
Acceptance and Random Generation of Event Sequences
under Real Time Calculus constraints

Kajori Banerjee and Pallab Dasgupta
Dept. of Computer Science & Engineering, Indian Institute of Technology Kharagpur, India - 721302

Emails: {kajori.banerjee,pallab}@cse.iitkgp.ernet.in

Abstract— Simulation platforms for complex networked real
time systems require random input pattern generators for
simulating input distributions. They also require monitors for
checking whether the output of the system satisfies the desired
throughput. In this paper we study the acceptance and generation
problems in a setting where the constraints defining the input
distributions as well as the constraints defining the expected
output distributions are specified in real time calculus (RTC).
We prove that event patterns satisfying a given set of RTC
constraints can be described by a ω-regular language. We propose
a method for constructing an automaton that can be used for
online generation of random admissible event patterns. This is
significant, considering the known problems of deadlock in less
informed generators for streams satisfying RTC constraints.

I. INTRODUCTION

Model based evaluation of complex architectures for real
time embedded systems has become an important requirement
in practice. The model of the system is simulated with con-
strained random inputs and the output of the system is stud-
ied for conformance with expected performace requirements.
Traditionally input distributions have been described through
probability distributions (such as Poisson, Exponential, Erlang,
etc) and outputs have been monitored using statistical metrics
(such as worst case latency, average throughput, etc).

With the increasing complexity of networked embedded
systems, it is not always possible to fit complex input and
service patterns into standard probability distributions. In
recent times, Real Time Calculus (RTC) [1] has been used
extensively to provide a succinct summary for event patterns
in complex networked embedded systems [2]–[6]. The primary
motivation for this has been to facilitate analytical evaluation
of the system.

We believe that RTC can also be used as a specification
language, both for specifying constraints on input patterns
(which can be used to constrain the random input generator in
a simulation platform) and for specifying requirements that the
output patterns must satisfy (which can be used to monitor the
output during simulation). To enable the former, we require a
random timed sequence generator from RTC constraints, and
for the latter we require an acceptor.

An RTC constraint specifies a lower and upper bound on
the number of events in a given interval of time. A finite RTC
specification, which consists of a finite set of RTC constraints.

Automatic extraction of RTC constraints from a given set of
timed event patterns is a well studied problem [7].

The extracted RTC constraints can be used to generate
inputs in a constrained random simulation environment for a
target architecture. For example, finite sets of RTC constraints
on various types of activities in a cell phone (such as calls,
SMS, music, etc) can be extracted from customer workload
patterns on cell phone usage, and then these RTC constraints
can be used to generate constrained random inputs for sim-
ulating a new cell phone architecture. This provides better
coverage than simulating the new architecture with only the
given workload traces.

RTC specifications may be also be used to specify the design
intent. For example, we may specify the desired reliability of
a communication system such at most two messages are lost
from every 10 consecutive frames, and at most five messages
are lost from every 30 consecutive frames. This requirement
can be expressed in RTC as, R = {〈10, 0, 2〉, 〈30, 0, 5〉}. Such
a specification may be used in verifying the reliability of the
model of the communication system.

RTC has been studied in the context of discrete time [8]–
[11] as well as in the context of dense time [7], [10],
[11]. Since simulation platforms necessarily assume a discrete
granularity of time (called a time step), the focus of this
paper in only on the discrete model of time. Therefore we
are concerned with the events that happen in a time step, but
we are not concerned with the exact time at which they happen
within that time step.

The problem of generating random event patterns that
agree with a given set of RTC constraints is a non-trivial
problem [10], [11], because not all valid finite event patterns
can be extended to a valid infinite event sequence. Therefore a
less informed generator may reach a forbiden state from which
it is impossible to proceed without violating a constraint.
Though this problem has been observed and studied [9]–[11],
the existing techniques for identifying the forbidden states
are computationally too expensive to be used on-the-fly for
generating random event patterns from a given finite set of
RTC constraints.

