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Abstract—Smart systems implement the leading technology
advances in the context of embedded devices. Current design
methodologies are not suitable to deal with tightly interacting
subsystems of different technological domains, namely analog,
digital, discrete and power devices, MEMS and power sources.
The effects of interaction between components and with the
environment must be modeled and simulated at system level
to achieve high performance. Focusing on the digital domain,
additional design constraints have to be considered as a result
of the integration of multi-domain subsystems in a single device.
The main digital design challenges, combined with those emerging
from the heterogeneous nature of the whole system, directly
impact on performance and on propagation delay of the digital
component. This paper proposes a design approach to enhance
the RTL model of a given digital component for the integration
in smart systems, and a methodology to verify the added features
at system-level. The design approach consists of augmenting the
RTL model through the automatic insertion of delay sensors,
which can detect and correct timing failures. The augmented
model is abstracted to SystemC TLM and, then, mutants (i.e.,
code mutations for emulating timing failures) are automatically
injected into the model. Experimental results demonstrate the
applicability of the proposed design and verification methodology
and the effectiveness of the simulation performance.

I. INTRODUCTION

The design of modern embedded systems has become
challenging not only for its increasing complexity, but also
for its emergent multidisciplinarity. New generation devices,
known as smart systems, typically incorporate analog, digital
and Micro Electro-Mechanical Systems (MEMS) integrated
with application-specific sensors and actuators, multiple power
sources, intelligence in the form of embedded software [1].
Current design and simulation methodologies are not suitable
to manage the integration of intrinsically heterogeneous com-
ponents. The involved subsystems are described using different
languages and tools, at different levels of abstraction. New effi-
cient co-design and co-simulations methodologies are required
to deal with interaction effects between the environment and
the system and between the components.

Even though the design flow is highly standardized in
the digital domain [2], new design challenges arise when
integrating multi-domain components in a single device. Such
an integration generates new design constraints, which have
to address the interaction effects over the whole system. This
requires modeling and simulation at system-level.

Transaction Level Modeling (TLM) is the consolidated
high-level approach in digital design. Combined with SystemC,
TLM facilitates design space exploration and verification of the
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system without focusing on the implementation details. This
guarantees a sound trade-off between simulation performance
and accuracy for a wide range of user’s needs during the
digital component design and verification. Activity research is
working on SystemC-AMS, to model components of different
nature at high abstraction levels [3]. This would allow an
homogeneous simulation scenario for a multi-domain system.

In this context, tools for the automatic abstraction of
existing RTL models represent a valuable support for the
design of modern complex systems. Well-known examples are
the RTL-to-SystemC abstraction tools for reusing RTL models
of IPs [4], [5]. The automatic translation process to TLM
preserves only the functionality and timing properties (yet with
different accuracy levels) of the original IP. On the other hand,
most of the design constraints are related to physical properties
of the circuit (e.g., frequency, power supply, temperature).
As a consequence, the verification of the additional design
constraints is not achievable, at the state of the art, at high
level of abstraction (TLM).

Conversely, verification of physical properties related to
specific design constraints of a given digital IP at RTL
has several limitations. First, the simulation performance at
RTL is prohibitive for reaching high-quality results. Also,
the manipulation of the RTL code for testing the system
correctness over different metrics values is time consuming
and not scalable to complex systems. Finally, the verification
of the RTL model, once integrated into a high-level system
description (SystemC TLM) of a smart system requires co-
simulation instead of simulation, decreasing the simulation
performance of the whole system platform.

The concept of mixed-level modeling or co-simulation
emerged due to the need of efficiency and higher simulation
results. It has been applied, for instance, in design exploration
and validation [6], RTL fault injections with error propagation
at system level [7], and prediction of non-functional properties
such as aging [8]. However, the lower level models act as
bottlenecks in the mixed-level approaches, slowing down the
simulation of the whole system. Since many physical prop-
erties affect the digital IP timing, the use of timing monitors
allows their effects to be captured concurrently.

This paper proposes a methodology for system-level ver-
ification of digital IPs augmented with embedded timing
monitors. The main contributions are the following:

• a design paradigm based on constraints detection and
correction to augment the functionality of a digital IP
modeled at RTL by embedding timing monitors;

• a verification methodology to abstract the description
of the augmented digital IP to TLM, in order to speed-
up the verification of the design paradigm;

• a new class of TLM mutants, which are timing faults
automatically injected into the abstracted IP to verify
the correctness of the embedded monitors.
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Fig. 1. Example of digital IP augmented with a sensor.

