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Abstract—Studying the delay bound tightness typically takes a prac-
tical approach by comparing simulated results against analytic results.
However, this is often a manual process whereas many simulation
parameters have to be configured before the simulations run. This
is a tedious and time-consuming process. We propose a technique to
automate this process by using a simulated annealing approach. We
formulate the problem as an online optimization problem, and embed a
simulated annealing algorithm in the simulation environment to guide
the search of configuration parameters which give good tightness results.
This is a fully automated procedure and thus provide a promising path
to automatic design space exploration in similar contexts. Experiment
results of an all-to-one communication network with large searching
space and complicated constraints illustrate the effectiveness of our
method.

I. INTRODUCTION

Quality-of-Service (QoS) is an important aspect in Network-on-

Chip (NoC) design [1] in order to provide guaranteed packet delivery

service for applications that have strict timing requirements on com-

munication delay, e.g. multimedia streams. In recent years, Network
Calculus [2][3] based formal analysis has been successfully applied

to calculate the delay bounds for on-chip networks [4][5]. However,

systematic study of delay bound tightness is seldom touched.

Tightness is a metric to measure how tight the calculated result

can bound the worst case communication delay in practical working

scenarios. Studying tightness has practical significance for designing

NoC as well as validating the formal analysis. From the analysis

perspective, it is studied as a reachability problem, because the formal

model covers all the cases whereas the practical delay depends on im-

plementation and parameter configuration. Simulation captures more

practical implementation details than the abstract formal analysis,

and is a pragmatic approach to validate the delay bound tightness

as used in [4] and [5]. However, simulation is hard to cover all

the system states [6]. Moreover, the worst case delay bound may

be only reached in some extreme case that might be very difficult

to occur in simulations. This brings about the challenge for the

effectiveness of simulation based validation. Furthermore, we are

often more interested in finding the system configurations that lead

the communication delay close to the delay bound from the design

perspective.

Unfortunately, the search space of the system configuration may

easily become extremely large due to the combinatorial explosion

of the system parameters. Manual configuration has poor scalability

and is not competent in finding the configuration for best tightness.

For example, let us consider a simple system with 20 parameters

whose scale is very easy to be reached in a real NoC design, and

each parameter has just only 5 possible values. The whole search

space then has over 9.5 × 1013 cases. Assume that each simulation

takes 5 seconds, the time to cover all the cases will exceed 1.5×107

years. Apparently this is unrealistic for brute-force enumeration, let

alone manual configuring. Even though we can manually configure

the system based on some analysis of the worst case conditions,

the complex contention patterns among flows still make it require

tremendous effort and time. Thus an effective computer aided method

is essential for searching the worst case delay, especially when the

system scales.
Simulated Annealing (SA) [7][8] inspired by annealing in met-

allurgy is a meta-heuristic method for global optimization. It is

widely used in a large range of applications to search for a good

approximation to the global optimum of a given objective function

(or cost function). SA is capable of handling complex problems

with multi-dimensional searching space, especially those with dis-

continuous or discrete variables. Moreover, the cost function is

not necessarily an explicit function with respect to the specified

parameters. These characteristics of SA enable the computer aided

configuration and enable to embed the simulation into this heuristic

method for automatic searching.
In this work, we present an SA aided tightness study to search

for the configuration that leads to best tightness. The problem is

formulated as an optimization problem with a set of constraints

on the system’s parameters. Then we propose an SA algorithm to

search for the global optimum or suboptimum solution for this well

defined problem. The tightness is formulated as an implicit function

in the searching space, and the mapping between the tightness and

the parameters is set up by simulations. Our experimental results

show that this method can effectively find the configuration for best

tightness and is capable of dealing with large scale systems.
The paper’s contributions can be summarized as follows.
(1) We formulate the delay bound tightness problem as an opti-

mization problem with the objective of maximizing the tightness.
(2) We propose an SA algorithm to solve the formalized problem

for global optimum or suboptimum solution, and thus to reach the

best tightness.
(3) By studying the case of an all-to-one communication pattern

in a binary tree topology, we show the effectiveness of the proposed

method to study delay bound tightness, especially for handling a

complex system with discrete variables and multi-dimensional search

space.
The rest of the paper is organized as follows. We outline related

work in Section II. In Section III, we introduce the symbols and the

delay bound calculation techniques based on network calculus. The

problem formulation of searching for best tightness is presented in

Section IV after the discussion of the challenge in the tightness study.