The problem of reaching forbidden states does not exist
when we consider the task of accepting a given event sequence
with respect to a given set of RTC constraints. Automata
based acceptors for event patterns satisfying a given set of
RTC constraints has been studied in the past, with various
proposals including timed automata [7], [12] and event count
automata [8] based formulations. Since these formulations978-3-9815370-2-4/DATE14/ c©2014 EDAA

are primarily intended to develop acceptors, the problem of
forbidden states was not addressed in these papers.

In this paper we show that patterns satisfying a given
finite set of RTC constraints define an interesting fragment
of ω-regular languages [13]. While ω-regular languages are
accepted by non-deterministic Büchi automata [14], we show
that for this special fragment it is possible to construct a deter-
ministic finite automata (DFA) that can be modified to act as
an acceptor as well as a generator for the language defined by
the RTC constraints. Since this automaton can be constructed
apriori, the proposed formulation is well suited for generating
random event patterns on-the-fly. We believe that this paper
presents for the first time an automata based approach for
generating random arrival patterns that are admissible with a
given set of RTC constraints.

The organization of the paper is as follows. Section II stud-
ies the relationship between RTC and ω-Regular Languages
and demonstrates an approach for developing an determin-
istic automaton for accepting the language defined by RTC
constraints. Section III studies the problem of developing
a automata theoretic approach towards generating random
event sequences satisfying given RTC constraints. Section IV
presents the conclusions.

II. REAL TIME CALCULUS AND ω-REGULAR LANGUAGES

A finite Real Time Calculus (RTC) specification, R, consists
of a finite set of RTC constraints. Formally, a RTC constraint
is a 3-tuple, 〈∆, αL(∆), αU (∆)〉, where αL(∆) and αU (∆)
respectively specify the minimum and maximum number of
events within every time interval of ∆.

Let η be the minimum among the αU (∆) values of the
constraints in R. Then η is an obvious upper bound on the
number of events that can happen in an unit of time. We define
Σ to be the set of integers in the range [0, η].

A word W = w1, w2, ... is an infinite sequence of integers
over Σ, where each wi represents the number of events that
have occurred during the unit time interval [i− 1, i). A word
W is said to be admissible with respect to the constraint
〈∆, αL(∆), αU (∆)〉, if the sum of the number of events
occurring in every sequence of length ∆ inW lies in between
αL(∆) and αU (∆) (boundary values included).

Formally for every i > 0,

αl(∆) ≤
i+∆−1∑
j=i

wj ≤ αu(∆)

Example 1. Consider the RTC constraint 〈3, 4, 7〉. The word
W1 = (2, 1, 3, 1)ω is admissible with respect to this RTC
constraint. On the other hand, the word:

W2 = 2, 1, 3, 1, 2, 1, 0, 1, (3, 1, 2)ω

is not admissible because w6 + w7 + w8 < αL(3), that is,
1 + 0 + 1 < 4. �

A word is admissible or valid with respect to a set R of RTC
constraints, iff it is admissible with respect to each constraint
in R.

Let Z be the set of ∆-length sequences that violate a
given RTC constraint, A = 〈∆, αL(∆), αU (∆)〉. Then the
language consisting of the admissible infinite patterns with
respect to this constraint can be defined as the following ω-
regular language:

L(A) = Σω − Σ∗ρΣω, where, ρ ∈ Z

Theorem 1. The event patterns that are admissible with
respect to a given finite set of RTC constraints define a ω-
regular language.

Proof: Given two RTC constraints, A1 and A2, the language
of patterns admissible with respect to both of them is the
intersection of the ω-regular languages, L(A1) and L(A2).
Since ω-regular languages are closed under intersection, we
conclude that the language L(A1) ∩ L(A2) is ω-regular. The
proof follows from the application of intersection over the
given set of RTC constraints. �

It is in fact quite easy to construct an acceptor for the
ω-regular languages defined by RTC constraints. This is
because RTC constraints are essentially safety properties,
that is, an inifinite word refuting an RTC constraint must
necessarily have a finite prefix that violates the constraint. The
set Z of ∆-length sequences that violate a RTC constraint,
A = 〈∆, αL(∆), αU (∆)〉, is finite. Therefore the following
language is a regular language:

L(A′) = Σ∗ρΣ∗, where, ρ ∈ Z

The language, L(A′), defines the set of finite sequences that
violate the RTC constraint, A. A DFA, D(A′) for accepting
this language will get trapped in a final state whenever a
pattern in Z is detected in its input.