The paper is organized as follows. Section II provides some
background, while Section III describes the implemented de-
sign paradigm to augment the digital IP functionality. Section
IV presents the cross-level verification methodology for the
proposed design paradigm. Section V presents the experimen-
tal results, while conclusions are discussed in Section VI.

II. BACKGROUND ON DETECTION AND CORRECTION

PARADIGM

The design of a digital component incorporated into a
smart system is affected by additional constraints due to the
integration of multi-domain subsystems in a single device.
Constraints can force to consider a set of metrics concurrently,
including performance, reliability/robustness, power consump-
tion and temperature [1]. Such metrics are directly or indirectly
related to specific physical quantities, i.e., frequency (propa-
gation delay), supply noise, supply current, supply voltage and
temperature. Their direct measurement, through the insertion
of ad hoc sensors, allows to define a design paradigm based
on detection and correction of the related constraints.

Consider a generic digital IP modeled at RTL through a
hardware description language (HDL), as shown in Fig. 1.
For a given metric, a customized sensor monitors its value
by measuring the corresponding physical quantity. The sensor
provides the metric value (Metric output) and signals whether
the related constraint is met (Metric OK output). Morever,
it provides a control signal regulating some hardware knobs
that attempt to “correct” the corresponding metric value.
Depending on the given metric, the robustness of the IP is
increased against different design issues.

The scaling process of CMOS technology generated several
side-effects. Many of these non-idealities, however, have a
direct impact on performance. Process variability makes delay
a non-deterministic quantity, so that the actual delay becomes
instance-specific [9]. Voltage and temperature variability shift
the value of the nominal delay depending on the operating
point [10]. Aging effects such as Negative Biasing Temperature
Instability (NBTI) or Hot Carrier Injection (HCI), conversely,
cause the nominal delay to drift over time [11]. To address all
these physical effects and enhance the global reliability, dy-
namic on-chip monitoring of performance is highly demanded.

On-chip delay monitoring architectures proposed in liter-
ature mainly differ on the type of measurement performed:
absolute measurement of delay values or check whether a
given threshold is exceeded. In the first approach the absolute
measurement of path delay is achieved using either a Time-to-
Digital Converter (TDC) to translate timing information into
digital values [12]–[15], or time-to-voltage conversion to trans-
late path delay into voltage levels [16]. In the second approach
ad-hoc sampling elements replace latches or flip-flops in the
critical paths of the circuit. They detect the occurrence of a
timing violation by observing a signal transition within a given
time window [17] or by performing a delayed comparison
of the monitored signals [18]–[20]. Recovery mechanisms are
also implemented in order to correct the detected errors.

Nevertheless, once delay sensors have been embedded into
a digital IP, the detection and correction characteristics must
be verified. Several solutions based on fault injection can be
found in literature [21]. Some techniques rely on simulator
commands to easily manipulate model signals or variables
without altering the HDL code. However such commands
are not standard, but they rather are restricted to a specific
HDL simulator. Other techniques modify the original RTL
code, either by adding saboteurs in the design structure [22]
or by modifying the behavior of some components by using
mutants [23]. The main drawback is that both techniques
require additional control signals to activate the occurrence of a
fault and automatic tools to add/remove the HDL modification.

III. DESIGN OF AUGMENTED DIGITAL IPS FOR

CROSS-LEVEL VERIFICATION

The proposed design methodology augments the function-
ality of a given digital IP in order to enable its cross-level
verification. The constraints detection and correction paradigm
introduced in Section II is implemented by automatically
inserting appropriate sensors into the IP at RTL level. Since
performance is the target constraint, the embedded monitors
are timing sensors. By sensing the propagation delay in
appropriate locations of the digital IP, performance can be
monitored and optimized to improve the circuit reliability.
Once the augmented digital IP has been converted to a high-
level model (SystemC TLM), the information on delay is
preserved due to the additional functionality implemented by
the sensor. This allows to catch the physical properties (e.g.,
temperature, aging), as their main side-effect is to violate
performance constraints.