We then propose an SA algorithm in Section V. Experimental results

are reported in Section VI. Finally, we conclude in Section VII.

II. RELATED WORK

The network calculus theory was originated in 1991 by Cruz [9].

As it develops, network calculus has been applied to on-chip micro-

networks. In [5], Qian et al. identifies three basic flow contention978-3-9815370-2-4/DATE14/ c©2014 EDAA



patterns and calculate the per-flow equivalent service curve (ESC)

to calculate the delay bound. Furthermore, in [4] more sophisticated

resource sharing such as link sharing, buffer sharing and control

sharing are studied. By resolving these resource sharings, the worst-

case delay bound analysis technique is developed.

In [10], the validation of the delay bound is also studied as a reach-

ability problem as we do in the paper. They proved that the delay

bound is achievable by setting up specific scenarios and assumptions.

However, it becomes increasingly difficult and complicated with the

increasing complexity of flow contention and resource sharing in

the network. In this work, we develop an SA aided method rather

than manual analysis to investigate the achievable best tightness for

a complex system.

SA is widely used to search for global optimum solutions for

those NP-Hard (Nondeterministic Polynomial-time Hard) problems.

It is also applied in optimizing the NoC design in the design space to

make trade-offs among various specifications. Lu et al. [11] develops

a clustering technique with SA to map cores to a 2D mesh NoC.

In [12], SA is used to optimize the power consumption and to

design energy efficient network. Besides, SA is also applied to

optimize the test schedule for NoC [13] within the thermal and power

constraints. All these applications practically require an explicit

analytical function as the objective.

In our work, we express tightness as an implicit function of

the system parameters, and embed the simulation process into the

algorithm to set up the mapping between tightness and configuration

space. To our knowledge, we are the first to apply a heuristic

algorithm, in this case, SA, to the study of delay bound tightness.

III. DELAY BOUND ANALYSIS TECHNIQUE USING

NETWORK CALCULUS

A. Notations and Definitions

We first define the symbols and terms for network calculus and

the problem formulation, as listed in Table I.

TABLE I
SYMBOLS AND DEFINITIONS

Symbol Explanation

fi The ith flow
αi Arrival curve of fi with burstiness bi and rate ri
βi The ith service curve
βCi,Ti

Latency-rate service curve with rate Ci and latency Ti

φi The weight of flow fi with weighted round robin arbitration
βsys
i The end-to-end equivalent service curve (ESC) provided by

the system to fi
Csys

i The system equivalent service rate for flow fi
pj The jth parameter used to configure the system
lj Lower bound of parameter pj
hj Upper bound of parameter pj
P The set of parameters, P = {bi, ri, Ci, Ti, φi | i ∈ I},

where I is the index set
S The configuration space. Each element s ∈ S is a set of

parameters such that s = {pj |lj ≤ pj ≤ hj , j ∈ I}
represents one configuration of the system.

dmax The maximum packet delay obtained from the simulation
under a specific configuration s

Dmax The maximum packet delay defined on S
D̄ Flow’s delay bound calculated by closed-form formula
∧ The minimum operation, e.g. a ∧ b = min{a, b}
[x]+ The maximum of x and 0, namely [x]+ = max{x, 0}

B. The Delay Bound Analysis Technique

1) Concepts: In network calculus, arrival curve and service curve
are two fundamental concepts. Arrival curve defines the upper bound

of the injected traffic within any time interval. One of the widely used

curves is the linear arrival curve γb,r = rt+b when t > 0, otherwise

0, in which r is the sustainable arrival rate and b the burstiness.

Service curve models a network element, e.g. a router, representing

the lower bound of its service capability. One commonly used service

curve is the latency-rate function βC,T = C[t − T ]+, where C is

the minimum service rate and T the maximum processing latency.

The delay bound of a flow fi is calculated by finding the greatest

horizontal distance between its arrival curve αi and the system ESC

βsys
i .

2) The analysis procedure: Our goal is to derive a closed-form

formula to compute the upper delay bound for a flow. We call this

flow tag flow to contrast other contention flows. The key idea is

to compute its end-to-end ESC considering all resource sharing.