By exchanging the final and non-final states of D(A′), and
by applying the Büchi acceptance criterion (that is, some final
state is visited infinitely often), it is easy to see that we get
an acceptor for the language L(A). Intuitively this means that
any infinite walk on D(A′) which avoids the final states of
D(A′) defines a word of L(A).

Example 2. Consider the following set of RTC constraints :

A = {〈2, 1, 2〉, 〈3, 3, 3〉}

Figure 1 shows the DFA, D(A′), and the corresponding
Büchi automaton, B(A). It is easy to see that the accepting
runs of B(A) are precisely the infinite walks in D(A′) that
avoid its final states. The sequence of states s1, s2, s3, s3, s3, ..
is an infinite run on D(A′) avoiding its final states and also an
accepting run on B(A). On the other hand, s1, s4, s5, s5, s5, ..
is an infinite run on D(A′) but not an accepting run on B(A).
�

III. RANDOM GENERATION OF ADMISSIBLE EVENT
SEQUENCES

In the previous section we showed that the DFA, D(A′),
for accepting invalid finite sequences with respect to a RTC
specification can be transformed to a deterministic Büchi

1 1
S1 S2 S3

S4 S5 S6 S7 S8

S9 S10 S11

02

0

1,2

0,1,2

0

0,2

0,1,2

1

1

0,1

0 2

2 2

0,1,2

0,1,2

0,2

1 1 1

S5 S8

S10 S11

02

0

1,2

0,1,2

0

0,2

0,1,2

1

1

0,1

0 2

2 2

0,1,2

0,1,2

0,2

1S1 S2 S3

S4 S6 S7

S9

(a) D(A′) : DFA for L(A′) (b) B(A) : Büchi automaton for L(A)

Fig. 1: Automata for constraints given in Example 2

automaton for accepting valid infinite event sequences. Any
infinite walk on D(A′) that avoids the final states of D(A′)
defines a valid word.

Typically, D(A′) may contain states from which reaching a
final state is inevitable. Any valid random walk needs to avoid
these states as well. This section develops the theoretical basis
for this requirement based on the core tennets of real time
calculus and then proposes an algorithmic solution to the task
of generating random event sequences.

An on-the-fly sequence generator will essentially work by
extending the sequence generated so far with a chosen number
of events for the next time frame. It needs to determine for
each time frame whether the chosen number of events leads
to any immediate or future violation of the RTC constraints.

Let L(R) denote the language defined by the words satis-
fying the given set R of RTC constraints.

Definition 1 (Prefix). Let W = w1, w2, .., wj , wj+1... be a
word over an alphabet Σ. A prefix of length j of W is the
finite sequence w1, w2, ...wj . Let Pref(W) denote the set of all
finite length prefixes of the word W , and let Pref(L) denote
the set of all finite length prefixes of the words in the language
L. �

Definition 2 (Invalid Prefix). A prefix w1, w2, ...wl belonging
to Pref(W) is invalid with respect to a given set R of RTC
constraints, if it contains a sequence violating a member of
R. Let InvPref(L(R)) denote the set of all invalid prefixes in
the words not belonging to the language of R. �

It is obvious that valid words do not contain any invalid
prefix, that is,

InvPref(L(R))
⋂
Pref(L(R)) = {}

However there exists finite sequences that do not violate any
member of R and yet they do not belong to any valid infinite

word. Formally:

Σ∗ 6= Pref(L(R))
⋃
InvPref(L(R))

The following example illustrates the existence of such se-
quences.

