimal cumulative computation capacity provided
by the processing platform within a time interval of length δ.
The supply bound function is essentially the same as the lower
service curve in Real-Time Calculus [5].

sbf is a continuous function. The pseudo-inverse function of
sbf, denoted by sbf, characterizes the minimal interval length
to provide a certain amount of computation capacity:

sbf(x) = min{δ|sbf(δ) = x}

Figure 1-(a) illustrates sbf and its pseudo-inverse sbf of a
TDMA resource with a period of 4 and slot size of 3.

B. Workload Model
The task system τ consists of N independent tasks

{τ1, τ2, · · · , τN }. Each task τi releases infinitely many jobs.978-3-9815370-2-4/DATE14/ c©2014 EDAA

(a) sbf and sbf (b) rbf and dbf

Fig. 1. Illustration of sbf, sbf, rbf and dbf.

We use Jji to denote the jth job released by task τi. For
simplicity, we also omit the superscript and use Ji to denote
a job released by τi when the context is clear.

Each task τi has a relative deadline Di, which specifies the
requirement that the computation demand of each job must be
finished no later than Di time units after its release time.

The workload of a task τi is characterized by a request
bound function rbfi(δ) [1], which quantifies the maximum
cumulative execution requests that could be generated by jobs
of τi released within a time interval of length δ.

rbfi is a staircase function, and it is essentially the same
as the upper arrival curve in Real-Time Calculus [5] and
SymTA/S [12]. As a common assumption in EDF scheduling
analysis [2], [14], there exists a bounded number L′ such that

rbf(L′) ≤ sbf(L′)

which guarantees that in long term the system source supply is
no smaller than the total execution demand. We let L = L′+D
where D is the largest relative deadline among all tasks.

In the analysis of EDF scheduling, an important concept is
the demand bound function dbfi [2], which can be obtained
by horizontally “shifting” rbfi rightwards for Di time units:

dbfi(δ) =

{
0 δ < Di

rbfi(δ −Di) δ ≥ Di

(1)

Figure 1-(b) illustrates the rbf and dbf of a sporadic task
[2] with period of 4, relative deadline of 3 and worst-case
execution time of 2. We define sbf(δ) and dbf(δ) as the total
demand bound function of the system:

rbf(δ) =
∑
∀τi∈τ

rbfi(δ) and dbf(δ) =
∑
∀τi∈τ

dbfi(δ)

Finally, we assume the number of points where rbf and dbf
“steps” in a unit-length interval is bounded by a constant, to
exclude the case that rbf/dbf curves are “infinitely complex”.

C. EDF Scheduling and Worst-case Response Time
When a job of task τi is released at time t, its absolute

deadline is at t +Di. The task system is scheduled by EDF
algorithm, which assigns priorities to active jobs (jobs that
have been released but not finished yet) according to their
absolute deadlines: the earlier deadline and higher priority. In
case of multiple active jobs having the same absolute deadline,
the EDF scheduler may prioritize any of them for execution.
The aim of this paper is to calculate the worst-case response
time Ri of each task:

Definition II.1 (Worst-Case Response Time). The worst-case
response time Ri of a task τi is the length of the longest
interval from a job’s release till its completion.

Note that we allow the case of Ri > Di. A job finishes after
its absolute deadline is called a tardy job [3]. Although a tardy
job cannot finish computation before the expected deadline, it
is still interesting to know its tardiness, i.e., how much it lags
behind, in many soft real-time systems [3], [8].

D. Review of Spuri’s RTA for EDF
Spuri [14] introduced a RTA method for sporadic tasks

with jitters and sporadic bursts on a fully dedicated processor
(sbf(δ) = δ). For simplicity of presentation, we review Spuri’s
RTA technique with periodic tasks. Details about handling
jitters and sporadic bursts can be found in [14].

Each task τi is characterized by three parameters: worst-
case execution time Ci, relative deadline Di and period Ti.
The worst-case response time Ri of τi is calculated by:

Ri = max
∀p∈P,a∈Ap,

Ri(a, p)
where
P = [1, dL/Tie]
Ap = {x− (p− 1)Ti −Di|x ∈ X ∩ [(p− 1)Ti +Di, pTi +Di]}

X =
⋃

∀τj∈τ,q∈[1,d L
Tj
e]

{(q − 1)Tj +Dj}

Ri(a, p) = w(a, p)− a− (p− 1)Ti

and w(a, p) is the minimal solution of equation

w(a, p) = pCi +
∑
τj 6=τi

Wj(w(a, p), a+ (p− 1)Ti +Di)

where Wj(x, y) = min(d xTj
e, by−Dj

Tj
c+ 1) · Cj .

