
HEROIC: Homomorphically EncRypted
One Instruction Computer

Nektarios Georgios Tsoutsos
Computer Science and Engineering

New York University Polytechnic School of Engineering
E-mail: nektarios.tsoutsos@nyu.edu

Michail Maniatakos
Electrical and Computer Engineering

New York University Abu Dhabi
E-mail: michail.maniatakos@nyu.edu

Abstract—As cloud computing becomes mainstream, the need
to ensure the privacy of the data entrusted to third parties keeps
rising. Cloud providers resort to numerous security controls and
encryption to thwart potential attackers. Still, since the actual
computation inside cloud microprocessors remains unencrypted,
the opportunity of leakage is theoretically possible. Therefore, in
order to address the challenge of protecting the computation
inside the microprocessor, we introduce a novel general pur-
pose architecture for secure data processing, called HEROIC
(Homomorphically EncRypted One Instruction Computer). This
new design utilizes a single instruction architecture and provides
native processing of encrypted data at the architecture level. The
security of the solution is assured by a variant of Paillier’s ho-
momorphic encryption scheme, used to encrypt both instructions
and data. Experimental results using our hardware-cognizant
software simulator, indicate an average execution overhead be-
tween 5 and 45 times for the encrypted computation (depending
on the security parameter), compared to the unencrypted variant,
for a 16-bit single instruction architecture.

Index Terms—Encrypted processor, homomorphic encryption,
Paillier, cloud computing, one instruction set computer

I. INTRODUCTION

The decreasing cost of cloud computing services has ren-
dered outsourcing computation a very attractive option for
computationally demanding applications. Pay-as-you-go ser-
vices, zero maintenance/upgrade costs and unlimited scalabil-
ity are some of the benefits of using cloud computing services.
At the same time, however, there is no shortage of concerns
about the privacy of the data, as security vulnerabilities are not
uncommon: Prominent examples of affected providers include
Amazon EC2/S3 and LastPass in 2011, as well as Dropbox in
2012 [1]. While in privately owned datacenters the privacy
of the data and executed programs is protected by many
logical and physical controls, in the cloud users are asked to
assign control over their information to a third party that is
assumed to be trusted [2], [3]. In such cases, users essentially
have to study the safety record and trust the reputation of
the cloud provider itself. Otherwise, they need to incur the
–potentially prohibitive– costs of building and maintaining in-
house server farms. As a result, there is a need for protecting
the confidentiality of the information processed in the cloud,
in a more definitive manner.

One popular solution towards addressing these concerns is
the use of a cryptographic algorithm (also called encryption
scheme); this makes information unreadable by unauthorized
entities, and thus protects confidentiality. Even though this
approach is very useful for the storage and transmission of

information, it has not been demonstrated to protect data and
instructions inside the cloud microprocessors, without sharing
cryptographic keys with the host. Secure microprocessors have
been proposed in the past [4], but their threat model essentially
assumes that the pipeline is trustworthy. In these proposals,
the CPU inputs are decrypted before processing, while CPU
outputs are encrypted again, effectively limiting the attack
surface to the –usually tamper- proof/resistant– microprocessor
chip. In theory, however, this approach remains vulnerable to
anyone capable of eavesdropping on the pipeline or extracting
the cryptographic keys from inside the processor, bypass-
ing tampering protections. Such an attack has already been
demonstrated in [5], where a sub-transistor level Trojan is
used to extract sensitive information from the chip. These two
examples essentially define the threat model that we assume
in this work.

In order to prevent this kind of eavesdropping from inside
the pipeline, cloud microprocessors need to execute encrypted
instructions directly, without ever decrypting them. Modern
computer architectures, however, like CISC and RISC, are
unable to support execution of encrypted instructions, as the
instruction decoder in the pipeline is unable to determine the
intended operations. Indeed, modern architectures have been
designed for efficiency and performance, and not for security
and privacy, and thus cannot be used for processing encrypted
instructions.