Example 3. Consider the following set R of RTC constraints:

R = {〈3, 0, 3〉, 〈5, 5, 9〉}

Let us consider the prefix P = 0, 2, 1, 0, 2, 0, representing the
sequence of events generated upto the 6th time frame. It is
easy to verify that P is a valid prefix as per Definition 2.

Let us now consider the problem of extending P to a valid
prefix of length 7. Let wi denote the number of events at
time instance (i − 1, i]. Therefore from P , we have w1 =
0, w2 = 2, w3 = 1, w4 = 0, w5 = 2, w6 = 0, and our goal is
to determine a value for w7 such that P concatenated with w7

is also valid.
R imposes the following constraints involving w7:

[0 ≤ w5 + w6 + w7 ≤ 3],

[5 ≤ w3 + w4 + w5 + w6 + w7 ≤ 9]

Substituting the values of w3, . . . , w6, we get:

[0 ≤ 2 + w7 ≤ 3],

[5 ≤ 3 + w7 ≤ 9]

The first constraint yields w7 ≤ 1 and the second constraint
yields w7 ≥ 2. Since these two constraints are not satisfiable
together, it follows that P cannot be extended without violating
R. �

Definition 3 (Unrealizable Prefix). An unrealizable prefix is a
member of the following language:

Σ∗ −
(
Pref(L(R))

⋃
InvPref(L(R))

)

{0,0,2,0,0}

{1,0,2,0,0}

{2,0,2,0,0}

0 0,1,2
{0,2,0,0,2}{2,0,0,2,0}

1,2

0

1

2

0,1,2
{0,2,0,0,1}

{2,0,0,1,1}

{2,0,0,0,1}
0,1,2

{1,0,0,0,2}
0,1,2

0,1,2

0,2

1
{1,0,0,1,1} {1,1,0,0,1}

0,2

0,1,2
{2,0,0,0,2}

{1,0,0,2,0}

{0,1,0,0,2}
0,1,2

0,1,2

1,2

.

.

.

.

.

{0,1,0,1,1}

{1,0,1,1,0}

{1,1,0,1,1}

1

{1,0,1,0,1}

{1,1,0,1,0}

1

1

{0,1,1,0,1}
1

0

0

0

Invalid Prefixes

2

1,2

0,2

0,2

{1,1,0,0,2}

0

0
{2,0,0,1,0}

1,2

1

{0,1,1,0,1} {1,0,1,1,0}

{1,0,1,0,1}

{1,1,0,1,0}

{1,1,0,1,1}

{0,1,0,1,1}

1
1

1

0

0
0

1,2

D(A′) : DFA for L(A′) TS(D(A′)) : Transition System L(A)

Fig. 2: DFA and corresponding Transition System for the constraints in Example 4

�

The members of Pref(L(R)) will be called realizable pre-
fixes.

An on-the-fly generator of a valid word must guarantee that
it does not generate an unrealizable prefix. The existence of
unrealizable prefixes in RTC specifications has been observed
in prior literature [10], [11], however the main challenge is in
avoiding unrealizable prefixes during the generation of random
patterns. We belive that at runtime it is too expensive to
determine whether each choice in the sequence creates an
unrealizable prefix. We propose a suitable alternative where
this decision is based on an automaton that is constructed a
priori and used at runtime.

A. Automata for Constructing Realizable Prefixes

The intuitive idea of the proposed construction is quite
simple. As described in Section II, we construct a DFA for
the language InvPref(L(R)). We then remove all accept states
in the DFA along with those states from which reaching an
accept state is inevitable. We prove that any random walk on
the remaining DFA defines a realizable prefix.

We define ∆max as follows:

∆max = max{∆|〈∆, αL(∆), αU (∆)〉 ∈ R}

We construct a DFA, D = 〈Q,Σ, δ, F 〉, where:
• Σ is the alphabet as defined in Section II,
• Q is the set of states. Each state, q, is represented by a

sequence of length ∆max, denoted as q[1], . . . , q[∆max].
Intuitively a state is represented by the pattern of events in

the previous ∆max cycles, with q[i] denoting the number
of events in the ith preceding cycle.