According to [4][5], the delay bound analysis procedure can be

summarized as follows:

Step 1 Resolve link sharing and calculate the ESC at each node;

Step 2 Resolve buffer sharing and calculate the left-over service

curve of the tag flow;

Step 3 Compute the system ESC for the tag flow;

Step 4 Derive the delay bound of the tag flow.

Next, we give an example for the delay bound analysis.

3) An Illustrative Example: Figure 1 shows a simple example in

which three flows f1, f2, f2 aggregate through two routers R1 and

R2. At router R1, the three flows share the output channel and go

to buffer B2 in the first-in-first-out (FIFO) order. The injection of

each flow is bounded by a linear arrival curve αi = rit + bi for

i = 1, 2, 3. The weight of each flow is φi when arbitrating for the

shared output channel of R1. The service curves of R1 and R2 are

βi = βCi,Ti
= Ci[t− Ti]

+ (i = 1, 2), respectively.

¯1

f1 : ®1

f3 : ®3

¯2

B2f2 : ®2 ff1; f2; f3g

R1 R2

Á1

Á3

Á2

Fig. 1. Three flows aggregate with link sharing and buffer sharing.

Suppose that f1 is the tag flow. We are to calculate its delay bound

from the input of R1 to the output of R2. Following the analysis

procedure without giving details, the closed-form formula of delay

bound can be deduced after resolving link sharing and buffer sharing.

Under the stability condition, we have

D̄ = T1 + φ2 + φ3 + T2 +
b∗2,3
C2

+
b1

φ1C1
φ1+φ2+φ3)

∧ (C2 − r2 − r3)
, (1)

where b∗2,3 = b2 + r2(T1 + φ1 + φ3) + b3 + r3(T1 + φ1 + φ2).

IV. PROBLEM FORMULATION FOR TIGHTNESS STUDY

We first expose the challenge in the tightness study and then give

the tightness problem formulation.

A. Challenge in Tightness Study

1) The Study of Delay Bound Tightness: The delay bound calcu-

lated by the network calculus analysis model covers all the system

state. However, in realistic on-chip network designs, we are more

interested in how close the real simulated maximum delay can

approach to the bound under practical configurations. Thus we define

the tightness as the ratio of the real simulated maximum delay to the

calculated delay bound as

ξ =
Dmax

D̄
× 100%. (2)



This definition works well and is used in several works (e.g. [4][5])

to validate the developed network calculus model. One may think

that the tightness metric seems not to be so good when both Dmax

and D̄ are very small even though Dmax is very close to D̄. For

example, we get both 80% of tightness with 4/5 and 40/50 whereas

the latter has a much larger difference. We do need to examine

the difference between Dmax and D̄ when we evaluate the model

especially when the delay is small. However, it does not affect the

use of this definition to search for best tightness with the method

proposed in this work.

2) The problem exemplification: Consider to find a parameter

configuration of the small example in Figure 1 to reach the worst

case delay. There are 13 parameters to be configured including bi,
ri and φi for flow fi, i = 1, 2, 3 and Tj , Cj for service curve

βj , j = 1, 2. Assume that each parameter has just only 5 candidate

values, there would be 513 (> 109) combinations in total. It is

apparently unrealistic to use brute-force search. One may consider

to analyse the conditions of causing the worst case of link sharing

and buffer sharing, and set up the relations between the parameters.

However, for the whole system, the packet with worst case delay

may not experience worst delays in both link sharing and buffer

sharing. Moreover, manual analysis and parameter setup still demand

significant effort and time. Thus it is non-trivial at all to manually

find the configuration which results in the worst case delay.

In the following, we formalize this configuration searching as an

optimization problem.

B. Formalization as An Optimization Problem

Let ζ be the closed-form formula to calculate the delay bound

for the tag flow in the system. We have D̄ = ζ(S) where S
is the configuration space. However, for the simulated maximum

delay Dmax, there is no explicit function to set up the relation

between Dmax and the configuration space S . We use function

g(Dmax,S) = 0 to implicitly define Dmax as a function of S . We

have the optimization problem defined below to find a parameter

configuration s such that we maximize the tightness ξ(S) as defined

in Equation 2 under this configuration. Let the cost function be

J(S) = 100%− ξ(S). (3)

Input: The configuration space S which is defined by the parameter

constraints.

Output: (1) A specific configuration s ∈ S which leads to best

tightness; (2) The tightness value ξ(s) with respect to s.