Motivated by the lack of architecture support for the as-
sumed threat model, our contribution is a novel idea for
a general purpose encrypted computer architecture, called
HEROIC. The HEROIC architecture is capable of executing
instructions and manipulating data in the encrypted domain,
and thus preserves the confidentiality of both the algorithm
and the data. The key idea behind HEROIC is to use a single
instruction set architecture, making instruction decryption
unnecessary. With a judicious choice for the single instruction,
single set instruction computing is capable of Turing-complete
computation; therefore, under certain configurations, the new
architecture can provide comparable processing performance
to existing CISC and RISC designs. In addition, HEROIC
employs homomorphic encryption, allowing meaningful ma-
nipulation of data directly in the encrypted domain [6].

To the best of our knowledge, HEROIC is the first effort
towards an encrypted computer architecture that can natively
process encrypted data and can be practically used for pro-
tecting data privacy in cloud computing services, without ever
sharing cryptographic keys with the host machine. In order to978-3-9815370-2-4/DATE14/ c©2014 EDAA



achieve that, HEROIC combines the simplicity and flexibility
of single instruction architectures, as presented in Section
II, along with the computational properties of homomorphic
encryption, described in Section III. The rest of the paper
is organized as follows: Section IV describes the HEROIC
architecture along with design considerations and security im-
plications of creating a 16-bit encrypted architecture. Section
V provides experimental performance results of our design,
followed by conclusions and future directions in Section VI.

II. SINGLE INSTRUCTION ARCHITECTURES

Single instruction architectures (also called One Instruction
Set Computers – OISC) are architectures designed to support
only one instruction. Based on the micro-operations of the
selected instruction, single instruction computer variants are
capable of Turing-Complete computation [7]. This indicates
that one instruction set computers are very powerful despite
the simplicity of the design, and can achieve high throughput
in certain parallel computing configurations [7]. Since OISC
cores are very compact, several of them can be used in
place of a bigger RISC core. These properties make single
instruction computers an appropriate alternative to ordinary
RISC computers, especially in a cloud setting.

The lack of multiple instructions allows HEROIC to main-
tain the confidentiality of the instructions and the algorithm as
well. On the contrary, having multiple instructions (i.e. differ-
ent opcodes) would make this impossible, since whenever the
encryption key changes, the opcodes would appear completely
different. In this scenario, the encrypted computer would be
required to decrypt each instruction to identify what is the
next execution step. Providing a decryption key, however, is
unacceptable in our threat model and would defy the purpose
of requiring encryption in the first place. HEROIC never
decrypts instruction opcodes, since they are redundant and all
instructions are the same (the computation is determined only
by the encrypted instruction arguments). Thus, the proposed
solution solves the problem of how to discriminate program
instructions while in the encrypted domain. If an eavesdropper
would attempt to guess the instruction stream (i.e. the executed
algorithm), the eavesdropper would gain no additional infor-
mation because all instructions are the same and the arguments
are already encrypted.

Several architecture variants based on the single instruction
used exist. Common Turing-complete variants include add and
branch unless positive (addleq), subtract and branch unless
positive (subleq), plus one and branch if equal (p1eq), and
reverse subtract and skip if borrow. Even though these variants
seem completely different in terms of micro-operations, they
all share a common execution pattern: a simple mathematical
operation followed by a branch decision based on a condition.
The existence of this simple mathematical operation (addi-
tion or subtraction) makes one instruction set architectures
compatible with homomorphic encryption schemes, which
allow applying that operation over encrypted data. As further
discussed in Section IV, HEROIC implements the subleq
instruction.

III. HOMOMORPHIC ENCRYPTION BACKGROUND

In cryptography, a homomorphic scheme is defined as an
encryption scheme that supports applying a function directly
on encrypted data, so that the output decryption equals the re-
sult after applying another equivalent function on unencrypted
data [8]. Such schemes are very useful since a function is
applied after the data is already encrypted, and the output can
be decrypted to a correct and meaningful result.

There are several known homomorphic schemes that support
different functions (e.g. either addition, or multiplication, or
XOR operations, but not combinations of those), and for that
reason they are called partially homomorphic. Lately, new
schemes have been added following the invention of Fully
Homomorphic Encryption (FHE) and the Gentry scheme [9],
which supports applying a function combination on encrypted
data.