Two essential requirements must be met for the delay
sensor implementation to guarantee the cross-level verification
of the paradigm: (i) it must be synthesizable, and (ii) it must
affect either functionality or timing of the IP on the circuit
path where it is embedded.

This paper proposes two different architectures for an on-
chip delay monitor meeting such requirements: an extended
Razor flip-flop and a Counter-based monitor. The two sensors
can be used individually or in combination, depending on the
required level of precision: a generic fail/no fail information
or a more quantitative information on the delay of the system.

A. Modified Razor flip-flop

The first monitor implementation is based on the Razor
flip-flop (FF) concept [18], which has been modified with an
additional multiplexer (see upper side of Fig. 2). Such monitor
enhances the FF of critical paths by introducing a shadow latch
that samples the FF input data on the negative level of the
delayed clock signal CLK. Since CLK is delayed by half CLK
period (TCLK

2
), the Razor working time window is bounded by

the rising and falling edge of CLK (see Fig. 5(a)). If the values
contained by FF and by the shadow latch differ, an error signal
E is asserted to notify the timing failure. When the control
signal R is high, the recovery mechanism is executed and the
error in the faulty FF is corrected. The correction feature can
be selectively activated on each modified Razor FF acting on
the corresponding signal R.

B. Counter-based monitor

The second monitor implementation relies on a simple
counter to measure the propagation delay on critical paths of
the digital IP (see lower side of Fig. 2). Compared to the
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Fig. 2. Example of digital IP augmented with the modified Razor replacing
FFs of critical paths and the Counter-based connected to critical path end
points. C0, C1, C2, C3 represent blocks of combinational logic.

modified Razor FF, it provides an absolute measure of delay
rather than a timing failure detection.

Using an additional clock (i.e., HF CLK in Fig. 5(b)) with
higher frequency multiple of the clock frequency of the IP (i.e.,
MAIN CLK), the monitor enumerates the amount of HF CLK
periods elapsed for the signal propagation from the path start
point to the path end point. The measurement is performed
during a predefined time window called observability window
(i.e., OBS WIN in Fig. 5(b)) where all signal transitions are
captured. The position in time and width of OBS WIN are
chosen at design time according to the expected time interval
where signal transitions may occur. Two registers store the
counter value on the occurrence of both rising and falling
transitions. The delay measure is then selected according to the
last captured transition. A control block compares the obtained
value with reference values determined at design time.

In general, the main sensor characteristics depend on the
HF CLK period. Since the counter is synchronous with respect
to HF CLK, the maximum resolution is the HF CLK period
and the maximum error is ±THF CLK

2
. The dynamic range

depends also on the observability window. The maximum
measurable delay corresponds to the time interval beginning
with the first MAIN CLK rising edge (signal transitions start
to propagate through the monitored path) and ending with
the falling edge of OBS WIN (no more signal transitions are
captured).

IV. VERIFICATION METHODOLOGY

The verification methodology aims at testing the detection
and correction paradigm proposed in Section III at TLM. The
methodology relies on the following steps (see Fig. 3):

1) RTL-to-TLM abstraction of the augmented digital
IP. Given the RTL model of the digital IP and
sensor, which are implemented in synthesizable HDL
(VHDL, Verilog) at RTL, an abstraction tool is ap-
plied to abstract them into SystemC TLM.

2) Injection of mutants in the abstracted digital IP. A set
of C++ functions has been implemented to simulate
timing delays in the digital IP. These functions,
hereafter called mutants, are automatically injected in
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Fig. 3. Overview of the verification methodology.
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the abstracted digital IP to verify, during simulation,
the sensor correctness.

3) Mutation analysis. The abstracted and injected digital
IP and sensor are connected to a stimuli generator,
which aims at generating a meaningful set of input
values for the digital IP to activate each mutant and
to test the detection and correction mechanism.

A. RTL-to-TLM abstraction of the augmented digital IP

The recent trend towards the use of abstraction levels
higher than RTL has led methodologies and tools to be
developed for reusing RTL models of IPs through automatic
RTL-to-SystemC TLM abstraction [4], [5].

