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Abstract—Variability continues to pose challenges to integrated
circuit design. With statistical static timing analysis and high-
yield estimation methods, solutions to particular problems exist,
but they do not allow a common view on performance variability
including potentially correlated and non-Gaussian parameter
distributions. In this paper, we present a probabilistic approach
for variability modeling as an alternative: model parameters are
treated as multi-dimensional random variables. Such a fully mul-
tivariate statistical description formally accounts for correlations
and non-Gaussian random components. Statistical characteriza-
tion and model application are introduced for standard cells
and gate-level digital circuits. Example analyses of circuitry in
a 28 nm industrial technology illustrate the capabilities of our
modeling approach.

I. INTRODUCTION

Corner-based design and analysis methods are perfectly jus-
tified when global variations dominate, but they lose accuracy
when random local variations gain significance at deep sub-
micron technology nodes. From this point of view, process
variability is a known, yet not completely solved problem in
integrated circuit design [1]. Other variation sources, such as
layout-dependent proximity effects [2], may further worsen
variability issues but are neglected in this paper.

For certain design styles and particular problems, methods
to analyze variability have been developed. In digital design,
statistical static timing analysis (SSTA) [3] is the most detailed
method to consider timing fluctuations. It treats standard cell
delays as analytical functions of varying process parameters.
Although enhancements capture correlations or circuit hier-
archy, consider non-Gaussian distributions, and apply higher-
order polynomial models [4]–[7], SSTA is not widely utilized
in industry. Furthermore, timing variations are merely com-
bined with other performance characteristics, such as static
and dynamic power. An exception is the variability-aware
trade-off between timing and leakage in [8]. Nevertheless, the
distributions of timing and other performance characteristics
including their correlations are not addressed by existing
approaches.

SRAMs are further circuits suffering from variability. They
are especially critical due to the large number of bit cells.
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To analyze variability, high yields have to be estimated.
Importance Sampling, most probable points of failure, and
statistical blockade are algorithms to solve this task [9], [10].
However, these methods appear to be inappropriate for digital
circuits since they focus on extreme and rare events.

We argue that a unified consideration of variability will be
highly beneficial since it can be used on different levels of
abstraction and in different design styles. To simultaneously
handle multiple performance characteristics, such as timing
and energy consumption, we propose a probabilistic modeling
approach that treats model parameters as multi-dimensional
random variables (RV). Combining rank correlation coeffi-
cients and generalized lambda distributions (GLD) [11], it
allows non-Gaussian and correlated parameters.

After introducing the theoretical background, we will focus
on statistical standard cell characterization and probabilistic
modeling. Simulation examples of standard cells in a 28 nm
industrial technology will illustrate the necessity of correlated
non-Gaussian modeling and the benefits of our approach.
Finally, the application of probabilistic models in gate-level
circuit analyses will be briefly outlined.

II. MULTIVARIATE STATISTICS & MODELING

In [12], an algorithm to generate random samples from a
k-dimensional RV X with its components Xi is described.
It supports arbitrary correlations between the components
and arbitrary distribution shapes while two prerequisites have
to be fulfilled. (a) Quantile functions Qi(u) with 0≤u≤1,
inverses of cumulative distribution functions (CDF), describe
the distributions of the random components Xi independently.
(b) Rank correlation coefficients ri,j capture statistical corre-
lations between any two components Xi and Xj. They are
summarized in a k×k matrix R with Rij=ri,j.

To make use of this approach, probabilistic modeling has
to address both prerequisites using sample data as inputs. We
chose the generalized lambda distribution (GLD) to model the
distributions of the random components Xi. With u∈ [0, 1], the
GLD is defined by its quantile function [11],

xi = Qi(u) = λi,1 +

uλi,3−1
λi,3

− (1−u)λi,4−1
λi,4

λi,2
. (1)



The four distribution parameters for location (λi,1), scale
(λi,2), and shape (λi,3, λi,4) can be adapted to approximate
a variety of probability distributions, including uniform and
Gaussian. In a different parametrization, the GLD was suc-
cessfully applied to model inverter performance characteristics
and local transistor variability already [13], [14].

