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Abstract—The rapid shrinking of device geometries
in the nanometer regime requires new technology-aware
design methodologies. These must be able to evaluate
the resilience of the circuit throughout all System on
Chip (SoC) abstraction levels. To successfully guide
design decisions at the system level, reliability models,
which abstract technology information, are required
to identify those parts of the system where additional
protection in the form of hardware or software coun-
termeasures is most effective. Interfaces such as the
presented Resilience Articulation Point (RAP) or the
Reliability Interchange Information Format (RIIF) are
required to enable EDA-assisted analysis and propaga-
tion of reliability information. The models are discussed
from different perspectives, such as design and test.

I. Background and Motivation

Reliability has always been a major concern in digital
IC design. When a System on Chip (SoC) fails to meet
necessary reliability targets, the consequences can be se-
vere. For example, just recently, EETimes reported that
most probably a single unprotected bit flip caused a car
accident which resulted in the death of a person [1].

Traditionally, the responsibility of ensuring proper sys-
tem reliability essentially fell on manufacturing process
technology. While process innovations such as high-k di-
electrics, metal gates, or FinFET transistors put emphasis
on reliability, the burden of ensuring system reliability
increasingly must be addressed during the system de-
sign process. Today, this required reliability typically is
achieved by general safety margins and overdesign dur-
ing the design process. By trading off area, power and
performance, design techniques can be used to mitigate
imperfections at the process level.

Unfortunately, scaling evolved quicker than our capa-
bility to economically maintain reliability problems at a
low level [2]. Hence, in order to obtain hardware which
can be trusted to be fully reliable, increased margins
were added during the design process. As a result, new
process technologies offered only diminished benefits to
product designers. One approach to mitigate this trend
and improve design techniques is to minimize the amount
of design margins that are applied. Examples for these
improvements include: use of realistic worst-case design
instead of corner-based design [3], statistical extensions to
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timing analysis [4], or optical proximity correction in mask
generation [5].

But still, there were points in the design, where margins
and technology improvements alone were not enough to
meet the required specification. Especially in memories,
which are the most susceptible parts of the design, many
more improvements were needed. Hence, additional com-
ponents were added to raw memory, such as modular
redundancy, row and column replacements, and error cor-
recting codes (ECC) [6].

While all of these techniques and improvements helped
designers in the past to maintain reliable hardware, we are
now facing a point where these improvements alone may
not be enough anymore. In fact, the circuit’s transistors
start to become extremely unreliable and maintaining
this conservative design method might become again too
costly [7,8]. In addition, this problem affects all kinds of
applications, from exascale computing [9] to embedded
systems [10].

To overcome these problems, the task of ensuring re-
silience has to be distributed over the full hardware/soft-
ware stack. Each abstraction level has its own techniques
for increasing reliability. On the lower levels, technology
innovations, overdesign, and use of margins helps to en-
sure reliability. Moving up the abstraction stack, other
techniques, such as ECC or redundancy are available.
The variety of protection and fault-tolerance mechanisms
increases even further when moving to the software level,
where techniques such as checkpointing [11] or control-flow
checking [12] exist.

Each of these techniques has its own associated cost
and benefits in terms of power, performance, area, and
resulting improvement in reliability. Additionally, each
abstraction level also offers some inherent resilience. For
example, not all instructions are equally vulnerable to
errors. In a branch decision, only the least significant
bit matters; in an addition or multiplication, the most
significant bit might be the most vulnerable; and in an
OR operation, all bits might have equal influence. Putting
the processed data in an application context adds further
masking mechanisms. For example, in multimedia, some
additional noise on the processed patterns might still be
tolerable [13].



II. Cross-Layer Reliability

Cross-layer approaches have been suggested as desir-
able techniques to enhance the reliability of complex sys-
tems [14,15]. In recent years, several authors outlined ma-
jor challenges for resilient designs and proposed approaches
to cross-layer reliability [16–19]. In order to turn cross-layer
reliability into a widely-accepted, mainstream solution,
several important challenges have to be addressed.

Today, information about an IC’s reliability status is
essentially still contained at lower technology and circuit-
levels, where a deep understanding for the ongoing tech-
nology effects and possible mitigation techniques exists.
Exposing these problems to higher levels introduces several
major challenges. Information about reliability issues that
was gained at the technology level has to be abstracted and
relevant information must be made available to higher lev-
els. At the same time designers at higher abstraction levels
(e.g. SW developers) must be given some knobs which they
can use to tune a circuit’s or system’s reliability.

