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Abstract—Multiplexing models are common in resource sharing
communication media such as buses, crossbars and networks.
While sending packets over a multiplexing node, the packet delay
bound can be computed using network calculus models. The
tightness of such delay bound remains an open problem. This
paper studies the multiplexing models for weighted round robin
scheduling with different traffic arrival curves, and analyzes per-
flow packet delay bounds with different service properties. We
empirically evaluate the tightness of the delay bounds. Our results
show the quality of different analysis models, and how influential
each parameter is to tightness.

I. INTRODUCTION

As modern CMPs and MPSoCs advance from multicore to

many-core systems, on-chip interconnects play an increasingly

important role in the system architectures. To satisfy the need

of real-time applications, providing performance guarantees in

the on-chip communication subsystem is indispensable in the

entire system chain together with the computation and storage

subsystems. In offering predictable performance, it is essential

to build proper analytic models to analyze performance bounds

under resource sharing scenarios.

In advanced on-chip interconnects, channel multiplexing is

a most common resource sharing pattern. For instance, in a

network-on-chip, routers are connected with channels to deliver

packets through multiple hops from sources to destinations.

We call a unicast stream of packets a flow. Along the flow’s

path, packets may experience contention with packets from

other flows. Bounding the maximum packet delay is a critical

requirement to ensure predictable communication performance.

Surprisingly, for such a common pattern, the studies are not

satisfactory in the sense that the tightness of multiplexing

analysis models has not been sufficiently evaluated. This largely

hinders our understanding on the basic resource sharing pattern

in offering performance guarantees.

In the paper, we analyze the delay bound under Weighted

Round Robin (WRR) multiplexing model based on Network

Calculus (NC). We consider two different arrival models,

specifically, the (b, r) model and TSPEC model (see Sec. III-A),

and two different arbitration service properties, i.e. isolation

property (see Sec. IV-B) and left-over service property (see

Sec. IV-C). Moreover, we give a systematic evaluation on their

tightness with respect to the characteristics of the service and

flows (see Sec. V). Through our studies, we find out when and

why one model is better than the other and in general under

what traffic settings the tight delay bound may appear. It helps

to shorten the simulation time and predict on which situation a

worst case would happen.

II. RELATED WORK

Network calculus is a theory of queuing systems based on

highly abstract modeling of arrival curves and service curves.

In [1] Cruz first described traffic as (b, r) characterization and

gave a calculus method to obtain the delay. The concept of

service curve was later formalized in [2]. Now, network calculus

is also widely used in embedded systems, SoCs and other

kind of networks besides Internet and ATM. On the other

hand, simulation always acts as a powerful tool to validate

different analysis models, though simulation is time-consuming

and difficult due to the uncertainty of when the worst case

would happen [3].

Chang discussed delay bound for aggregate scheduling in

[4]. In [5], explicit results for multiplexing nodes with FIFO

scheduling, Guaranteed Rate (GR) node, and strict service curve

were provided. In [6], Qian et al. gave a specific method for

analyzing the WRR arbitration.

III. NETWORK CALCULUS BASICS

A. Arrival curve: (b, r) and TSPEC models

Flow R has α as an arrival curve if and only if ∀s < t :
R(t) − R(s) ≤ α(t − s) [5]. Consider an affine arrival curve

γr,b = α(t) =

{
rt+ b, if t > 0
0, otherwise

. It allows a traffic source

to tolerate b bits instantaneously, but no more than b+ rt bits

over any time interval t. This is the (b, r) model with burstiness

b and rate r.

The (b, r) model well describes average traffic behavior

but without consideration of the peak traffic behavior. To

take both kinds of behavior into account, TSPEC (Traffic

Specification) model [7] is proposed, and thus gives a better

traffic characterization. It is a 4-element tuple (p,M, r, b) in the

form α(t) = min(M + pt, rt+ b) with maximum packet size

M , peak rate p, burstiness b and sustainable rate r.

B. Service curve: Latency-rate server

Consider that a flow passes through system S with input

and output function R and R∗. We say that S offers to

the flow a service curve β if and only if β is wide-sense

increasing, β(0) = 0 and R∗ ≥ R ⊗ β, where ⊗ is the

min-plus convolution, f ⊗ g(t) = inf0≤s≤t[f(s) + g(t − s)],
and inf is "infimum" or "minimum" whenever applicable. If

β = R[t − T ]+ =

{
R(t− T ), if t > T
0, otherwise

, β is called the

latency-rate service curve with minimum rate R and maximum

latency T [8], denoted by βR,T .978-3-9815370-2-4/DATE14/ c©2014 EDAA



C. Per-flow delay bound

Assume that a flow constrained by arrival curve α traverses a

lossless system offering a service curve β. The delay bound D̄
is the maximum horizontal deviation between α and β, h(α, β).
Consider a flow constrained by γr,b and served in a node with

service curve βR,T , the per-flow delay bound is

D̄br = T +
b

R
, r ≤ R .