Despite technical differences, all these tools generate Sys-
temC TLM code by translating HDL statements into SystemC
statements and by handling the RTL concurrency through
dynamic scheduling. In dynamic scheduling (see Fig. 4), the
RTL processes (i.e., concurrent statements) are woke up if and
only if there has been an event to which they are sensitive.
The simulated time has a finest granularity equal to one clock
period when the generated TLM model is cycle accurate. On
the clock rising event, all synchronous processes are firstly
run. Then, if any event has been triggered (e.g., write on a
signal), the asynchronous processes sensitive to that event are
woke up. The routine iteratively goes on until there is not any
further event. At each of these iterations corresponds a delta
cycle, which is a simulation cycle in which the simulated time
does not advance [24]. The same procedure is applied for the
falling edge of the clock. When there is not any further process
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to wake up, the simulation goes on to the next clock cycle and
the simulated time is updated.

The SystemC TLM code is generated by translating RTL
processes into C++ functions, and by implementing the dy-
namic scheduling through a C++ routine (i.e., the scheduler of
functions), which reproduces the behavior of the RTL sched-
uler. Fig. 6(a) gives an high-level example of the scheduler
activity of the cycle accurate TLM model generated from a
synchronous RTL model. At each clock event, the scheduler
first invokes the synchronous functions sensitive to the rising
edge of the clock (rising_edge() in Fig. 6 represents
these invocations). Then, the scheduler iteratively invokes the
asynchronous functions (delta_cycle() invocation) and
moves on to the falling edge phase (falling_edge()) to
invoke any process synchronous to the falling edge of the
clock.

The SystemC TLM model must be generated, through any
of the automatic tools in literature, accurate enough to guar-
antee simulation of timing delays. The proposed methodology
applies to two different scenarios:

1) The SystemC TLM model has been generated cycle
accurate. In the SystemC simulation, a TLM trans-
action is run for each RTL clock cycle. A digital IP
augmented with a Razor sensor is an example of this
scenario (Fig. 5(a)).

2) The SystemC TLM model has been generated from
an RTL model with two clock signals. The SystemC
TLM model is cycle accurate for one of them only.
The second clock signal is abstracted, i.e., a number
of this clock cycles are included into one TLM
transaction. Fig. 6(d) gives an high-level example of
the TLM scheduler activity of this scenario, for which
a digital IP augmented with a Counter-based sensor
is an example (Fig. 5(b)).

The generated TLM models are injected with mutants to
simulate timing delays and to test the sensor correctness.

B. Mutant injection in the abstracted digital IP

Mutants are small alterations of the source code generated
through a syntactically correct change [25]. Mutants can be
used to represent faults in the model in terms of deviations
from the expected behavior [26]. Mutation analysis has been
applied to languages for system-level design and verification
such as SystemC [27]–[30]. All these papers propose mutation
models to verify the functional correctness of the SystemC
and SystemC TLM descriptions. No one of these works aim
at verifying timing constraints of the SystemC model through
simulation.

In the proposed methodology, mutants are adopted to model
physical delays at high levels of abstraction (i.e., TLM), by
reproducing the effects of a delay rather than the physical
reasons that caused the delay itself.

The proposed mutation model aims at implementing signal
delays in the TLM IP model. A signal delay is implemented by
postponing the actual assignment to the signal (i.e., assignment
statement) forward in the simulation time. Since the simulated
time of the supported SystemC TLM is cycle-accurate, the
granularity of the delays inserted on the signals is defined in
delta cycles (finest granularity with abstraction of simulated
time) and clock cycles (with accurate simulated time). Given
a statement of assignment to a signal (e.g., sig1 = a000

of a synchronous process in Fig. 6(a)), three different mutants
are defined to insert a delay on the signal:

1) Minimum delay mutant. The actual assignment to the
signal is postponed by one delta cycle. In the example
of Fig. 6(b), the statement is delayed just after the
rising edge of the clock.

2) Maximum delay mutant. The actual assignment to
the signal is postponed just before the next edge of
the clock signal. In the example of Fig. 6(c), the
statement is delayed just before the falling edge of
the clock.

3) Delta delay mutant. The actual assignment to the
signal is postponed exactly of a number of high
frequency clock cycles. In the example of Fig. 6(d),
the statement is delayed of a number of HF_CLK

clock cycles equal to reference_delay.

The three mutants are implemented through C++ functions
(i.e., saboteur [22]). An instance of the three mutants is
injected, in the TLM model of the digital IP, on each signal
representing a critical path. The injected mutants are activated,
one at a time, to emulate a specific delay on a signal, as
explained in the following sections.