One of the criticisms against FHE schemes, however, is
that they are not practical for everyday use, due to very high
overheads [10]. In addition, the applicability of FHE in a
hardware design is yet to be seen, due to the complicated
nature of fully homomorphic schemes.

Some known schemes that support partial homomorphism
are the RSA scheme, the El-Gamal scheme, the Paillier
scheme and the Goldwasser-Micali scheme. Fully homomor-
phic schemes are the Gentry scheme and its variants (e.g.
the BGV scheme and others). Partially homomorphic schemes
are further categorized based on the supported function, as
additive homomorphic (like the Paillier and exponential El-
Gamal) and multiplicative homomorphic (like RSA, standard
El-Gamal, etc) for supporting addition and multiplication
respectively.

Formally, homomorphism is defined as follows:

Decrypt[Encrypt(m1) � Encrypt(m2)] = m1 ◦m2

where (�) is modular multiplication and (◦) can be modular
addition or multiplication depending on the scheme.

Since FHE schemes suffer from overheads of several orders
of magnitude [11], partially homomorphic schemes are the
only viable candidates for a practical encrypted architecture.
As Turing-complete variants of single instruction architectures
require addition or subtraction, the HEROIC architecture needs
to employ an additive homomorphic scheme. From the addi-
tive schemes discussed in the previous paragraphs, the expo-
nential El-Gamal scheme suffers from high decryption over-
heads since it requires computing a discrete logarithm. Thus,
the best candidate for HEROIC is the Paillier scheme, where
the modular multiplication of the ciphertexts corresponds to
modular addition of the plaintexts. A detailed explanation of
the Paillier scheme is out of the scope of this paper, and the
interested reader can find an extensive presentation in [12].

IV. THE HEROIC ARCHITECTURE

The HEROIC architecture builds upon the use of
the subleq instruction. Subleq requires three argu-
ments (namely A, B and C), and its instruction micro-



Fig. 1. Basic components and datapath of the subleq OISC computer.

operation is defined as Mem[B] = Mem[B] - Mem[A];
if Mem[B] ≤ 0 then goto C else goto next;

Based on the definition above, we make the following
important observations about subleq:
(a) subleq uses indirect addressing, meaning that instruction

arguments point to the addresses of the two memory
locations to be subtracted (arguments are not subtracted
directly)

(b) subleq permits modification of any memory location,
and thus one instruction may modify an argument of
another instruction (self-modifying code is allowed)

(c) every branch micro-operation requires a comparison of the
subtraction result with zero

(d) arguments A, B and C are always stored in subsequent
memory locations

A typical subleq-based architecture is presented in Fig.
1, which demonstrates all necessary components along with
their interconnections. In this case study, without loss of
generality, we explore a 16-bit single instruction architecture
(32-bit architecture is possible as well). Since one instruction
set computing does not support different instructions, a single
main memory is sufficient for instruction arguments and data.
A temporary register holds values read from memory as well
as addresses and values sent to memory, while an ALU is
responsible for subtracting two given arguments stored in
registers memA and memB. Register memA is also responsible
for encrypted I/O operations. The control finite state machine
(FSM) and a sign identification unit are responsible for coor-
dination and branching respectively, while a program counter
(PC) along with increment logic complete the design.

In HEROIC, each memory value should be encrypted using
the Paillier scheme. Paillier arguments are (2 ∗ n) bits wide,
where n is the security parameter. The basic datapath presented
earlier, however, cannot support the encrypted arguments of
HEROIC without major modifications. The next section elab-
orates on the encrypted design challenges and their respective
solutions.

A. Design Considerations

1) Encrypted Memory Addressing: Since HEROIC uses a
unified main memory for instructions and data, and because
instructions are allowed to modify the arguments of other
instructions, the architecture requires encrypted memory ad-
dressing. The program counter references memory locations

Fig. 2. Out of range correction for homomorphic addition of representations
of negative numbers.

directly, while instruction arguments reference locations in-
directly. Given that these instruction arguments are already
encrypted, and the decryption key is not provided, it is neces-
sary that all memory addresses are encrypted under the same
key. Our proposed HEROIC architecture, however, properly
satisfies this requirement and supports encrypted program
counters as well as encrypted addressing.