One central issue is to define the correct interface to
propagate reliability information up in the design hierarchy
while considering important information for influencing
these reliability issues. This interface has to be designed
in a way that all important aspects of reliability can
be exposed to higher levels. For example, recent studies
show that errors and failures have a certain degree of
temporal and spatial correlation in real-world systems.
Thus, this kind of information has to be handled by the
selected interface which is used for reliability information
propagation [20,21].

Cho et al. studied the accuracy of fault injection meth-
ods on different abstraction levels in [22]. They concluded
that the estimation results of high-level fault injection
methods might be inaccurate by up to a factor of 45 if
they do not rely on realistic distributions gained from
lower levels. Even more severely, without the proper fault
distribution, these methods have no guarantee to be either
optimistic or pessimistic.

Standardization is another major issue for mainstream
adoption of cross-layer reliability. For widespread adop-
tion, commercial CAD support is essential. Such support
requires standardized file formats and languages to express
the reliability information. This is essential in order to
distribute the reliability analysis across the design flow and
propagate information across the hierarchy.

In the remainder of this paper, Section III introduces
the Resilience Articulation Point (RAP) model as an
interface for propagation of reliability information between
different abstraction levels. Section IV provides details on
the Reliability Interchange Information Format (RIIF),
which deals with format standardization for reliability
information exchange. Section V provides real-world ex-
amples for the application of these methods. Section VI
discusses design and test perspectives on these challenges
and proposed solutions. Finally, Section VII concludes the
paper.
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Fig. 1. Cross-layer representation of faults, errors, and failures with
bit flip as Resilience Articulation Point

III. Resilience Articulation Point (RAP)

The RAP model [23,24] is based on the following
three concepts: (I) It is assumed that whatever physical
phenomenon is the root cause for a fault – if it is not
masked (i.e. eliminated) – it will manifest with a certain
probability as a permanent or transient bit error, modeled
by a probabilistic error function Pbit. (II) To efficiently
cope with, abstract from, and quantify the impact of
lower-level faults onto higher abstraction levels of complex
SoCs, the cross-layer reliability modeling and optimiza-
tion techniques should follow probabilistic methods. (III)
Transformation functions TL convert probabilistic error
functions PL at abstraction level L into probabilistic error
functions PL+i at level(s) L+ i (i ≥ 1).

In graph theory, an articulation point is a vertex that
connects sub-graphs in a biconnected graph, and whose
removal would result in an increase of the number of
connecting arcs within the graph. Translated to the world
of resilience evaluation within SoC models, bit flips rep-
resent the single connecting vertex between lower-layer
fault origins and the upper layer error and failure models
of the HW/SW system abstraction (see Fig. 1). Error
functions for different fault origins (e.g. radiation, aging,
crosstalk, or thermal hotspots) and error transformation
functions (such as for determining silent data corruption
(SDC) or detected uncorrectable error (DUE) rates in
microprocessor designs) are vital for the expressiveness
of a RAP-based dependability assessment. However, it is
not in the scope nor can it be the intention of the RAP
model to consider all possible error and transformation
functions to be an integral part of RAP. RAP rather
provides a framework where different fault origins, each
being expressed as probabilistic bit-error functions for a
particular functional signal, can be accumulated to repre-
sent an error function that covers several physical short-
comings. By approximation and accumulation of individual
lower-level error models, RAP provides effective means for
technology abstraction at different SoC abstraction levels.
This relieves the SoC designer with expertise at higher
abstraction levels from the necessity to comprehend the
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Fig. 2. Error transformation / propagation in the upper half layers

details of the SoC at the device or even technological level.

Fault and error modeling in the space and time domain
has a long tradition in the LSI testing community. The
generalized conditional line flip model [25] allows the spec-
ification of Boolean and temporal activation conditions.
Excessive process variations may cause test invalidation of
delay tests which threatens product quality. Probabilistic
fault modeling aims at quantifying the quality of the test
and final product w.r.t. the parameter space in spite of
high uncertainty of variations [26].

The task of an error function F at the lower abstraction
levels is to describe the probability of an occurring bit
error P as a function of environmental and operating
conditions E , design parameters D, and (error) state bits
S; all of which are parameters that may change during
system design and run time:

P = F(E ,D,S) (1)

This generic model for an error function is unique for
a specific type of fault and for a specific circuit element.
Hence, it has to be adapted to every circuit component
and fault type independently.