1) Verification of digital IPs augmented with Razor sen-
sors: The combination of the Minimum and Maximum delay
mutants allows the detection and correction features of the
Razor sensor (see Section III) to be verified at TLM for the
following working time window:

RazorTLM wtw :(CLK rising edge+δ, CLK falling edge−δ)

Both mutants are necessary to guarantee the sensor ver-
ification between the minimum delay (one δ cycle) and the
maximum delay (TCLK

2
), as explained in Section III-A.

2) Verification of digital IPs augmented with Counter-based
sensors: Given a reference delay value for each target signal,
the Delta delay mutant is applied to insert a number of
clock cycles (HF CLK) of delay on the signal equal to the
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reference value. The Delta delay mutant allows the detection
feature of the Counter-based sensor to be verified at TLM for
the whole observability window (OBS WIN), by preserving
the characteristics of maximum resolution (HF CLK period),
maximum error (±THF CLK

2
) and dynamic range provided by

the RTL simulation, as explained in Section III-B.

C. Mutation analysis of the augmented digital IPs with the
proposed mutants

The abstracted and injected IP and sensors are plugged
to an automatic stimuli generator for mutation analysis. The
stimuli are generated with the aim of activating the injected
mutants and testing the detection and correction mechanism.
The outputs are analyzed by comparing the results of the
injected model with those generated by a non-injected one. In
particular, for the digital IP augmented with the Razor sensor,
the output port E of the Razor (see upper side of Fig. 2) is
observed in combination with all the output ports of the IP:

• If E = 1, the corresponding mutant has been ac-
tivated and detected (i.e., the statement assignment
corresponding to the critical path has been stimulated
during simulation). In this case, the correction feature
of the Razor (i.e., correction of output values with
some clock cycles of delay) can be observed on the
output ports of the IP.

• If E = 0 (and the mutant is switched on), either the
mutant has not been activated because the testbench
has failed to generate a proper input sequence to stress
the mutant (i.e., to reach the assignment statement),
or the mutant models a delay outside the range of
detection of the sensor. In the first case, the IP outputs
of the injected version match with those of the non
injected one. In the second case, the IP outputs of the
injected vs. non inject versions do not match.

For the Counter-based monitor (see lowerside of Fig. 2):

• If MEAS V AL 6= 0, the corresponding mutant has
been activated and detected;

• If MEAS V AL = 0 (and the mutant is switched
on), the testbench has failed to generate a proper input
sequence to stress the mutant.

TABLE I. CHARACTERISTICS OF THE RTL DIGITAL IP AUGMENTED

WITH THE SENSORS.

Digital IP RTL PI PO FF Gates Processes

and sensor (loc) (#) (#) (#) (#) Synch. Asynch.

FIR + Razor 1,544 75 80 425 10,698 256 846

FIR + Counter-based 2,532 12 27 462 10,324 41 45

V. EXPERIMENTAL RESULTS

The proposed cross-level verification methodology has
been applied to a VHDL RTL model of the Finite Impulse
Response (FIR) digital filter. Two augmented versions have
been generated with the design approach proposed in Section
III: FIR+Razor and FIR+Counter-based monitor.

In both versions, a number of sensors (64 Razors, 1
Counter-based) have been inserted to monitor a corresponding
number of critical paths of the FIR design selected through
static timing analysis. Table I shows the main characteristics of
the resulting augmented models. The table reports the number
of lines of code of the starting RTL code (Column RTL
(loc)), the number of primary input and output pins (Columns
PI (#) and PO (#)), the number of flip-flops (Column FF
(#)) and area in terms of NAND2 gates after a synthesis
with 666 MHz and 45nm technology (Column Gates (#)).
Column Processes reports information on the implementation
of the FIR functionality, and, in particular, on the number of
synchronous and asynchronous processes (see Section IV-A).

The augmented digital IPs have been abstracted to SystemC
TLM by using HIFSuite A2T [5]. Table II reports information
on the obtained SystemC TLM descriptions in terms of lines
of code (column TLM IP (loc)) and SystemC TLM generation
time spent by the abstraction tool (TLM gen. time).