• F is the set of final states. A state q is a final state if the
sequence q[∆max], . . . , q[1] belongs to InvPref(L(R)).
To determine whether q[∆max], . . . , q[1] belongs to
InvPref(L(R)) we need to check whether the RTC
constraints are violated in this ∆max-length sequence.
We do not need to computer InvPref(L(R)).

• δ : Q × Σ → Q is the transition function, defined as
follows.

– For each q ∈ F and each w ∈ Σ, we have δ(q, w) =
q.

– For q ∈ Q−F and w ∈ Σ, we have δ(q, w) = q′ iff
q′[1] = w and ∀j, 2 ≤ j ≤ ∆max, q′[j] = q[j − 1].

The initial state of the DFA will be defined later. It may be
noted that each final state in F is a sink state, that is, the DFA
stays in that state forever. We define a dead state recursively
as follows.

Definition 4 (Dead State). Given the DFA,
D = 〈Q,Σ, δ, F 〉, a state q ∈ Q is a dead state iff:
• q ∈ F , or
• ∀w ∈ Σ, δ(q, w) is a dead state.

�

The proposed method for random generation of event se-
quences satisfying the set R of RTC constraints is as follows:

Sequence Generation Method
1. Construct the DFA, D = 〈Q,Σ, δ, F 〉,

RTC Specifications (R) No. of States in D(R′) No. of States in Time (s)(
Σ∆max

)
TS(D(R′))

{〈3, 1, 3〉, 〈5, 4, 5〉, 〈13, 9, 11〉} 313 321 4

{〈5, 4, 5〉, 〈13, 9, 11〉} 513 1738 54

{〈4, 2, 4〉, 〈8, 5, 7〉, 〈12, 9, 10〉} 412 13704 68

{〈8, 5, 7〉, 〈12, 9, 10〉} 712 37919 452

{〈8, 2, 7〉, 〈12, 4, 9〉, 〈15, 6, 10〉} 715 1497500 9363

{〈5, 1, 3〉, 〈14, 5, 7〉} 314 14146 61

{〈5, 1, 4〉, 〈7, 3, 5〉, 〈11, 5, 7〉} 411 5113 24

{〈5, 3, 5〉, 〈7, 5, 7〉, 〈11, 9, 11〉} 511 7089 46

{〈5, 1, 4〉, 〈7, 3, 5〉, 〈11, 5, 7〉} 411 5113 24

{〈5, 3, 5〉, 〈7, 5, 7〉, 〈13, 10, 12〉} 513 37169 188

TABLE I: Representative State Spaces

as defined above.
2. Remove dead states from D to obtain a

transition system, TS(D).
3. Perform a random walk on TS(D) to define a

random event sequence.

The transition system TS(D) is obtained from D by re-
moving the dead states in D. It follows from the definition of
dead states that every state of TS(D) has at least one outgoing
transition. Therefore a random walk in TS(D) will never reach
a dead end.

The random sequence is generated by traversing TS(D) as
follows. We randomly choose any state, q, of TS(D) as the
initial state. Then q[∆max], . . . , q[1] is the initial prefix of the
sequence. With every transition (q, w, q′) taken in the random
walk, we add w to the sequence.

Example 4. Consider the following set of RTC constraints :

A = {〈3, 0, 2〉, 〈5, 3, 4〉}

Figure 2 shows the DFA, D(A′), and the transition system
TS(D(A′)) obtained by removing the dead states from D(A′).
To generate an event sequence we start from any state, and
peform a random infinite walk in TS(D(A′)). For example,
01101(110)

ω is an event sequence generated by an infinite
walk in the transition system TS(D(A′)). �

In the remainder of this section, we prove the soundness
and completeness of our generation approach.