If a flow defined with TSPEC (p,M, r, b), is served in a node

with service βR,T , the maximum delay is bounded by

D̄tsp =
M + b−M

p−r (p−R)+

R
+ T, r ≤ R [5].

In general, the TSPEC model gives tighter analytic bound.

When p > R, the larger R is than r, the larger difference exists

between D̄tsp and D̄br. See Fig. 1.
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Fig. 1. (b, r) vs. TSPEC model
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Fig. 2. Multiplexing analysis model

IV. MULTIPLEXING MODEL AND ANALYSIS

A. The Multiplexing Model

Link sharing means that multiple flows from different buffers

go through the same server, sharing the same outport and link

bandwidth. As shown in Fig. 2, two flows have their own buffers

accordingly.

Throughout this paper, we assume that there are two flows

f1 and f2 sharing the same link, characterized as arrival curve

α1, α2; FIFO Bi for flow fi is large enough to avoid any

packet loss or back pressure. (In fact, the buffer requirement

can be calculated by Theorem 1.4.1 in [5].) f1 is the tag flow.

The arbiter provides a service curve βσ
Rσ,Tσ

. The sink provides

service curve βR,T . The tag flow f1 gets the Equivalent Service

Curve (ESC) β̂sys_1 = βRsys,Tsys . D̄br and D̄tsp stand for

delay bounds by the (b, r) model and TSPEC model, Dsim is

the maximum observed delay, for the tag flow. We define their

ratios ξbr = Dsim

D̄br
, ξtsp = Dsim

D̄tsp
as tightness, an evaluation

criterion for the reachability of the calculus delay bound. In

our analysis, we implement WRR arbitration, with each flow

having a pre-set weight φi.

B. Analysis with Isolation Property

In the WRR arbitration, each flow is allocated a time slot

equal to its weight φi. For each round, the arbiter ensures flow

fi at least φi packets to go in its time slot. The worst waiting

time appears when flow fi just misses its time slot in this round.

Consider an arbiter serves Rσ packets/cycle, then the minimum

rate guaranteed to flow fi is Rσ
φi∑j=N

j=1
φj

, where N is the

number of flows. The maximum waiting time flow fi encounters

in each round is

∑
j �=i

φj

Rσ
, described as a burst delay function

δ∑
j �=i

φj

Rσ

(t) =

{
+∞, if t >

∑
j �=i

φj

Rσ

0, otherwise
. Since each flow

receives a guaranteed service independent of the interference

flow, we call this Isolation Property (IP) because we treat as if

the arbiter is divided into several independent parts and serves

each flow separately. For 2 flows, we derive the ESC of tag

flow f1 as follows

β̂sys_ip =
φ1

φ1 + φ2
βσ ⊗ β ⊗ δ φ2

Rσ

.

After derivation and simplification, the ESC turns out to be

a latency-rate server with

{
Tsys_ip = Tσ + T + φ2

Rσ

Rsys_ip = φ1

φ1+φ2
(Rσ ∧R)

[6],

where ∧ is the minimum operation, a ∧ b = min{a, b}.

Then we can derive the worst-case delay bound. Since we

have two arrival models for the tag flow, we give different delay

bounds accordingly. For the (b, r) model, we have

D̄br_ip = Tsys_ip +
b1

Rsys_ip
, r1 ≤ Rsys_ip .

For the TSPEC model, we have

D̄tsp_ip =
M + b1−M

p−r1
(p−Rsys_ip)

+

Rsys_ip
+Tsys_ip, r1 ≤ Rsys_ip .

C. Analysis with Left-over Service Property

Using IP, we can find per-flow delay bound, which only

depends on the allocated service and is independent of the

characteristics of the interference flow. However, this may result

in pessimistic result if the interference flow uses less than

allocated bandwidth. In fact, with WRR, a flow can use more

than its allocated bandwidth if the other flow uses less. To

remedy this problem, we can compute the per-flow delay bound

using the Left-over service Property (LP) [5]. The key idea with

LP is that a flow’s actual service depends not only on the server

but also on the interference flow’s characteristics.

Consider that a node serves 2 flows f1 and f2 with an arbitrary

multiplexing, and provides service βR,T to the aggregate flow.

Assume that the interference flow f2 has arrival curve α2.

If β̂sys_lp(t) = [βR,T (t) − α2(t)]
+ is wide-sense increasing,

then β̂sys_lp is a service curve for flow 1. We can prove that

whether f2 is characterized as (b, r) curve γr2,b2 , or TSPEC

curve (p,M, r2, b2), β̂sys_lp is always a service curve for f1.