Spuri’s analysis is rather complicated, even with the simple
sporadic task and fully dedicated resource model. Extending
it to more expressive models could be difficult and error-
prone. On the other hand, Spuri’s analysis contains tremendous
redundant computation, which leads to low analysis efficiency.
The overall complexity of Spuri’s RTA to a periodic task set
is O(NT L′2), where N is the total number of tasks, T is the
maximal period among all tasks and L′ is the maximal busy
period size. The target of this paper is to overcome the above
problems, by providing EDF RTA techniques that are more
general, more efficient and easier to understand and remember.

III. OVER-APPROXIMATE RTA
In this section, we first introduce a simple over-approximate

RTA method. After presenting the analysis, we also use an
example to explain why it may over-estimate the response
time. Then in Section IV, we will reuse these insights and
present our second RTA method which yields exact results.

Unlike traditional RTA techniques [7], [9], [14], our RTA
method bounds the the response times indirectly: it calculates
a lower bound on the worst-case slack time of the task, by
which the response time upper bound can be easily obtained.

Definition III.1 (Worst-Case Slack Time). The worst-case
slack time Si of a task τi is the length of the shortest interval
from a job’s completion till its absolute deadline.

The task’s worst-case response time is calculated by:

Ri = Di − Si
Note that Ri is greater than Di when Si is negative.

We can safely lower-bound the slack time of each task by:

Theorem III.2. The slack time of task τi is bounded from
below by

S∗i = min
∀δ:L≥δ≥Di

{
δ − sbf(dbf(δ))

}
(2)

Proof: We prove the theorem by contradiction. Suppose
at runtime task τi has a job Ji whose slack time, denoted by
S′, is strictly smaller than S∗i . Let tr, td and tf be the release
time, absolute deadline and finish time of Ji respectively. Let
to be the earliest time instance before tf such that at any time
instant in [to, tf] there is at least one active job with deadline
no later than td. Let ` = td − to.

The total amount of workload (of jobs with deadline no
later than td) in [to, td] is bounded by dbf(`), and it takes the
resource for at most sbf(dbf(`)) time units to provide enough
capacity to finish it. So we know there exist a time point in
[to, to+sbf(dbf(`))] at which the processor is idle or executing
jobs with deadline later than td. By the definition of to we
know that this time point is not in [to, tf), so

to + sbf(dbf(`)) ≥ tf (3)

Since Ji itself is an active job at tr, by the definition of to
we know to ≤ tr and thus ` ≥ Di. On the other hand, the
length of (to, tr] is bounded by L′ and the length of (tr, td]
is bounded by D, so ` ≤ L. In summary, L ≥ ` ≥ Di. Then
by (2) we have S∗i ≤ ` − sbf(dbf(`), and by S′ < S∗i we
have S′ < `− sbf(dbf(`), i.e., td − S′ > td − `+ sbf(dbf(`).
Then we apply substitutes to = td− ` and tf = td−S′ to get
tf > to + sbf(dbf(`), which contradicts (3).

Intuitively, the slack time lower bound stated in the above
theorem is the minimal “horizontal distance” between dbf and
sbf (in the range of δ ≥ Di). Note that if dbf(δ) is larger than
sbf(δ) for some δ > Di, then S∗i is negative.

Example III.3. Suppose task set τ consists of three sporadic
tasks τ1, τ2 and τ3 with parameters as follows: {C1 = 1, T1 =
D1 = 4}, {C2 = 1, T2 = D2 = 12} and {C3 = 3, T3 =
D3 = 16}. The task set is scheduled by EDF on a TDMA
resource with period of 4 and slot size of 3. By Theorem III.2
we obtain the slack time lower bound of each tasks: S∗1 = 2
and S∗2 = S∗3 = 4, as illustrated in Figure 2-(a). So the worst-
case response time of τ1, τ2 and τ3 is bounded by D1−2 = 2,
D2 − 4 = 8 and D3 − 4 = 12, respectively.

The slack time lower bound S∗i is safe, but in general
pessimistic, as shown in the following example.

Example III.4. When we analyze τ3 in the above example,
the minimal horizontal distance between sbf(δ) and dbf(δ)

(a) The computation of S∗
i

(b) The pessimism of S∗
i

Fig. 2. Illustration of Example III.3 and III.4.