Objective : min J(S) (4)

s.t. ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lj ≤ pj ≤ hj , ∀pj ∈ P
ri ≤ Csys

i , ∀i ∈ I
bi ∈ Z+, ∀i ∈ I
Ti ∈ Z+, ∀i ∈ I
φi ∈ Z+, ∀i ∈ I

In the formulation, function J is the cost function with respect to

the configuration space S . Z+ is the set of positive integer; P is a

set of parameters, and I is an index set. For each parameter pj ∈ P ,

we constrain its value between its lower bound lj and upper bound

hj . The inequality ri ≤ Csys
i ensures the stability condition for the

system, namely the equivalent system service rate for flow fi should

not be less than the flow’s sustainable arrival rate ri. Moreover, the

flow burstiness bi should be a positive integer, because we count

the traffic with discrete data unit such as flit or packet for on-chip

networks. So are the constraints for router service latency Ti and

flow service weights φi which take cycles as the unit in digital

systems. Using processing time, i.e. cycles, as the flow weight is

widely used in arbitrations such as weighted-round-robin (WRR).

As the arbitration policy may vary with different designs, we may

change the constraint on φi accordingly.

The problem is thus abstracted as a programming problem with

the objective of maximizing the tightness. However, this is an integer

programming as bi, Ti and φi are all integers. Moreover, the cost

function J(S) is an implicit function with respect to the configuration

space S . Thus we propose to solve this programming problem with

simulated annealing algorithm, which does not require the explicit

information of the cost function. Note that the implicit function g
is actually determined in cycle accurate simulations. We can always

find a maximum packet delay dmax from each simulation under a

specific configuration s, thus to set up the mapping between the

configuration space S and the maximum delay Dmax.

V. SA AIDED CONFIGURATION SEARCH

A. Overview

NO

YES

Start

S1: Initialization

S2:
Cycle Accurate Simulation

S4:
Tightness Evaluation &

Termination Condition Met?

S5:
Candidate Configuration
Generation Based on SA

S3:
Data Processing

Stop

Fig. 2. Overview of the SA aided configuration search.

The SA aided configuration search comprises five main steps to

maximize the tightness as shown in Figure 2.

1) We start from assigning an initial set of parameters to the

system. This parameter configuration is selected randomly or

according to some empirical results.

2) Then, the cycle accurate simulation is conducted to collect the

packet timing information such as the packet injection time

and ejection time.

3) We process the obtained data and get the maximum packet

delay for this simulation. Each time this step is executed, we

find a point in the solution space of the equation g(Dmax,S) =
0, which implicitly defines the relation between Dmax and S .

4) We evaluate the tightness ξ for current iteration, and judge

whether the termination condition is met. If it is met, stop and

output the found tightness and the corresponding configuration.

Otherwise, continue to the next step.

5) The next set of parameters (candidate configuration) is gener-

ated according to the SA algorithm. We return to the second

step and continue the process above to evaluate the tightness

under the new configuration.

B. Simulated Annealing Algorithm

SA is a meta-heuristic method to help find global optimum or

suboptimum solutions for optimization problems. It mainly con-

sists of three aspects, namely the state generation method, the

acceptance criterion and the annealing scheduling. With decades of

development, SA has been developed into a family of probabilistic

algorithms with variants on the three aspects. The discussion on

SA improvements is not our concern of this work, and we will

focus on applying SA to solve the optimization problem defined in

Section IV-B.



TABLE II
SYMBOLS AND DEFINITIONS FOR THE SA ALGORITHM

Symbol Explanation

Y (·, ·) Function to generate the next state (configuration).
J(·) Cost function of the SA algorithm, defined as an implicit

function on S.
T Temperature of the annealing process.
dE Energy difference when transiting to the next state.
random(0, 1) Function to generate a random number between 0 and 1 with

uniform distribution.
r Cooling rate of the annealing process, 0 < r < 1.
Tmin Threshold temperature to stop the annealing process.
s Current parameter configuration, s ∈ S.
Jc Cost value of the current configuration (or state).

Algorithm 1 reports the SA proposed in this work. We summarize

the symbols and notations used in the algorithm in Table II. The

algorithm requires an initial state s0 to set the start point of the

algorithm, an initial temperature T0 and a termination temperature

Tmin to define the termination condition, and a cooling rate r for the

annealing scheduling. The algorithm finally outputs the configuration

s for best tightness and the corresponding cost function value J(s).
The outer while-loop determines the annealing schedule, which

cools down the temperature with rate r (0 < r < 1) in each iteration.