2) Matching Instruction Arguments: Going from the stan-
dard subleq design concept into HEROIC immediately
raises another concern: Because HEROIC employs a unified
memory for both instructions and data, and since instruction
arguments are indistinguishable from data, a mechanism for
matching arguments A, B and C of the same instruction is
required. To further complicate this problem, since encrypted
addressing is used, a sequence of arguments in the unencrypted
domain would become permuted in the encrypted domain, as
encryption of addresses does not preserve their absolute order.

This issue can be solved by matching each encrypted
element inside main memory, with the encrypted address of
its next element, essentially providing each memory item with
a pointer to the next item. The value of this pointer is used by
the program counter (PC) to find the next instruction argument
in the execution trail, since, simply incrementing the PC would
be incorrect.

3) Out of Range Correction: In this work, without loss of
generality, we are investigating a 16-bit architecture ported
in the encrypted domain. This means that the width of each
memory location would be 16 bits, equal to the size of
each memory address. The representation of negative numbers
follows the standard two’s complement approach, and thus the
range of supported numbers is from −215 to (215 − 1).

The range difference, however, between the unencrypted



(16-bit) and the encrypted (2048-bit based on security param-
eter of 1024-bit for Pailler encryptions [12]) creates out of
range discrepancies. In order to clarify this problem, let us
consider a homomorphic addition of two negative numbers.
As demonstrated in the example of Fig. 2, the addition of
−42 with −1, which corresponds to adding (216 − 42) with
(216−1), would result to the encryption of (217−43) and not
the encryption of (216 − 43) (the correct two’s complement
representation of −43). This out of range effect, is an artifact
of the different ranges in the encrypted and the unencrypted
domain. The inconsistency is eventually corrected by adding
the modular multiplicative inverse of the encryption of 216

(given with the encrypted program), in order to get the
expected result.

Before correcting an out of range effect, however, it must
be detected first. This is achieved by using an out of range
lookup memory that matches the encryptions of all numbers
from 0 to 217 with one bit of information indicating “above
216−1” or below. As soon as the ALU result is matched with
an entry above 216−1, a secondary addition with the modular
multiplicative inverse corrects the result.

4) Homomorphic Subtraction: The HEROIC computer re-
quires an ALU that performs homomorphic subtraction. The
Paillier scheme, however, ensures that the modular multipli-
cation of two ciphertexts would generate a value which when
decrypted corresponds to the modular addition of the respec-
tive plaintexts (i.e. homomorphic addition). Thus, in order to
achieve homomorphic subtraction, the modular multiplicative
inverse of the subtrahend needs to be homomorphically added
to the minuend, and this operation still preserves the homo-
morphic properties of the scheme.

The modular multiplicative inverse, however, cannot be
retrieved algebraically given an encrypted value. Thus, an
inverse lookup memory (similar to the out of range lookup
memory presented above) is necessary. This memory returns
the multiplicative inverse of the encrypted value of the sub-
trahend. This inverse, along with the minuend, is used by
the ALU to perform modular multiplication and generate the
expected homomorphic subtraction output. This result is then
subject to out of range correction as described earlier (Fig. 2).

An alternative approach would have been to use concepts
of the addleq one instruction set computing variant, which
does not require subtraction. In this case, the inverse lookup
memory is not needed, since the addition operation in addleq
is directly supported by the Paillier scheme. A major setback
with addleq, however, is that it is significantly harder to
program, because a high level compiler is not yet available,
and is less efficient in terms of programming compared to
subleq [13].

5) Memory Addressing Size: Given a security parameter
size of 1024 bits, combined with encrypted memory address-
ing, would require HEROIC to support memory addresses of
2048 bits in width. Such memory would have a prohibitive
cost and is not actually necessary, since in the unencrypted
domain 16 bits of address size suffice for proper execution. In
this work, we propose two optimizations, which effectively

Fig. 3. Identifying the proper number of lower bits required to differentiate
encrypted memory addresses.

Fig. 4. Percentage of encryption keys with 0% collisions in 217 encryptions
for different memory addressing sizes and security parameter sizes.

reduce the required memory addressing size to a practical
implementation.