(only considering the part on dbf(δ) with δ ≥ D3) occurred
at δ = 16, with dbf(16) = 8 and sbf(dbf(16)) = sbf(8) = 12.
The slack bound of τ3 is 12 − 8 = 4, and its response time
bound is D3−4 = 12. However, if we simulate the worst-case
workload in a time interval of length 16 as in Figure 2-(b), the
response time is actually 11 (which is indeed the worst-case
response time of τ3). This is because, although the workload
of the last job of τ1 is included in dbf(16), this job is actually
released after the finish time of the analyzed job of τ3 and
thus does not really contribute to the interference.

Special Case where S∗i is Exact
Although S∗i is generally a pessimistic bound, it is indeed

the exact answer in the following special case:

Theorem III.5. S∗i is the exact worst-case slack time of task
τi if S∗i < 0.

Due to space limit we omit the formal proof but only
provide the intuition: According to the standard dbf-based
EDF schedulability test [2], a task τi is not schedulable iff
sbf and rbf cross each other at some point no smaller than
Di, i.e., S∗i < 0. When a job Ji finishes after its deadline, the
jobs with release time and deadline in [to, td] all can interfere
with Ji. So the over-estimation problem in the above example
does not exist, and dbf(td − to) precisely quantifies the total
workload that needs to be finished before Ji is done.

When S∗i is negative, τi is a tardy task. Theorem III.5 says
that |S∗i | is the exact worst-case tardiness of a tardy task τi.

Algorithmic Implementation and Complexity
The computation of S∗i for different tasks are essentially

the same. The only difference is that for each task τi we only
need to visit δ no smaller than its Di. So we only need to
“scan” the curve dbf(δ) for one time, to compute the slack
time bounds of all tasks in τ .

Algorithm 1 shows the pseudo-code of the algorithm to
compute S∗1 , · · · , S∗N . For simplicity of presentation, we as-
sume all tasks have different relative deadlines, and tasks are
sorted in increasing order of their relative deadlines. The case

where multiple tasks have the same relative deadline can be
easily handled with minor revisions of the presented algorithm.
Intuitively, the algorithm first calculates the minimal “hori-
zontal distance” between dbf and sbf with δ values in each
segment [Di, Di+1), recorded by si. With these si, the slack
time bound of all tasks can be calculated in O(N) time.

1: s1 = s2 = · · · = sN = +∞
2: i = 1
3: for each candidate value of δ do
4: if δ ≥ Di+1 then
5: i← i+ 1
6: end if
7: si ← min(si, δ − sbf(dbf(δ)))
8: end for
9: for i← N · · · 1 do

10: S∗i ← si
11: si−1 ← min(si, si−1) // does not execute when i = 1
12: end for
13: return S∗1 , S

∗
2 , · · · , S∗N

Algorithm 1: Pseudo-code of the algorithm implementing
Theorem III.2.

Since sbf is continuous and dbf is a staircase function, the
candidate values of δ are the points in [D1,L] at which dbf(δ)
is not differentiable i.e., where dbf “steps”. So the number
of candidate values of δ is bounded by O(L) (recall that the
number of points where dbf “steps” in a unit length is bounded
by a constant). Moreover, the second for-loop iterates for N
times. So the overall complexity of Algorithm 1 is O(L+N).

IV. EXACT RTA

S∗i is a pessimistic slack time lower bound since it ignores
the fact that the workload released after the finish time of
the analyzed job should not be included into the interference
calculation. In this section we address this problem and present
an exact RTA method.

As presented in last section, S∗i is the exact worst-case slack
time if τi is a tardy task (S∗i is negative). So in this section
we focus on the case that τi is not tardy, i.e., it holds

∀δ ≥ Di : dbf(δ) ≤ sbf(δ) (4)

We first define a task’s mixed bound function:

Definition IV.1 (Mixed Bound Function). For any δ ≥ γ ≥
0, the mixed bound function of τi is defined as

mbfi(δ, γ) = min(dbfi(δ), rbfi(γ))

Figure 3 illustrates mbfi(δ, γ). We consider two time inter-
vals [to, to + δ] and [to, to + γ] which both start at time to.
mbfi(δ, γ) captures the workload of τi’s jobs that are released
in [to, to + γ] and with deadline no later than to + δ. In (a),
while dbf(δ) includes all of the five jobs, sbf(γ) only includes
the first four jobs since the last job is released after to+γ, so
mbfi(δ, γ) equals the total workload of the first four jobs. In

Fig. 3. Illustration of the mixed bound function mbfi(δ, γ).