The inner for-loop goes through the candidate states under the same

temperature. Assume that there are n parameters, forming an n-

dimensional space. Hence the configuration s = {p1, p2, . . . , pn}.

Each time the state generation function Y (s, pj) generates a state

neighbour to the current state s by moving on the dimension of

pj with a random step. The generated new state s1 is then used

to solve the implicit function g(dmax, s1) = 0 by simulating with

configuration s1. Then s1 is evaluated to judge whether to accept it

or not. We adopt Metropolis Criterion to determine the probability

of accepting the new state. Even though the new state results in

a worse cost value, we still accept it with probability determined

by exp(dE/T ) > random(0, 1). This trick helps the algorithm to

jump out of the local optimum and search more states to find the

global optimum solution. The inner for-loop actually ensures the

algorithm to move along the dimension with lowest cost value under

the Metropolis Criterion. The finally selected state stmp in the for-
loop becomes the new state in the next annealing iteration.

The time complexity of SA depends on how the annealing

schedule is designed. SA can have worse time complexity than

exhaustive enumeration if we force it to find the global optimum

with probability 1. Consider Algorithm 1, the outer loop runs for

N = �logr(Tmin/T0)� + 1 times. The inner for-loop executes n
times. Let Og be the time complexity of solving g(Dmax, s1) = 0.

The time complexity of Algorithm 1 is O(nN) · Og .

C. Determine the SA Inputs

In the SA algorithm, higher temperature can help jump out of

local optimum points. When the temperature cooled down, lower

temperature leads to better search precision around the possible

global optimum solution. Thus we make the searching process jump

among different local optimum points at the early stage (when the

temperature is high). When the temperature is low, we make the

searching more likely to try the points around the possible global

optimum point.

Since acceptance probability is determined by the Metropolis
Criterion ”exp(dE/T ) > random(0, 1)”, we determine T0 and

Tmin by solving equations

exp(
dE

T0
) = Ph, exp(

dE

Tmin
) = Pl, (5)

Algorithm 1: Simulated annealing to find the best tightness and

the corresponding parameter configuration.

Input: Initial annealing temperature T0, initial parameter configuration
s0, termination temperature Tmin and the cooling rate
r, 0 < r < 1.

Output: Optimized parameter configuration s and the minimized cost
value J(s).

Initialize: T = T0, s = s0, Jc = J(s0)

1 while T ≥ Tmin do
2 foreach pj ∈ s do
3 s1 = Y (s, pj) ; // Generate a candidate state

// Obtain the maximum packet delay
4 Do simulation to solve g(dmax, s1) = 0 ;

5 Calculate J(s1) ; // Candidate cost value
6 dE = Jc − J(s1) ; // Energy difference

// If the cost value is decreased, accept
the state

7 if dE > 0 then
8 stmp = s1 ; // Transit the state
9 Jc = J(s1) ; // Update the cost value

10 else if exp(dE/T ) > random(0, 1) then // Judge with
the Metropolis Criterion

11 stmp = s1 ;
12 end
13 end
14 s = stmp ; // Transit the state
15 T = r ∗ T ; // Cool down the temperature
16 end
17 return s, Jc ;

where dE is an estimated mean value of dE, obtained by calcu-

lating the average value from the statistics of dE obtained from a

simulation; Ph is a positive real number close to 1, e.g. 0.95; Pl is

a positive real number close to 0, e.g. 0.05. The value of T0 and

Tmin can also use the empirical value directly, e.g. T0 = 100 and

Tmin = 1.

The cooling rate r can be set as an empirical value, e.g. 0.95, or

be determined by the number of iterations we expect to run. Suppose

that we expect to run the outer loop for N times, then r is calculated

by r = (Tmin/T0)
1/N . As for the initial state s0, it can be selected

randomly or set using data from previous simulations. The initial

value of the cost function J then is calculated by these given initial

configurations.

VI. EXPERIMENTS AND RESULTS

A. Experimental Purpose and Setting

We design an experiment to show the whole process of applying

the proposed SA aided method to search for best tightness. We first

introduce the experiment setup and give the closed-form delay bound

formula of the tag flow. Then we set the SA parameters and finally

show the results obtained by the SA aided method.