Probabilistic error models and transformation func-
tions that are specific for a certain level of abstraction can
now be used for propagating error models towards higher
abstraction levels. Mathematically, this can be expressed
by the following equation, graphically depicted in Fig. 2:

PL+i = TL(EL,DL,SL) ◦ PL (2)

Once we are able to describe the dependability ex-
posure of a complex SoC at different abstraction levels
by corresponding probabilistic functions PL affecting, e.g.,
data bus words and operand variables, higher layer SoC
behavior (hardware architecture and software layers) can
again be investigated without maintaining the complete
set of lower-layer models to realize a sound technology
abstraction. Pword or Pinterface are adequate representa-
tives of the lower layer errors. An analysis approach that
follows a similar concept of cross-layer error propagation
is presented in [27].

Thereby, transformation functions can stretch one or
several abstraction levels: From bit to architecture level

(e.g. SRAM bit flip) and register word to application
software level (e.g. application code variable), respectively.

Abstraction levels not only have specific transformation
functions, but also level-specific environmental, design, and
correlated state parameters. Externally imposed workloads
and fault exposure patterns typically contribute to the
environmental dimension, while design structures and tem-
plates on to the respective abstraction levels constitute
design and state-related parameters. Dynamic program
flow is considered through the workload (environmental
parameters EL) and, thus, affect the error model at higher
abstraction level(s).

IV. Reliability Information Interchange
Format (RIIF)

The problem of modeling how transistor-level failures
affect the operation of a complex SoC is challenging. It
is important to note that this is primarily an industrial
problem and thus, beyond the purely technical modeling
challenges, certain practical issues must be seriously con-
sidered in order to provide a solution that will gain adop-
tion. First, the approach must be supported by standards
and a working file-format so that the companies involved
in the design of an SoC can exchange reliability data
effectively and develop tools that process the data. Today,
the majority of silicon reliability analysis is done using
spreadsheets which basically perform a sum of computed
or estimated failure rates. Change will occur only if there
is an economic incentive to adopt a new approach. Either
the reduced effort due to a more streamlined methodology,
or the potential for improved accuracy and reduced design
margins, must be sufficient to incite the industry to evolve
beyond the status quo.

RIIF is an application-specific language targeted at the
problem of modeling failure propagation in SoCs. RIIF was
first proposed in [28] and was further developed during
a dedicated workshop at DATE’13 [29]. The goals of the
RIIF language are:

• Enumerate and specify probability of failure events

• Relate the effect of environment (voltage, temper-
ature) on failure rates

• Build composite models using simpler models

• Scale from the transistor-level to the system-level

• Provide a standard means for sharing reliability
data

• Provide templates for standard classes of compo-
nents

• Specify reliability targets that must be met

The basic unit in RIIF is the component which is simi-
lar to a Verilog module (VHDL entity), and can represent
either a low-level entity such as a logic gate or a complex
entity like a full SoC. With RIIF, only the faults are mod-
eled, not the functionality. The user declares failure modes
within the components. Typical failure modes would be a
single bit error (SBE) in a memory component or a silent



data corruption (SDC) in a CPU. The rate of occurrence
of these events is expressed as a function of the parameters
within the component, where typical parameters would
be voltage or temperature for a transistor or the type of
workload being executed for a CPU. A complex component
can be modeled by referencing the failure rates in the
lower level child components and expressing how those
failure rates (for example a SBE or MBE in a RAM)
propagate into high-level failure modes (such as SDC in
a CPU). The equations that express the propagation take
into account the mitigating effects of masking (e.g. AVF)
or error correction.

The RIIF approach is pragmatic and industry focused.
A file-format is proposed based on a defined grammar.
Real-world issues have been considered. For example, there
are many families of commodity components (e.g. DDR
DRAMs, Flash, etc.) and users expect the reliability mod-
els from different vendors to be plug-and-play. The RIIF
language offers an approach to templating, so that a basic
model can be defined for a category of components. Each
implementation can extend the template to define the
failure rates in that device, however, the users benefit from
a pre-defined interface defined in the template.

To conclude, there is a need for improved approaches
for modeling the way faults propagate within complex
SoCs. Fundamentally, this is a modeling problem and
requires a flexible, but standardized approach, for building
and exchanging models. Such an approach needs to be
inclusive of currently known failure mechanisms in CMOS
and easily extendible to new failure mechanisms in future
implementation technologies.

V. Application Examples

This section provides three application examples, which
deal with the idea of cross-layer reliability. In the first two
examples the idea of the RAP framework is demonstrated
using two system-level applications – an autonomous robot
and a MIMO receiver. The last example demonstrates the
RIIF reliability modeling language for a protected SRAM.