For practical settings, we have R ≤ p = 1, so the ESC for f1
is β̂sys_lp(t) = (R− r2)[t− b2+RT

R−r2
]+, which means{

Tsys_lp = b2+RT
R−r2

Rsys_lp = R− r2
.

And we calculate the delay bound of f1 with the (b, r) model

or the TSPEC model respectively by

D̄br_lp = Tsys_lp +
b1

Rsys_lp
, r1 ≤ Rsys_lp ,

D̄tsp_lp =
M + b1−M

p−r1
(p−Rsys_lp)

+

Rsys_lp
+Tsys_lp, r1 ≤ Rsys_lp .

We have now derived per-flow delay bounds using the two

kinds of analysis. Taking advantage of both IP and LP, we get
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a combined formula D̄ = h(α1, β̂sys_ip)∧h(α1, β̂sys_lp) to get

more accurate prediction of delay bound.

V. EVALUATION

A. Experimental purpose and setting

1) Purpose: The purposes are multi-folded. In general, we

use the simulation approach to validate if the theoretical delay

bounds are tight, and to evaluate the quality of the analysis

models. More importantly, we would understand when and

why they are tight or not tight. To this end, we look into

how the tightness will be affected by the three factors, namely,

the tag flow’s characteristics, the server’s characteristics, and

the interference flow’s characteristics. Furthermore, because

simulating tightness is a reachability problem, we have to

understand under which system settings tight results are more

likely to appear.

2) Simulation library: We build up a cycle-accurate simula-

tion library to simulate the multiplexing behavior. Source builds

up the arrival curve. At any time t, its output is constrained

by b+ rt. In order to generate the most bursty traffic, we use

a periodic ON-OFF injection [9]. More accurately, the output

can be described by the TSPEC (p,M, r, b) model with link

bandwidth constraint in consideration. Sink is a special type of

latency-rate server without output traffic. Here we implement

Arbiter as a WRR arbiter.

3) Experimental setting: The simulated multiplexing model

is shown in Fig. 2. For arrival models, we set the average

injection rate r ∈ (0, 1) packet/cycle and burstiness b ∈ [1, 128]
packet(s). As limited by the channel bandwidth in hardware,

the TSPEC model has M = 1 packet and p = 1 packet/cycle

in all experiments. The arbiter is work-conserving, i.e. Rσ = 1
packet/cycle and Tσ = 0 cycle, to serve the aggregated flow.

For WRR scheduling, weights are allocated as φ1 = φ2 = 1.

For the sink, when we are discussing the influence of sink’s rate

and latency, R and T will be assigned case by case. Otherwise,

it is also supposed to be a work-conserving server β1,0. For

each simulation run, at least 5000 packets are transmitted for

each flow.

B. Influence of tag flow’s arrival curve
1) Arrival rate: In the WRR arbiter, each flow receives a

minimum rate of 0.5 packet/cycle. Tag flow f1 = r1t + 16,

r1 ∈ [0.05, 0.5], and interference flow f2 = 0.5t+32. Here we

only focus on comparing the two arrival models, so the service

property is limited to IP. From results in Fig. 3, we can see that

• The TSPEC model always gives tighter result than the

(b, r) model. Under the same set of settings, the larger the
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difference between r1 and Rsys_ip (0.5 packet/cycle), the

tighter TSPEC model is than the (b, r) model.

• The TSPEC model gives stable tightness close to 1.

In general, the influence of r1 to the tightness can be

eliminated by introducing the TSPEC model. In contrast,

ξbr_ip rises along with r1. A sweet spot occurs when

the two tightness curves finally meet each other when

r1 = Rsys_ip.

Since the TSPEC model always gives better tightness, we

shall use the TSPEC model in all the following experiments.

2) Arrival burstiness: We also investigate the influence of tag

flow’s burstiness by three sets of experiments, which all have

interference flow f2 = 0.5t+64, tag flow f1 = r1t+ b1, where

b1 ∈ [20, 27]. In different sets, f1 takes different amount of band-

width allocated to it, i.e. r1 = 0.2Rsys_ip, 0.6Rsys_ip, Rsys_ip

accordingly. Theoretically, for the worst case to happen, a packet

has to encounter both the longest queuing delay caused by sink

and arbiter, and the processing delay caused by the packets

served before it. From results in Fig. 4 we can see that

• Tightness rises along with tag flow’s burstiness b1. When

there is a larger burstiness, the buffer becomes more

backlogged, which gives a chance for a packet to wait

for the "full" processing delay to happen.