We consider an all-to-one communication case which is a typical

communication pattern for parallel applications, as illustrated in

Figure 3. The routers are organized in the topology of a 4-layer binary

tree. The tree includes three types of nodes, namely the root node R1,

the trunk nodes R2 ∼ R7 and the leaf nodes R8 ∼ R15. Except for

the root R1, each node Ri has a local traffic injection fi, i = 2 . . . 15
with arrival curve αi = rit + bi, and transfers packets to the father

node R�i/2� with a latency-rate service curve βi = Ci[t− Ti]
+. The

root R1 is the common destination of all the injected flows and sinks

packets with a service curve of β1 = C1[t− T1]
+. A trunk node Ri

transfers packets from two son-nodes and meanwhile has a local flow

injection. It outputs an aggregate flow to its father node. As for the

leaf node, each one only has local flow injection. To simplify the



analysis and formulas, we set that each input port of a router has a

sufficiently large FIFO buffer to avoid dropping packets.

R1

R2 R3

R4 R5 R6 R7

R8 R9 R10 R11 R12 R13 R14 R15

f2 f3

f4 f5 f6 f7

f8 f9 f10 f11 f12 f13 f14 f15

Fig. 3. The topology of the binary tree of depth 4.

Denote Ωi the sub-tree with node Ri as the root, fΩi
the output

flow at the root of Ωi. Thus fΩi is an aggregate flow for Ω2 ∼ Ω7

and a single flow for Ω8 ∼ Ω15. For example, we have fΩ8 = f8
at the output of R8, and fΩ4

= {f8, f9, f4}, fΩ2
= {fΩ4

, fΩ5
, f2}

as aggregate output flows at R4 and R2, respectively. The flows

aggregate upstream into the input buffer of the father nodes layer by

layer and share the output channels of trunk nodes and the sink of

the root node. We use weighted round-robin (WRR) to arbitrate the

sharing of the output channels and sink.

B. Closed-form Delay Bound Formula

We deduce the closed form delay bound for the flows injected at

the bottom layer. Due to the topological symmetry, we select f8 as

the tag flow. The delay bounds of the other bottom layer flows can

be calculated similarly.

Let K = {1, 2, . . . , 15} ∪ {Ω1,Ω2, . . . ,Ω15} be the index set, φi

be the weight of fi in processing time, and wi be the allocated

bandwidth ratio for i ∈ K. Each of the subtrees Ω8 ∼ Ω15 has only

one flow injection, thus we have φΩi
= φi for i = 8 . . . 15. We can

then resolve the link sharing and buffer sharing by the techniques in

[4][5]. For example, fΩ8
has link sharing with fΩ9

and f4 at node

R4, the ESC of R4 for fΩ8 is calculated as β̂4
Ω8

= wΩ8β4⊗δφΩ9
+φ4 ,

where wΩ8 = φΩ8/(φΩ8 +φΩ9 +φ4) is the bandwidth ratio for fΩ8 .

The example in Figure 1 is a basic structure of the binary tree in

Figure 3. Following the method in Section III-B2, we first resolve

the link sharing at R1 to obtain the ESC for subtree Ω2. Then resolve

the link sharing and the buffer sharing among fΩ4 , fΩ5 and f2 at R2,

thus we get the system ESC for fΩ4
. Continue to resolve the link

sharing and the buffer sharing at R4, and we obtain the system ESC

for the tag flow f8. Finally, we have the closed-form delay bound

formula as

D̄ = T sys
8 +

b8
Csys

8

, (6)

where T sys
8 = T8+T2+φ2+φΩ5

+T1+φ3+[bΩ5
+ rΩ5

(T2+φ2+
φΩ4)+ b2+ r2(T2+φΩ4 +φΩ5)]/(wΩ2C1)+ r8[b9+ r9T9+ r9(T4+
φΩ8 + φ4) + b4 + r4(T4 + φΩ8 + φΩ9)]/[wΩ4C2 ∧ (wΩ2C1 − r5 −
r10 − r11 − r2)], C

sys
8 is the system service rate for f8 calculated in

Formula 7 (See Section VI-C2).

C. Parameter Setup for SA

We set the parameters for the experiment following the problem

formulation in Section IV-B and the method of determining the SA

inputs in Section V-C.