Since the unencrypted domain is 16 bits, the main memory
should support 16-bit addressing. While Paillier encryptions
can be 2048-bit wide, we can use only the lower bits of these
2048 bits to request memory addresses. Fig. 3 shows how the
lower bits of an encrypted address can be used to differentiate
16-bit main memory addresses. As shown in the example, if 16
bits are used to differentiate memory addresses (selection 1),
there would be a collision, as the last 16 bits of the encrypted
values of addresses 0x0001 and 0xFFFF are the same. If
the selection included 20 bits (selection 2), this would allow
proper separation of all memory locations.

Fig. 4 presents the minimum number of address bits neces-
sary to discriminate at most 217 different encrypted addresses
(since the out of range lookup memory uses addresses up to
217), given 100 random keys per security parameter size and
confidence interval ≤ 9.8 for confidence level 95%. The results
indicate that using only 22 bits of address size is sufficient to
discriminate 217 encrypted addresses with 90% probability. In
case of a collision, memory re-encryption with another key
is necessary. It should be emphasized that collisions can only
happen during initial encryption (i.e. before execution), so this
hazard is not applicable during runtime. This optimization
reduces the memory address size (and thus the number of
memory locations) to 222, down from 22048 (for the highest
security parameter size). Without this optimization, HEROIC
would be impractical.

A second observation is that, for the main memory, only
216 out of 222 addresses are used. Since every address points
to a 2060-bit value (for the highest security parameter size),
there are many memory locations of very large width unused.
In order to reduce the number of these very wide encrypted
memory locations, we use one level of indirection between
two memories of different address sizes and content widths.
The first (original) memory would have 22 bits of addressing
size but only 16 bits of content width, pointing to the second



(new) memory. The second memory would have 16 bits
of addressing size but the content widths would be much
larger to fit an encrypted value. This optimization effectively
limits wasting memory locations of very large content width,
reducing the main memory size down to 24.09MB, instead of
approximately 1GB without the optimization. Similarly, the
multiplicative inverse memory has now a size of 24MBs in-
stead of 1GB. The two-level memory optimization is presented
at the block diagram of the HEROIC architecture (Fig. 5).

6) Jump Decisions in the Encrypted Domain: Another chal-
lenge in the HEROIC design is determining the mathematical
sign of the ALU output, in order to make the necessary branch
decisions. Since the ALU result is also encrypted, its sign is
unknown, and algebraically it is not possible to compare the
result with zero: if we were able to compare an encryption with
known values, we would easily break the encryption scheme,
by performing a binary search. Even though order preserving
encryption schemes exist [14], these are not homomorphic and
cannot be used in our case study.

The proposed solution to this problem would be to use a sign
lookup memory (loaded along with the encrypted program)
that returns the mathematical sign of any encrypted (two’s
complement) value within a range of encrypted numbers. For
our case study, the sign lookup memory would return the sign
for encryptions of numbers in the range from 0 to (216 − 1).
Following the analysis of Section IV-A5, the sign lookup
memory can also benefit from the first address truncation
optimization and use only 22 bits of memory address size.

Fig. 5 provides an abstract view of the additional units and
memories required in the HEROIC architecture, based on the
previous discussion.

B. Security Implications

The threat model of our proposed architecture is a rational,
curious but honest cloud service provider, that would support
HEROIC, but may also try to snoop inside the processor. One
security implication of the design is the use of a deterministic
variant of Paillier’s encryption scheme. This is mandatory,
since memory references in OISC computers must always be
the same, to succeed. In theory, determinism eliminates seman-
tic security, but in our context, chosen-plaintext attacks are not
practical: the second half of Paillier’s public key (needed for
encryption of chosen values) is never revealed to the cloud
provider or anyone else besides the program owner. This
eventually prevents an attacker from obtaining encryptions
of known values, making it significantly harder to guess the
information sent to HEROIC. Additional details on chosen-
plaintext attack feasibility and the need for determinism can
be found in the security discussion section of [15].