• The curve of r1 = 0.5 is generally above that of r1 = 0.3,

so as curve of r1 = 0.3 to that of r1 = 0.1. That further

demonstrates when tag flow occupies more of its allocated

bandwidth, the more likely a worst case to be met.

C. Influence of service curve βR,T

After settling the arrival curve, we use the one-flow-one-

server case to understand how the server’s characteristics would

impact the tightness.
1) Service rate R: Injection flow f = 0.1t+b, gets a service

curve βR,T with R ∈ [0.3, 0.9]. When b = 16, 16, 32 packets,

T = 30, 30, 40 cycles, accordingly. As shown in Fig. 5, the

influence of service rate R shows actually the same trend as

that of injection rate r, for which we have already discussed

before. The closer r is to R, the tighter is the delay bound.

2) Processing latency T : See Fig. 6. In the experiments, we

have a fixed f = 0.9t + b, with b = 2, 16, 32. Server’s rate

R = 0.9 packet/cycle and latency T changes exponentially. We

discovered that a larger T may result in a tighter result, but

not necessarily. For some cases, even when T = 0 cycle, we

can get 100% tightness (for all p = R = 1 packet/cycle cases,

see the orange point). Also, the tightest point doesn’t appear at

where T is largest. We conclude that, it is the ratio of T to b
that affects tightness, rather than the value of T . When T ≥ b,
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packets have the chance to wait and accumulate before they are

consumed by server, which results in a "full burstiness". When

the "full burstiness" is paid by the server, the whole processing

delay can be encountered.

D. Influence of interference flow’s arrival curve

Now we discuss the impact of interference flow’s charac-

teristics, which relates to the actual service the tag flow can

get. As discussed above, for WRR there will be more than one

choice for describing the arbiter’s service curve. Typically, the

IP service curve and LP service curve intersect each other at a

point. If no arrival curve information is provided, it cannot be

determined. So, the practical method is to analyze the injected

traffic patterns first, and then choose a proper service curve

based on traffic situations.
1) When the tag flow is busy: In first two sets, tag flow

f1 = 0.5t+ 64 is a comparatively busy flow, and interference

flow f2 = r2t+8, r2 ∈ [0.1, 0.5], or f2 = 0.1t+b2, b2 ∈ [20, 27].
From Fig. 7 and Fig. 8, when r2 or b2 gets larger, tightness of IP

increases, while the one with LP does not change significantly.

ξtsp_lp is dramatically higher than ξtsp_ip when r2 or b2 is

small, but the difference lessens when r2 or b2 increases and

finally ξtsp_ip exceeds ξtsp_lp when r2 or b2 is large enough.

The IP model defines minimum rate for the tag flow, which

is independent from the interference flow. One the other hand,

the LP model gives the maximum service a tag flow can get

after interference flow being extracted from the total service

capacity. It takes consideration when f1 grabs some of the

service allocated to f2. That explains why when f2 is less busy,

the leftover service model is much tighter, but when f2 gets as

busy as f1, the IP model performs better.
2) When the tag flow is less busy: In the following sets,

tag flow f1 = 0.1t+ 64 is a comparatively less busy flow, and

interference flow f2 = r2t+8, r2 ∈ [0.1, 0.9], or f2 = 0.1t+b2,

b2 ∈ [20, 27]. The trend for ξtsp_ip, ξtsp_lp and their relationships

hold the same as pervious experiments (See Fig. 9 and Fig. 10).

An interesting point is, after a certain point, ξtsp_ip becomes

saturated around 100%. In Fig. 9, it appears after r2 = 0.5. That

is because the interference flow has used up all its allocated

service without any capacity left to f1. In Fig. 10, it appears at

b2 = b1 = 64. Because when b2 is large enough, it can cause

much blocking to f1 in short time intervals.

VI. CONCLUSION

We present different arrival and service analysis models for

WRR multiplexing, and show how different parameters influence

delay bound tightness, giving answers to what is the quality of

analysis bounds and when and why a worst case would happen.

We conclude that: (1) All the analytic delay bounds are reachable.

Simulated maximum delays can approach to analytic ones,

giving tightness nearly 100%. (2) The TSPEC model is tighter

than the (b, r) model, but much more complicated to calculate

when all flows use it. Yet the (b, r) model can also deliver

tight results when flow rate r is close to its equivalent service

rate Rsys. (3) For WRR, there is no absolute winner between

isolation and left-over service properties. When interference flow

is less busy, using the left-over service property gives tighter

bound; while when it is busy, using the isolation property is

tighter. From the experiments we can see that the worst-case

delay does not come "for free". They appear under specific

parameter settings of flows’ arrival curves and service curves.

In the future, we will extend our work to different arbitration

policies, like priority based and blind arbitrations. Our aim is to

draw some general conclusions for various multiplexing models.
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