A. Autonomous Robot

Autonomous vehicles have a great potential in future
public and industrial transportation systems. Because of
their autonomous nature, safety and reliability are often a
special concern for these systems – especially when they
operate with humans in the same environment. In [30]
a fault injection method based on Mixture Importance
Sampling, which relies on the RAP principle (Fig. 1), is
presented. This method is suitable to evaluate the effect
of technology-level faults in a full system simulation. We
utilized this approach in [31] to study the effect of neutron-
induced soft errors in the data cache of a two-wheeled
autonomous robot.

Figure 3 shows the system failure probability (i.e., the
robot makes a failure in its movement), the probability
that an erroneous bit is read from the cache, and the
percentage of errors that are masked by the application
intrinsic resilience. The probabilities were estimated for
a system runtime of 10 seconds. Protecting the cache by
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Fig. 4. System communication performance for different bit error
probabilities pb in the channel information memory.

hardening the cells with increased cell area or supply volt-
age reduces the probability that an erroneous bit is read
from the cache. The system failure probability is similarly
influenced. Hence, nominal and hardened caches have a
similar error-masking behavior on application level, al-
though providing overall different system failure probabil-
ities. In contrast, the addition of a 1-bit parity protection
with write-through mode behaves differently. With a parity
protection, errors inside the cache occur at the same prob-
ability as for the unprotected case, but only data words
from the cache with an even number of errors contribute to
system failures. Data words with an odd number of errors
are fetched at the penalty of a cache miss from the better
protected memory. According to Fig. 3, the probability
that a faulty data word is read from the cache decreases as
expected, while the overall system failure probability only
slightly decreases compared to the unprotected cache. This
results in a lower percentage of application error masking.
This leads to a case where we overprotect the data cache,
as we protect many errors which would be anyway masked
by the system architecture. The usage of a fault model
directly derived from the technology level provides here a
possibility to gain such insights and make decisions which
are optimal for the protection of the overall system.

B. Iterative MIMO-BICM Receiver

Multiple-input multiple-output (MIMO) systems are
used to increase the data rate of wireless communication



systems. They belong to the most advanced systems in
the next generation communication standards. Their im-
plementation complexity is challenging. Up to 50% of the
receiver area are consumed by different system memories
which store the data between the processing elements. We
studied the influence of memory errors on the system-level
communications performance in [32]. We assumed that the
memory errors result from supply voltage drops, which
occur regularly during power state switching. According
to the RAP model shown in Fig. 1, we model the influ-
ence of changes in the supply voltage VDD as a bit-flip
probability Pcell fail in the memory cells. This influence
can be modeled for 6-transistor (6T) and 8-transistor (8T)
memory cells according to the following equations [31,33]:

P6T cell fail = 10−11.7(1/V )∗VDD+5.6 (3)

P8T cell fail =

{
10−20(1/V )·VDD+7.8 if VDD ≤ 700mV
10−40(1/V )·VDD+21.8 if VDD > 700mV

(4)

Referring to Fig. 2, equations (3) and (4) represent the
RAP from the lower technology level. By means of system
simulations, we can propagate this information to the next
level in the form of a system frame error rate (FER). The
simulations take the system architecture into considera-
tion. Thereby, memories containing complex-valued data
have shown the highest susceptibility. The memory for
the channel information belongs to this group of critical
memories. Figure 4 shows the system FER for different bit
error probabilities pb in this memory. The system shows an
algorithmic error resilience for pb ≤ 10−6. For larger error
rates, the performance is gradually decreasing.

Several resilience actuators exist which can mitigate the
effect of hardware errors on the system performance. We
analyzed the robustness of different resilience actuators
against voltage drops in [31]. No action has to be taken
as long as there is a high hardware reliability, i.e. voltage
drops of no more than 200mV. For a decreased reliabil-
ity in which voltage drops up to 300mV occur, we can
react on the application level by increasing the number
of iterations in order to regain communications perfor-
mance. For transient errors, this leads only to a temporary
throughput degradation without loss of communications
performance. When errors occur with a high probability
pb > 5 · 10−5, application-level resilience actuators cannot
provide the necessary resilience. On the architectural level,
the contents of the memory can be protected by a simple
1-bit error correction code. The resilience can be even
further increased on technology level by employing 8-
transistor (8T) memory cells instead of 6-transistor (6T)
cells, resulting in a smaller implementation overhead. 8T
memory cells can even tolerate voltage drops of 500mV.
However, the increase in area and power is in both cases
permanent.