(b), while all the three jobs are released in [to, to+ γ], dbf(δ)
excludes the last job as its deadline is later than to + δ.

We define the total mixed bound function of the system:

mbf(δ, γ) =
∑
∀τi∈τ

mbfi(δ, γ)

It should be noted that mbf(δ, γ) does not necessarily equal
min(dbf(δ), sbf(γ)). With this new function mbf(δ, γ), we can
compute a task’s exact worst-case slack time:

Theorem IV.2. The exact worst-case slack time of task τi is
computed by

Si = min
∀δ:L≥δ≥Di

max
∀γ:γ≤δ

{δ − γ |mbf(δ, γ) ≤ sbf(γ)} (5)

Proof: First, we show Si is well-defined in the sense that

{(δ, γ)|L ≥ δ ≥ Di ∧ γ ≤ δ ∧mbf(δ, γ) ≤ sbf(γ)} (6)

is not empty and thus (5) always returns an answer.
Let x be a number in [Di,L], then by (4) we know

dbf(x) ≤ sbf(x)⇒ mbf(x, x) ≤ sbf(x)
so any (δ, γ) s.t. L ≥ δ ≥ Di ∧ δ = γ is contained in (6).

In the following we prove Si is both a safe and tight lower
bound of τi’s slack time.

Safety: We shall prove that the slack time of any job re-
leased by τi is no smaller than Si. We prove it by contradiction.
Suppose Ji is a job of task τi with slack time S′ < Si. Let tr,
td and tf be the release time, absolute deadline and finish time
of Ji respectively. Let to be the earliest time instance before
tf such that at any time instant in [to, tf] there is at least one
active job with deadline no later than td. Let δ′ = td−to. Since
Ji is active at tr, we know to ≤ tr and thus δ′ ≥ Di. The
length of [to, tr] is bounded by L′ and the length of [tr, td] is
bounded by D, so δ′ ≤ L = L′+D. In summary, L ≥ δ′ ≥ Di.
Then by the definition of Si and S′ < Si we have

S′ < max
γ≤δ′
{δ′ − γ | mbf(δ′, γ) ≤ sbf(γ)}

Let γ′ be the smallest assignment of γ s.t. mbf(δ′, γ) ≤ sbf(γ)
(thus δ′ − γ is maximized), then we have
S′ < δ′ − γ′ ⇒ td − S′ > td − δ′ + γ′ ⇒ tf > to + γ′ (7)

On the other hand, since mbf(δ′, γ′) ≤ sbf(γ′), the workload
of all jobs released in [to, to + γ′] and with deadline no later
than to+δ′ = td have been finished by to+γ′, and particularly,
Ji has been finished by to + γ′, which contradicts (7).

Tightness: We shall construct a scenario where the slack
time of a job of τi is exactly Si. Let δ′ and γ′ be the
assignments of δ and γ that give the value of Si in (5). Let
each task release its first job at time to and release as much
workload as possible since then (following its rbfi). Moreover,
we move the release time of the last job of the analyzed task
τi released in [to, to + δ′ −Di], denoted by Ji, such that its

deadline aligns with to + δ′. Note that [to, to + δ′ − Di] is
well-defined since δ′ ≥ Di. Let Ji have the lowest priority
among all the jobs with deadlines at to + δ′. Since γ′ is the
assignment of γ maximizing δ′− γ with this particular δ′, we
know:

∀γ′′ < γ′ : mbf(δ′, γ′′) > sbf(γ′′) (8)

Under the particular release pattern described above,
mbf(δ′, γ′′) is the exact total workload of jobs (of all tasks)
released in [to, to+ γ′′) and having priority no lower than Ji.
By (8) we know to+γ

′ is the first time point after to at which
the processor is idle or executing jobs with priority lower than
Ji. Therefore Ji is finished exactly at to+γ′ and its slack time
equals δ′ − γ′, i.e., equals Si.