Theorem 2. [Soundness]: The sequences generated by the
proposed approach satisfy the given RTC constraints.
Proof: We show that every infinite walk, π = s1, s2, . . ., in

TS(D(R′)) defines a valid event sequence with respect to
given RTC specification R.

Let the event sequence defined by π be w1, w2, By
the definition of TS(D(R′)), si is represented by the ∆max-
length sequence, w∆max+i−1, . . . , wi. For example, s1 is rep-
resented by the sequence w∆max

, . . . , w1, s2 is represented by
the sequence w∆max+1, . . . , w2, and so on.

The event sequence defined by π is valid unless it con-
tains some ∆max-length sequence which refutes a RTC con-
straint in R. Suppose there exists such an invalid sequence,
wk, . . . , w∆max+k−1. But that implies that the state sk is a
dead state. This is a contradiction since TS(D(R′)) has no
dead states. �

Theorem 3. [Completeness]: Every infinite sequence that
satisfies the given RTC specification R can be generated by
some walk on TS(D(R′)).
Proof: Suppose w1, w2, . . . is an infinite sequence satisfying
R. We define a path π = s1, s2, . . ., such that si is the
state of D(R′) represented by the ∆max-length sequence,
w∆max+i−1, . . . , wi. The only possible reason why the path
may not exist in TS(D(R′)) is that π contains some dead
state sk. Since the sequence contains no refutation of R, sk
cannot be an invalid sequence. Therefore it must be the case
that sk is a forbidden state, that is, all paths from sk lead to
invalid states. But that would mean that some invalid sequence
will also exist in the event sequence w1, w2, . . ., which is a
contradiction. Therefore every infinite sequence that satisfies
R can be generated by a walk over TS(D(R′)). �

It is important to note that Theorem 3 refers to infinite
sequences only. There are finite sequences not generated by
TS(D(R′)) that do not refute any member of R. These finite

sequences necessarily end in forbidden states, and therefore,
avoiding such sequences is precisely the purpose of this
methodology.

IV. CONCLUSION

The appreciation of RTC as a specification language mo-
tivated us to study the problems of acceptance and enumer-
ation from a language theoretic perspective. While we have
presented the basic findings of our study, there is scope of
substantial performance gains through the use of more sophis-
ticated symbolic approaches. These will no doubt determine
the scalabity of meaningful usage of RTC as a specification
language.

Nevertheless, we developed a code implementing the con-
struction of the proposed automata to study the nature of
growth in the state space. Our findings are shown in Table I.
The main intention of showing these results is to demonstrate
that with as few as three constraints, the fraction of states that
are not dead states is quite small. Therefore pre-computing
TS(D(R′)) and using it at runtime to generate random event
sequences is feasible from a practical point of view.

It is also observed that in general the number of states in
TS(D(R′)) increases with ∆max, but it depends on the prun-
ing imposed due to the lower bounds as well. The runtimes
to compute TS(D(R′)) was obtained on a Intel Core i7 with
8GB of memory. Once the transition systems is pre-computed
the time to generate a random sequence will be negligible
because it can be done through a random walk.

Real world problems involving large values of ∆max are
rare. In such cases, the value domain can be scaled down by
dividing all numbers with a common denominator and neglect-
ing the remainders in a conservative way such that satisfying
the modified constraints guarantee that the original constraints
are satisfied. Explaining the details of this approximation is
beyond the scope of this paper.

Since the focus of this paper is on using the generators
and acceptors on discrete event simuation platforms, we have
studied the problem in a discrete time setting. Solving these
problems in the dense time setting remains an interesting open
problem.

REFERENCES

[1] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in ISCAS, 2000, pp. 101–104.

[2] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse, “System architec-
ture evaluation using modular performance analysis: a case study,” Int.
J. Softw. Tools Technol. Transf., vol. 8, no. 6, pp. 649–667, Oct. 2006.