C. RIIF Protected SRAM Model

Correctly modeling the effective failure rate of even
a simple system can quickly become complicated when
multiple failure modes are considered and when mitigation
techniques mask some of the errors. In [34], Sánchez-
Macian et al. developed a RIIF model for an SRAM with

component SRAM; // SRAM with two failure modes
// Design Parameters
parameter SIZE: int := 512 ∗ 1024 ∗ 1024;
parameter WIDTH : int := 32;
parameter M = ( SIZE / WIDTH );
// Operating Parameters
parameter TEMPERATURE: float;
parameter VOLTAGE : float;
// Failure modes
fail mode : SBU; // soft error
assign SBU’unit = FITS;

fail mode : SHE; // hard error
assign SHE’unit = FITS;
endcomponent
...
component SEC PROTECTED SRAM extends SRAM;
parameter T SCRUB : time; // scrub interval
assign T SCRUB=express time(”hours”,24);
parameter BUILD T : time; // manufacturing time
parameter POWERUP T : time; // power−up time
fail mode SDC; // data corruption
assign SDC’rate = ( pow(SBU’rate,2) ∗

get time since( POWERUP T, ”hours” )/M +
pow(SHE’rate,2) ∗
get time since (BUILD T, ”hours” )/M +

(SBU’rate ∗ SHE’rate / M) ∗ (
get time since( POWERUP T, ”hours” ) +

get time since( BUILD T, ”hours” ) ) );
...
endcomponent

Fig. 5. RIIF SRAM Model

M words. The model assumes that the memory is subject
to transient single bit upsets (SBUs), at a rate of λSBU

and to permanent single bit hard errors (SHEs) at a rate
of λSHE . It is assumed that this memory is protected by a
single error correct (SEC) ECC code. If two bits in a word
are wrong (two SBUs, two SHEs or an SBU and SBE), the
result is silent data corruption.

SBEs accumulate in the memory starting from the
time the system is powered-up, t. Hard errors (SHEs)
accumulate in the memory starting at the time the system
was built, t′. It is shown that the rate of data corruption
with this system is:

λSEC =
λ2
SBU · t

M
+

λ2
SHE · t′

M
+ λSBU ·

λSHE · t′

M
+ λSHE ·

λSBU · t

M
(5)

It is common practice to use scrubbing [35] to prevent
error accumulation. If the scrub period is denoted by TS ,
then the rate of data corruption is given by:

λSEC =
λ2
SBU · TS

2 · M
+

λ2
SHE · t′

M
+λSBU ·

λSHE · t′

M
+λSHE ·

λSBU · TS

2 · M
(6)

These equations can be coded in RIIF as shown in
Fig. 5. First, a base component for an SRAM is declared.
This model defines the rates of SBEs and SHEs as a
function of voltage and temperature. Then this component
is extended to model the effects of ECC and scrubbing.

Currently, an initial version of a tool to process RIIF
models [36] is available and the results of simulating these
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models have been plotted in Fig. 6. From the results, we
see that with scrubbing, the failure rate grows slowly with
time, as the probability of an SBU and an SHE occurring
in the same word is small. Without scrubbing, of course,
the failure rate grows quickly with time, as the SBUs
accumulate in the memory.

This example shows that even a simple system requires
a time-variant model with voltage and temperature de-
pendencies. Without a standard and scalable modeling
language it is difficult for industry to accurately predict
the reliability of complex silicon systems.

VI. Test Perspectives

Testing integrated circuits after manufacture is a cru-
cial step in ensuring the integrity of the systems which
include them. This is particularly important for highly
reliable systems which are assumed to be initially fault-
free. The test process involves the application of input
patterns to the chip which will expose any internal defects.
If the tests are not perfect, a coverage factor reflecting
the probability of an untested fault affecting the reliabil-
ity should be included in the cross-layer representation.
As circuits grew complex and exhaustive testing became
impossible, fault models were used to target the tests. The
“stuck-at” model for digital circuits is the most commonly
used, and experience has shown that such tests detect
many defects even if they are not correctly modeled as
stuck-at faults. For specific circuits, such as memories,
fault models were specified at the behavioral level and
used to develop O(n) tests for memories with n cells which
could detect interactions between any pair of cells [37].
Such tests can be run periodically during operation to
detect latent failures and to support bypass or repair of the
faulty regions. In order to reduce test generation cost and
application time, use of “design-for-test” techniques, such
as scan, became common practice. Test access is provided
to the internal storage elements in test mode by connecting
them as part of a shift register [38]. This increases both
the controllability and observability of the circuit, and
simplifies test generation by only having to deal with
combinational circuits. This concept has been extended to
testing Systems on Chips (SoCs), and incorporated into
standards. “Built-In Self Test” (BIST) techniques include
pattern generators on the chip and logic to compress the
responses into signatures, enabling tests to be applied at
speed [39], and such techniques are commonly used in
chips. The hardware overhead of BIST can be eliminated