Another implication is that ciphertext-only attacks exploit-
ing frequency analysis may still be possible, due to the
additive homomorphism over the used plaintext range and the
effects of deterministic encryptions. Furthermore, the provided
lookup memories for sign, out of range and modular inverse
identification may assist frequency analysis as well. Ongoing
work explores the addition of noise to the encrypted values

to effectively reduce the practicality of the aforementioned
attacks, while ensuring execution correctness.

V. PERFORMANCE RESULTS

A. Experimental Setup
The HEROIC architecture presented in this paper has

been evaluated using a hardware-cognizant software simulator
developed in Python. All experiments were executed on a
virtual Ubuntu system with 2GB RAM and two Intel i7 cores
at 2.6GHz. For encrypting experimental programs, an open-
source educational Python implementation of Paillier’s cryp-
tosystem was used from [16], in deterministic configuration.

In order to evaluate the performance and correctness of en-
crypted execution, four sample programs have been compiled
to assembly language from original C code using a subleq
compiler from [13], and then instructions were encrypted using
Paillier’s scheme with different security parameter sizes (the
encryption key is necessary during compilation). The software
simulator was configured to emulate an FPGA implementation
running at 200MHz, using the following delay figures:
(a) memory access delay has been modeled at 100ns for

memories up to 16GB [17],
(b) modular multiplication delay has been modeled at h + 3

clock cycles (i.e. 5h+15 ns), for argument size of h bits,
based on the fast Montgomery algorithm [18], and

(c) subtraction delay in the unencrypted domain assumed a
Kogge-Stone implementation and has been modeled at
6ns [19] for 16-bit arguments (used for comparing the
unencrypted design with HEROIC).

B. Simulation Results
The experimental results from the developed simulator are

presented in Table I. The simulator has been configured to
compare the performance of the proposed HEROIC computer
against the unencrypted subleq variant. As it becomes
evident from the results of that Table, the size of the security
parameter has an impact on the overall performance, since the
delay of the modular multiplication in the ALU is correlated
with the size of encrypted arguments. The results of Table I
also indicate that depending on the security parameter size,
the average performance overhead of the proposed HEROIC
design is from about 5 up to about 45 times slower, compared
to the unencrypted subleq design.

In addition, Table I provides information on the number
of clock cycles required for execution of each experimental
program, using multiple security parameter sizes. The results
suggest that there is a maximum difference of two orders of
magnitude in terms of clock cycles between the encrypted
HEROIC and the unencrypted subleq. This difference is
primarily attributed to the expensive modular multiplications
and the memory read/write operations of HEROIC. Ongoing
work explores hiding the memory latency by prefetching the
next instruction arguments, while modular multiplication takes
place; this effectively makes the ALU the only element in the
critical path, potentially increasing performance. Furthermore,
since HEROIC cores may be parallelized as in [7], encryption
overheads can be concealed using parallel configurations.



Fig. 5. Abstract view of additional units and memories of the HEROIC encrypted computer (security parameter 1024-bits).

TABLE I
SIMULATED EXECUTION CLOCK CYCLES AND AVERAGE OVERHEAD FOR DIFFERENT SECURITY PARAMETER SIZES

Benchmark Unencrypted
clock cycles

Encrypted clock cycles for security parameter size
32-bit 64-bit 128-bit 256-bit 512-bit 1024-bit

primes 2.28 ∗ 108 1.24 ∗ 109 1.53 ∗ 109 2.12 ∗ 109 3.29 ∗ 109 5.64 ∗ 109 1.03 ∗ 1010

factorial 5.84 ∗ 106 3.16 ∗ 107 3.92 ∗ 107 5.43 ∗ 107 8.45 ∗ 107 1.45 ∗ 108 2.66 ∗ 108

bubblesort 1.06 ∗ 107 5.77 ∗ 107 7.14 ∗ 107 9.89 ∗ 107 1.54 ∗ 108 2.64 ∗ 108 4.84 ∗ 108

fibonacci 1.89 ∗ 107 1.02 ∗ 108 1.27 ∗ 108 1.76 ∗ 108 2.74 ∗ 108 4.71 ∗ 108 8.63 ∗ 108

Average Overhead (times) 5.4 6.7 9.3 14.4 24.8 45.4

VI. CONCLUSION AND FUTURE DIRECTIONS

In this work we presented a novel architecture for an
encrypted general purpose computer design, that combines the
simplicity and flexibility of one instruction set architectures
with the security properties of homomorphic encryption. The
proposed design is capable of natively executing encrypted
programs written in subleq assembly as well as processing
encrypted data directly. Experimental results indicate that
HEROIC has the potential to be an effective solution to the
problem of confidentiality and privacy in cloud computing,
having an average execution overhead between 5 to 45 times,
compared to the unencrypted subleq execution.