[3] D. B. Chokshi and P. Bhaduri, “Performance analysis of flexray-based
systems using real-time calculus, revisited,” in Proc. of the 2010 ACM
Symposium on Applied Computing, ser. SAC ’10. New York, NY, USA:
ACM, 2010, pp. 351–356.

[4] S. Chakraborty, S. Knzli, and L. Thiele, “A general framework for
analysing system properties in platform-based embedded system de-
signs,” in In DATE, 2003.

[5] V. Pollex, H. Lipskoch, F. Slomka, and S. Kollmann, “Runtime improved
computation of path latencies with the real-time calculus,” in Proc. of the
1st International Workshop on Worst-Case Traversal Time, ser. WCTT
’11. New York, NY, USA: ACM, 2011, pp. 58–65.

[6] O. Sokolsky and A. Chernoguzov, “Performance analysis of aadl models
using real-time calculus.” in Monterey Workshop, ser. LNCS, C. Choppy
and O. Sokolsky, Eds., vol. 6028. Springer, 2008, pp. 227–249.

[7] K. Lampka, S. Perathoner, and L. Thiele, “Analytic real-time analysis
and timed automata: A hybrid methodology for the performance analysis
of embedded real-time systems,” Design Automation for Embedded
Systems, vol. 14, no. 3, pp. 193–227, 2010.

[8] S. Chakraborty, L. T. X. Phan, and P. S. Thiagarajan, “Event count
automata: A state-based model for stream processing systems,” in IN
RTSS, 2005.

[9] K. Altisen and M. Moy, “Connecting real-time calculus to the syn-
chronous programming language lustre.” Verimag Research Report,
Tech. Rep. TR-2009-14, 2009.

[10] M. Moy and K. Altisen, “Arrival curves for real-time calculus: The
causality problem and its solutions.” in TACAS, ser. LNCS, J. Esparza
and R. Majumdar, Eds., vol. 6015. Springer, 2010, pp. 358–372.

[11] ——, “Arrival curves for real-time calculus: the causality problem and
its solutions,” Verimag Research Report, Tech. Rep. TR-2009-15, 2009.

[12] K. Lampka, S. Perathoner, and L. Thiele, “Analytic real-time analysis
and timed automata: a hybrid method for analyzing embedded real-
time systems,” in Proc. of the seventh ACM international conference on
Embedded software, ser. EMSOFT ’09. New York, NY, USA: ACM,
2009, pp. 107–116.

[13] M. O. Rabin, Automata on infinite objects and Church’s problem,
ser. Regional conference series in mathematics. Providence, R.I.
Published for the Conference Board of the Mathematical Sciences by
the American Mathematical Society, 1972, expository lectures from the
CBMS regional conference held at Morehouse College, Atlanta, Georgia,
September 8-12, 1969.

[14] J. R. Büchi, On a Decision Method in Restricted Second Order Arith-
metic. Elsevier, 1966, vol. 44, pp. 1–11.

[15] G. Garay, J. Ortega, and V. Alarcon-Aquino, “Comparing real-time
calculus with the existing analytical approaches for the performance
evaluation of network interfaces,” in Electrical Communications and
Computers (CONIELECOMP), 2011 21st International Conference on,
2011, pp. 119–124.

[16] K. Lampka, S. Perathoner, and L. Thiele, “Analytic real-time analysis
and timed automata: a hybrid method for analyzing embedded real-
time systems,” in Proc. of the seventh ACM international conference on
Embedded software, ser. EMSOFT ’09. New York, NY, USA: ACM,
2009, pp. 107–116.

[17] K. Altisen and M. Moy, “Causality closure for a new class of curves
in real-time calculus,” in Proc. of the 1st International Workshop on
Worst-Case Traversal Time, ser. WCTT ’11. New York, NY, USA:
ACM, 2011, pp. 3–10.

[18] K. Altisen, Y. Liu, and M. Moy, “Performance evaluation of components
using a granularity-based interface between real-time calculus and timed
automata,” in QAPL, 2010, pp. 16–33.

[19] “Inchron.” [Online]. Available: http://www.inchron.com/