The mutants defined in Section IV-B have been injected
in the SystemC TLM models. In particular, the Minimum and
Maximum delay mutants have been injected in the FIR+Razor
model, one for each critical path. The injection phase, which
has been made automatic through a SystemC code visitor,
required the names of the RTL signals connected to the input D
of the Razor sensor (see Fig. 2), for each of the 64 instances of
the Razor. Similarly, the FIR+Counter-based monitor has been
injected with three mutants (Minimum, Maximum and Delta
Delay mutants) for the only critical path analyzed. The mutant
injection did not produce a significant increase in the size of
the TLM description, as shown in column Injected TLM (loc)
of Table II.

The mutation analysis presented in Section IV-C has been
finally applied to the obtained TLM models. Inputs stimuli
have been randomly generated. The outputs have been an-
alyzed by comparing the results of the injected model with
those generated by the non-injected one.

As a result of the mutation analysis, all injected mutants
have been detected (Column Killed mutants (%)) in both
designs. In addition, the FIR+Razor IP has been verified to be
able to notify and correct all the injected delays (columns Error
risen (%) and Corrected mutants (%), respectively). In the
mutation analysis of the FIR+Counter-based, not all detected
mutants have been notified as errors. This is due to the fact
that the Counter-based monitor compares the detected delay
with a tolerance threshold (which has been set in a monitor
look-up table). Only mutants resulting in a higher delay have
been notified as errors.

These results confirmed the capability of the SystemC TLM
models simulated with the proposed methodology in detecting
timing delays with a granularity less than the accuracy of the
SystemC simulation (i.e., less than a clock cycle). In particular,
the Counter-based monitor detected errors up to 13 periods of
the high frequency clock and with a tolerance threshold of



TABLE II. EXPERIMENTAL RESULTS OF ABSTRACTION PROCESS, MUTANTS INJECTION AND MUTATION ANALYSIS.

Digital IP RTL sim. TLM IP TLM gen. TLM sim. # injected Injected Injected Killed Corrected Errors Injected Speedup

and sensor (s) (loc) time (s) (s) mutants mutants TLM (loc) mutants mutants risen TLM (s) (x)

FIR +
241.05 32,837 12.58 64.42 128

64 Minimum 33,746 100.00% 100.00% 100.00% 68.19 3.53

Razor 64 Maximum 33,763 100.00% 100.00% 100.00% 67.98 3.55

FIR +
381.68 4,627 2.69 69.86 3

1 Minimum 4,282 100.00% — 0.00% 76.01 5.02

Counter-based
1 Maximum 4,283 100.00% — 100.00% 75.80 5.04

1 Delta 4,282 100.00% — 30.77% 75.89 5.03

8 periods of the high frequency clock. The injected Minimum
Delay mutants have not been detected as errors, as they respect
the threshold (0% of delays are notified as errors). All the
maximum delays have been notified as errors. Finally, delta
delays have been equally distributed over the timing interval
and notified a 30.77% of delays as errors.

The results show that the proposed mutants effectively
reproduce the effect of delays at TLM and that an accurate
verification of the monitor correctness is possible at levels
of abstractions higher than RTL. All features of the proposed
sensors are preserved, from delay identification to delay cor-
rection, depending on the starting monitor characteristics.

Table II reports the execution times of the detection and
correction paradigm verified at RTL and TLM. Columns RTL
sim. (s) and TLM sim. (s) show the simulation time of the
digital IP before mutant injection. The RTL to TLM abstraction
reduces the execution time, in average, of 4.5x (3.75x for
the Razor monitor and 5.46x for the Counter-based monitor).
The injection of mutants slows down the TLM simulation, in
average, of 7.1% (Column Injected TLM (s)). However, the
speedup between TLM and RTL simulation is, in average, of
3.54x for the verification of the FIR+Razor and 5.03x for the
verification of the FIR+Counter-based (column Speedup (x)).

VI. CONCLUSIONS

This paper presented a methodology to verify at system-
level (TLM) digital IPs augmented with embedded timing
monitors. With the abstraction to TLM, the delay on critical
paths is detected since the functionality of the implemented
timing monitors is preserved. This allowed to catch at TLM
the side-effects of many physical properties on the performance
of digital IPs. The methodology has been applied to the RTL
model of a FIR digital filter, which has been augmented
with a modified Razor and a Counter-based monitor. The
obtained experimental results demonstrate the applicability of
the proposed design and verification methodology and the
effectiveness of the simulation performance.
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