By examining (5) we can get a general property of EDF
scheduling concerning the relation of tasks’ relative deadlines
and worst-case slack times:

Corollary IV.3. For any two tasks τi and τj in a task set τ
scheduled by EDF, it holds

Di = Dj ⇒ Si = Sj and Di > Dj ⇒ Si ≥ Sj

Algorithmic Implementation and Complexity

1: s1 = s2 = · · · = sN = +∞
2: i = 1
3: for each candidate value of δ (in increasing order) do
4: if δ ≥ Di+1 then
5: i← i+ 1
6: end if
7: if δ − sbf(dbf(δ)) < si then
8: γold ← 0
9: γnew ← sbf(mbf(δ, 0))

10: while γnew 6= γold do
11: γold ← γnew
12: γnew ← sbf(mbf(δ, γold))
13: end while
14: si ← min(si, δ − γnew)
15: end if
16: end for
17: for i = N · · · 1 do
18: Si ← si
19: si−1 ← min(si, si−1) // does not execute when i = 1
20: end for
21: return S1, S2, · · · , SN
Algorithm 2: Pseudo-code of the algorithm implementing
Theorem IV.2.

A naive way to compute Si using (5) is enumerating
all the combinations of δ and γ candidate values satisfying
L ≥ δ ≥ Di and δ ≥ γ. This could be inefficient when
L is large. Algorithm 2 presents the pseudo-code for a more
efficient implementation.

Similar to Algorithm 1, Algorithm 2 also integrates the slack
time bounds computation of all tasks, using si to keep track of
the local minimum in each segment [Di, Di+1). Algorithm 2

Fig. 4. Speedup of our exact RTA comparing with Spuri’s method.

and 1 differ in the first for-loop. Two optimizations are applied
to speedup the analysis. Firstly, to compute

max
∀γ:γ≤δ

{δ − γ|mbf(δ, γ) ≤ sbf(γ)}

with a particular δ, we use the well-known iterative fixed-point
calculation technique [7] instead of searching over all possible
γ values (line 8 to 14).

Secondly, for each candidate value of δ, we first check
whether δ− sbf(dbf(δ)) is smaller than the current si. If not,
then we can safely skip further calculation regarding this δ
value. This is because δ − sbf(dbf(δ)) is a lower bound of
the slack time with this particular δ. If this lower bound is
already greater than si, then using mbf(δ, γ) to further refine
this bound (make it potentially bigger) will not yield a result
smaller than si. This optimizations is very effective in practise.
Typically, the worst-case slack time of a task occurs with
relatively small δ values. Since we check the δ candidates in
increasing order, we can obtain small slack time estimations
with smaller δ values, and skip the fixed-point computation
regarding γ with large δ values.

Similar to Algorithm 1, the candidate values of δ are the
points in [D1,L] where dbf “steps”. The overall complexity
of Algorithm 2 is O(L2 +N).

V. EVALUATION

A. Analysis Efficiency Improvement over Spuri’s RTA
We first evaluate the analysis efficiency improvement of the

exact slack (response) time analysis in Section IV comparing
with Spuri’s method in [14]. We adopt the sporadic task model
[2] and a fully dedicated processor (sbf(δ) = δ), with which
Spuri’s method is also applicable. Tasks are randomly gener-
ated, with the periods (Ti) uniformly distributed in [100, 1000],
utilizations (Ci/Ti) uniformly distributed in [0.01, 0.2], and
the ratio between the relative deadline and period (Di/Ti)
uniformly distributed in [0.8, 1]. We generate task sets as
follows: A task set of 2 tasks is generated and analyzed by both
our exact RTA and Spuri’s RTA. Then we increase the number
of tasks by 1 to generate a new task set. This process is iterated
until the total utilization exceeds 100%. The whole procedure
is then repeated, starting with a new task set of 2 tasks, until
a reasonably large sample space has been generated.

Figure 4 shows the speedup of our new exact RTA over
Spuri’s. For each task set, the speedup is the ratio between
the analysis time by Spuri’s RTA and that by our exact RTA.
A point in the curve represents the average speedup of all

Fig. 5. Comparison of the two RTA methods of this paper.

task sets generated in a certain scope of system utilization
corresponding to the abscissa.

From Figure 4 we can see that the analysis efficiency
improvement of our new RTA over Spuri’s RTA is significant,
especially with task sets of high total utilizations. The reason
is twofold. First, Spuri’s RTA analyzes each task separately,
while our RTA integrates the analysis of all tasks and only
“scans” the demand bound function curve once. A task set
with higher utilization typically contains more tasks, so the
efficiency improvement of our RTA is greater. Second, when
the task set’s total utilization is close to 100%, L is typically
very large. The efficiency of Spuri’s RTA is sensitive to
L: the number of different combinations to be checked by
Spuri’s RTA grows rapidly as L increases. However, thanks
to the optimization of skipping the refinement with δ values
satisfying δ−sbf(dbf(δ)) < si (see the last second paragraph
of Section IV), our exact RTA can skip the computation
between line 8 and line 14 of Algorithm 2 for most large
δ values, and thus is less sensitive to the growth of L.