1) Objective Function: We use Formula 4 as the objective func-

tion. The function g(·, ·) is implemented by cycle accurate simulation

with Verilog-HDL to obtain Dmax with respect to the configu-

ration space. The parameter set P = {bi, ri, φi, φΩj
, Cj , Tj |i =

2 . . . 15, j = 1 . . . 15}, thus the configuration space S =
{
s =

{pj}|pj ∈ P, lj ≤ pj ≤ hj

}
, where the constraint for parameter

pj is specified as follows.

2) Parameter Constraints: The configuration parameters of the

system consist of two categories. One is for fixed parameters and the

other is for variable parameters with constraints. We set the service

curve of the leaf nodes and the trunk nodes with fixed rate of 1

packet/cycle and no latency, namely Ci = 1, Ti = 0 for i 
= 1.

This setting means that these routers transfer the arrived packet

immediately with rate 1.0 packet/cycle. The weights φΩi
= φi, for

i = 8 . . . 15, because these leaf nodes just output a single flow rather

than an aggregate flow.

In the case study, there are 50 variables in total to be determined

by SA. The constraints for these parameters are listed in Table III.

TABLE III
PARAMETER CONSTRAINTS OF THE BINARY TREE FOR SA

Parameters Constraints

Arrival rate ri 0.01 ≤ ri ≤ 0.22, for i = 2 . . . 15
Flow burstiness bi 1 ≤ bi ≤ 16, and bi ∈ Z+, for i = 2 . . . 15
Flow weight φi 1 ≤ φi ≤ 5, and φi ∈ Z+, for i = 2 . . . 15
Subtree weight φΩi

1 ≤ φΩi
≤ 15, and φΩi

∈ Z+, for i = 2 . . . 7
Service rate C1 0.3 ≤ C1 ≤ 0.99
Service latency T1 2 ≤ T1 ≤ 25 , and T1 ∈ Z+

System ESC rate Csys
i ri ≤ Csys

i , for i = 2 . . . 15

The system stability condition ensures that the service provided by

the root node is sufficient to serve all the injected flows. The system

equivalent service rate Csys
i for fi is

Csys
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wiCi ∧ (wΩiC� i
2
� − rΩ2i − rΩ2i+1), i = 2, 3

wiCi ∧
(
wΩiC� i

2
� ∧ (wΩ� i

2
�C� i

22
�

−rΨ(Ωi) − r� i
2
�)− rΩ2i − rΩ2i+1

)
, i = 4 . . . 7

Ci ∧ wΩiC� i
2
� ∧

(
wΩ� i

2
�C� i

22
�∧

(wΩ� i
22

�C� i
23

� − rΨ(Ω� i
2
�)
− r� i

22
�)

−rΨ(Ωi) − r� i
2
�
)
, i = 8 . . . 15

(7)

where rΩi
is the arrival rate of fΩi

which equals the sum of all

the arrival rates injected in Ωi; Ψ(Ωi) is a function to calculate the

brother of Ωi, for example Ψ(Ω5) = Ω4. Taking the calculation for

f4 as an example, Csys
4 = w4C4 ∧

(
wΩ4

C2 ∧ (wΩ2
C1 − rΩ5

− r2)−
rΩ9 − r8

)
.

3) SA Inputs: We first run the SA algorithm with randomly

selected T0 and Tmin, and obtain dE = 7.2. Set ph = 0.95 and

pl = 0.01, we obtain the initial temperature T0 = 140.4 and the

termination temperature Tmin = 1.6 by Formula 5, respectively. Set

N = 200 as the number of annealing iterations, we get the cooling

rate r = 0.98. As for the initial configuration s0, the parameters are

set as ri = 0.02, bi = 1, φi = 1 for i = 2 . . . 15; φΩj
= 1, 1, 3, 3, 3, 3

for j = 2 . . . 7, respectively, and C1 = 0.8, T1 = 5.

D. Results and Analysis

We run the experiments on a 64-bit Linux platform with 4

Intel Xeon 5150 CPUs working at 2.66 GHz. Every Verilog-HDL

simulation is run with Modelsim-SE 6.6d for 500,000 cycles. Each

configuration in the SA algorithm requires about 8 seconds to do the

simulation, data processing and corresponding I/O operations. The

whole process costs about 22.2 hours.



The configuration found by SA is listed in Table IV, including the

arrival rate ri, the burstiness bi, the flow weight φi of flow fi for

i = 2 . . . 15, the weight φΩi of subtree Ωi for i = 2 . . . 7 and the

calculated system service rate Csys
i for fi.