The introduction of HEROIC opens up several research
directions: These include exploring performance improve-
ments of HEROIC using cache memories, branch prediction,
prefetching, pipelining, as well as incorporating more than one
execution units in the design. Currently, an FPGA implemen-
tation of HEROIC is being developed in order to obtain more
accurate performance figures. In addition, a multicore version
of this architecture that exploits parallelism and significantly
reduces performance overhead will also be explored.

REFERENCES

[1] C. Barron, H. Yu, and J. Zhan, “Cloud computing security case studies
and research,” in Proceedings of the World Congress on Engineering,
2013, pp. 1287–1291.

[2] S. Pearson, “Taking account of privacy when designing cloud computing
services,” in ICSE Workshop on Software Engineering Challenges of
Cloud Computing, 2009, pp. 44–52.

[3] H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and privacy challenges
in cloud computing environments,” IEEE Security & Privacy, vol. 8,
no. 6, pp. 24–31, 2010.

[4] C. W. Fletcher, M. v. Dijk, and S. Devadas, “A secure processor
architecture for encrypted computation on untrusted programs,” in ACM
workshop on Scalable Trusted Computing, 2012, pp. 3–8.

[5] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant–level hardware trojans,” in Cryptographic Hardware and Em-
bedded Systems Workshop, 2013, pp. 197–214.

[6] C. Fontaine and F. Galand, “A survey of homomorphic encryption for
nonspecialists,” EURASIP Journal on Information Security, vol. 2007,
no. 1, pp. 26–35, 2007.

[7] O. Mazonka and A. Kolodin, “A simple multi-processor computer based
on subleq,” arXiv preprint arXiv:1106.2593, 2011.

[8] D. Micciancio, “A first glimpse of cryptography’s holy grail,” Commu-
nications of the ACM, vol. 53, no. 3, pp. 96–96, 2010.

[9] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in ACM
Symposium on Theory of Computing, 2009, pp. 169–178.

[10] X. He, M.-O. Pun, and C.-C. Kuo, “Secure and efficient cryptosystem
for smart grid using homomorphic encryption,” in Innovative Smart
Grid Technologies, 2012, pp. 1–8.

[11] C. Gentry, A fully homomorphic encryption scheme, Ph.D. thesis,
Stanford University, 2009.

[12] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Advances in cryptology–EUROCRYPT99, 1999,
pp. 223–238.

[13] O. Mazonka, “Higher subleq compiler into OISC language,” [Online].
Available: http://mazonka.com/subleq/hsq.html.

[14] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving en-
cryption for numeric data,” in ACM SIGMOD International Conference
on Management of Data, 2004, pp. 563–574.

[15] N. G. Tsoutsos and M. Maniatakos, “Investigating the Application of
One Instruction Set Computing for Encrypted Data Computation,” in
Security, Privacy, and Applied Cryptography Engineering, 2013, pp. 21–
37.

[16] M. Ivanov, “Pure Python Paillier homomorphic cryptosystem implemen-
tation,” [Online]. Available: https://github.com/mikeivanov/paillier.

[17] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, pp. 72, 96–101, Elsevier, 2012.

[18] A. Daly and W. Marnane, “Efficient architectures for implementing
montgomery modular multiplication and RSA modular exponentiation
on reconfigurable logic,” in ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2002, pp. 40–49.

[19] D. H. Hoe, C. Martinez, and S. J. Vundavalli, “Design and character-
ization of parallel prefix adders using FPGAs,” in IEEE Southeastern
Symposium on System Theory, 2011, pp. 168–172.