B. Comparison of the Two Methods in This Paper
In the following we compare the two RTA methods of this

paper, regarding their efficiency and precision. We use the
same strategy as above to generate task sets. In Figure 5, each
point on curve overestimation represents the average ratio be-
tween the response time bounds obtained by the approximate
RTA and by the exact RTA for task sets in a certain total
utilization scope. Each point on curve speedup represents the
average ratio between the analysis time of the exact RTA and
the approximate RTA in a certain total utilization scope.

By curve overestimation we see that the precision of the
approximate RTA increases as the total utilization increases.
This is because in task sets with higher total utilization, tasks’
response times are typically closer to relative deadlines, so it
has lower chance for the approximate RTA to mis-include the
workload released after the analyzed job’s finish time.

By curve speedup we see that the efficiency gap between
the exact and the approximate RTA methods is smaller for task
sets with either very low or very high total utilization. When
the task set has very low total utilization, the iterative fixed-
point calculation regarding γ typically converges very quickly,
so the analysis time by the two methods are close. When the
task set has very high total utilization, L is typically very
large. As we discussed in last subsection, the exact RTA skips
the fixed-point calculation regarding γ for a large portion of

δ values. In other words, for most δ values the computation
effort of both methods are the same, so the gap between their
overall analysis time is small.

From the above results we can see that as the total utilization
increases, the approximate RTA becomes more precise and
gets more rewards in efficiency. For tasks with very high total
utilization (≥ 80%), the approximate RTA is almost as precise
as the exact RTA, but at the same time the efficiency of the
exact RTA is also catching up. It’s up to the system designer to
choose the proper analysis method according to their efficiency
and precision requirements. But at least one can draw a clear
conclusion that for task systems with very low total utilization,
it does not make much sense to use the approximate RTA as it
leads to rather imprecise results but benefits little in efficiency.

VI. CONCLUSIONS

RTA is not only useful in local schedulability test, but also
lends itself to many complex design and analysis problems.
This paper proposes new RTA methods for EDF, with general
system models represented by request/demand bound func-
tions and supply bound functions. Our new RTA method, not
only allows to precisely analyze more general system models
than existing EDF RTA techniques, but also significantly
improves analysis efficiency.

ACKNOWLEDGEMENT

This work is partially supported by NSF of China (Grant
No. of 61300022 and 61370076).

REFERENCES

[1] S. Baruah. Dynamic- and Static-priority Scheduling of Recurring Real-
time Tasks. In Real-Time Systems, 2003.

[2] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In RTSS, 1990.

[3] U. Devi and J. Anderson. Tardiness bounds for global EDF scheduling
on a multiprocessor. In RTSS, 2005.

[4] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework
using edp resource models. In RTSS, 2007.

[5] L. Thiele et. al. A framework for evaluating design tradeoffs in packet
processing architectures. In DAC, 2002.

[6] M. Gonzalez Harbour J. Palencia Gutierrez. Schedulability analysis for
tasks with static and dynamic offsets. In RTSS, 1998.

[7] M. Joseph and P.K. Pandya. Finding response times in a real-time
system. In The Computer Journal, 1986.

[8] C. Kenna, J. Herman, B. Brandenburg, A. Mills, and J. Anderson. Soft
real-time on multiprocessors: Are analysis-based schedulers really worth
it? In RTSS, 2011.

[9] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In RTSS, 1990.

[10] V. Pollex, S. Kollmann, and F. Slomka. Generalizing response-time
analysis. In RTCSA, 2010.

[11] K. Richter. Compositional scheduling analysis using standard event
models. In Ph.D. thesis, Technical University of Braunschweig, 2004.

[12] J. Rox and R. Ernst. Compositional performance analysis with im-
proved analysis techniques for obtaining viable end-to-end latencies in
distributed embedded systems. In STTT, 2013.

[13] I. Shin and I. Lee. Compositional real-time scheduling framework. In
RTSS, 2004.

[14] Macro Spuri. Analysis of deadline scheduled real-time systems. In
RR-2772, INRIA, France, 1996.

[15] K. Tindell and J. Clark. Holistic schedulability analysis for distributed
hard real-time systems. In Microprocessing and Microprogramming,
1994.