TABLE IV
CONFIGURATION OF THE BINARY TREE

FOUND BY SA FOR BEST TIGHTNESS

i ri bi φi φΩi
C

sys
i

2 0.048 3 3 9 0.114
3 0.041 4 1 7 0.125
4 0.055 13 2 8 0.066
5 0.023 10 2 13 0.066
6 0.024 3 4 1 0.029
7 0.033 15 2 6 0.185
8 0.108 1 3 - 0.119
9 0.038 11 2 - 0.049
10 0.021 4 2 - 0.064
11 0.195 1 3 - 0.238
12 0.038 14 4 - 0.043
13 0.058 14 2 - 0.063
14 0.016 1 4 - 0.168
15 0.032 1 3 - 0.184

TABLE V
RESULTS WITH FIXED

WEIGHTS AND SINK SERVICE

i ri bi C
sys
i

2 0.054 15 0.143
3 0.087 13 0.143
4 0.085 5 0.183
5 0.058 1 0.183
6 0.059 1 0.153
7 0.104 2 0.153
8 0.026 1 0.124
9 0.028 14 0.126
10 0.072 3 0.197
11 0.037 2 0.162
12 0.067 15 0.161
13 0.044 9 0.138
14 0.014 10 0.063
15 0.035 8 0.084

The service rate and the service latency of the root node are

C1 = 0.846 and T1 = 14, respectively. The maximum simulation

delay Dmax is 104 cycles obtained from over 100,000 packets as

shown in Figure 4, and the delay bound D̄ equals 107.3 cycles by

Formula 6. Thus, the tightness under this SA-found configuration is

ξ = Dmax/D̄ × 100% = 96.9%.
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Fig. 4. Simulation result with the SA found configuration. The maximum simulated
delay is 104 cycles, and the calculated delay bound is 107.3 cycles.

The results above indicate that the SA based method effectively

find the configuration to reach great tightness and can handle very

large parameter search space, e.g. 50 dimensions in this experiment.

The parameters in Table IV make good sense in the view of worst

case occurrence. The contention flows of f8 includes f9, f4, fΩ5
, f2,

fΩ2
, and fΩ3

. It can be verified that the burstiness of these contention

flows are all greater than their weights, e.g. b9 > φ9. This helps to

make the worst case occur when the flows content for the output

channels.

E. Further Results and Discussion

The SA based method can also help evaluate the analytical

model in real designs with some fixed parameters. For example,

the arbitration scheme may fix the flow weights, and the service

capability of sinking packets may also have been determined in the

design. Taking the binary tree as an example, we may have all the

flow weights fixed, φi = 1 for i = 2 . . . 15 and φΩj
= 1, 1, 3, 3, 3, 3

for j = 2 . . . 7, and have the sinking service fixed, C1 = 0.8 and

T1 = 10. We keep the same constraints of ri and bi as in Table III,

and use the same initial values as previously. Thus the quantity of

variable parameters decreases to 22. The searching process of SA is

reduced to about 9.8 hours. The tightness reaches ξ = 95.8% with

D̄ = 85.6 cycles and Dmax = 82 cycles. The resulting flow rates ri
and burstiness bi are listed in Table V.

Our method is topology independent and can also be applied to

the case employing flow control, though we do not consider flow

control for simplicity in the case study. One just needs to accordingly

revise the derivation of the closed-form delay bound formula in

Section III-B, and then apply our method.

VII. CONCLUSION

The tightness study of delay bound is an essential and non-trivial

problem for QoS design of NoC. The large searching space of the

system configuration increases the difficulty of investigating worst

case delay and validating the formal analysis. In this paper, we

present a simulated annealing aided method for tightness study. The

tightness study problem is abstracted as an optimization problem to

enable the computer aided configuration search for best tightness.

We also propose the simulated annealing algorithm to solve the

formulated problem which embeds the simulation into the evaluation

of the objective function. The experiment results of an all-to-one

communication tree, in which 50 parameters are involved, indicate

that our method can effectively handle the complex system with

discrete variables and multi-dimensional search space. Not limited

to the study of delay bound tightness, this method can also be used

for other applications of the similar nature.

In the future, we will apply this method to study the tightness of

the buffer backlog bound. This will extend the problem definition

from a single-objective to a multi-objective optimization as there are

many buffers in the system optimization space.
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