for processors by using processor instructions to generate
tests and processor registers to store the signatures [40].
This technique, called native-mode or software based self
test, has been used successfully in industry [41]. Such
application-level tests are ideal for on-line periodic testing
of the hardware, and information on any failures identified
can be used to improve system-level reliability.

With advances in technology, including subwavelength
lithography, random dopand fluctuations, hot-spots, and
voltage variations, circuit behavior and the types of defects
seen have changed. Experiments on chips have shown that
some tests applied at slow speeds (such as when using
scan) would not expose defects, but would do so when
applied at the circuit operating speeds [42]. The “delay
fault” model more accurately captures the results of these
trends in digital circuits. Recent work on new design-for-
test ideas to detect delay faults include on-chip delay lines
to accurately measure path delays using scan tests and
the skew between data and control signals (in memories,
for example). Excessive delay on a path will result in the
incorrect value stored in a flip-flop, similar to a bit-flip. The
slacks on paths, which generally reduce with an increase
in temperature or a decrease in the supply voltage, would
be an indication of the operational reliability. The delay
lines could be used to monitor slacks on paths to alert the
system or application to potential failures.

The trend in SoCs, driven by consumer electronics, is
to include analog and RF modules in addition to many
digital cores. Analog and RF modules have to be tested for
compliance with their specifications, such as bandwidth,
signal-to-noise ratio and linearity. Attempts to develop
structural fault models as in digital circuits have not been
very successful for testing real chips. One approach em-
bedded analog modules is to place them in loopback mode
during the test, for example, a digital-to-analog converter
feeding an analog to digital converter. Techniques have
been developed for checking for the individual specifica-
tions of the converters from the results of the loopback
test. A promising approach for efficiently testing for many
specifications is alternate test [43] which exploits the fact
that any parameter variations in the chip which affect
the specifications will also affect other, easier to measure,
parameters, such as current, amplitude of a signal, etc.
Using carefully crafted tests which are sensitive to the
possible parameter variations, the approach finds correla-
tions between the measured signals and the specifications.
After this initial training, high-volume tests can predict
the specifications from the measured values with much
lower cost. This approach has also been used successfully
in industry.

There is ongoing research into developing on-chip cir-
cuits which can support analog and RF test. One example
of testing RF circuits for high-frequency specifications is
to embed sensors on the chip, [44]; chip measurements
show that specifications which are difficult to test, such as
linearity, can be predicted very accurately from the low-
frequency output of the sensors, and thus reducing the cost
of test.

Further research is needed for thoroughly testing com-
plex SoC with embedded analog and RF modules. Ex-



tending the software-based self test ideas with powerful
design-for-test circuitry on chip will help to make highly
reliable systems of the future possible. How to balance the
benefits of online test-methods against the required cost
of such methods will be an important research topic. Also,
test techniques to ensure reliability need to be compared
in their effectiveness and their cost-benefit ratio to other
techniques.

VII. Conclusion

Cross-layer techniques for improving the reliability of
integrated circuits are fast moving from nice-to-have to-
wards becoming a key enabler for reaping continued bene-
fits from the scaling of CMOS process technologies. An es-
sential key for the successful deployment of such cross-layer
techniques are standardized interfaces that allow different
levels of the design hierarchy to communicate seamlessly
and efficiently. In this paper, we have described two such
interfaces: the Resilience Articulation Point (RAP) model
which serves as a conceptual interface for propagation of
reliability information between different abstraction layers,
as well as the Reliability Interchange Information Format
(RIIF), which allows for standardized exchange of reliabil-
ity information between different CAD tools. This has been
complemented by a brief description of three case studies
that utilize cross-layer techniques for modeling reliability
and improving system performance. Importantly, also the
test perspective on reliability has been explored.

Further research is required to enable cross-layer design
to demonstrate its full potential and to become standard
industry practice. This research will address on the one
hand specific algorithms for efficient cross-layer analysis
and optimization of design. On the other hand it needs to
further develop and utilize standardized interfaces such as
RAP and RIIF.
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