Rank correlation coefficients ri,j between two random com-
ponents Xi and Xj can be determined from sample data by

ri,j = 1−
6 ·

N∑
k=1

d2k

N · (N2 − 1)
, (2)

with the sample size N and the rank differences dk. The rank
of a sample value xi is its position in the ordered observations
of the component Xi. Consequently, the rank difference dk is
the difference in ranks of the k-th observations of Xi and Xj.

In this paper, we determine rank correlation coefficients
and GLD parameters from Monte Carlo sample data. More
efficient approaches may be subject to future research. Data
analysis and model application are performed in statistics
software R [15] for which a method to map sample data to
GLD parameters is available [16].

III. SETUP FOR STATISTICAL CELL CHARACTERIZATION

In statistical standard cell characterization, the data required
to determine rank correlation coefficients and GLD parameters
as described in Sec. II have to be generated. For our analyses,
we assume that device compact models contain global and
local process variability.

In the conventional approach, standard cell performance
characteristics, such as delay and power, are determined for
different input signals and output loads and potentially at
different process corners. Clearly, to generate sample data,
Monte Carlo SPICE simulations have to replace corner runs,
as it is illustrated in Fig. 1.

Further adaptations have to be made due to the correlations
for which three different types have to be considered:
(1) intra-cell correlations: between performance characteris-

tics of a single cell – for instance, a fast standard cell
usually has high static and dynamic power;

(2) inter-cell correlations: between performance characteris-
tics of different cells – for instance, if a cell is fast,
neighboring cells tend to be fast as well; and

(3) inter-instance correlations: between performance charac-
teristics of different instances of a cell – for instance, if
one inverter is fast, other inverters tend to be fast as well.

Fig. 1. Conventional cell characterization with corners (black) and extensions
for statistical characterization (bold gray)

Monte Carlo SPICE simulations with identical global but cell-
specific or instance-specific local variation parameters generate
sample data to calculate the correlation types (1) and (2). To
capture correlations of type (3), each cell has to be duplicated
and simulated twice. The simulation overhead involved is
required to obtain the fully multivariate description.

Based on the simulation results, GLD approximations can be
found for the distributions of all performance characteristics.
In the future, these parameters could replace raw numbers in
table-based models, for instance non-linear delay models.

Correlation handling, however, is more complicated. We
propose to keep the three types of correlations presented above
and create several correlation sub-matrices:
(1) the matrix RX stores intra-cell correlation coefficients of

standard cell X;
(2) the matrix RXY stores inter-cell correlation coefficients

between performance characteristics of standard cells X
and Y; and

(3) the matrix RXX stores inter-instance correlation coef-
ficients between performance characteristics of two in-
stances of standard cell X.

With this approach, the correlation sub-matrices RA, RB, RI,
RAB, RAI, RBI, RAA, RBB, and RII have to be determined
when we consider the three standard cells depicted in Fig. 1,
an AND2 gate (A), a buffer (B), and an inverter (I).

IV. PROBABILISTIC MODELING OF A SET OF CELLS

As an illustrative example, probabilistic models are derived
from 1000-sample Monte Carlo SPICE simulations for a set
of standard cells in a 28 nm industrial technology: an AND2
gate, a buffer, an inverter, a NAND2 gate (A), and a NOR2
gate (O). State-dependent leakage power for all static input
signal combinations as well as cell delay and dynamic energy
for relevant input pin to output pin switching events are the
performance characteristics of interest Xi. The dynamic per-
formance characteristics are determined for exponential input
voltage sources with time constants τ=2.5 ps and τ=5 ps as
well as output loads CL=5 fF and CL=10 fF.

The Q-Q plots in Fig. 2 present the distributions of selected
performance characteristics. Significant deviations from the
diagonals indicate non-Gaussian behaviors in many cases;
yet, empirical data and the GLD approximations are nearly
identical. To further investigate this statement, with a sig-
nificance level α=0.05, Shapiro-Wilk tests check raw data
for Gaussianity, and Kolmogorov-Smirnov tests compare raw
data with 105 samples from the approximated GLDs. The test
results are summarized in the bar plots in Fig. 3 displaying
the total number of performance distributions as well as the
number of valid GLD and Gaussian approximations grouped
by leakage power, cell delay, and dynamic energy. The distri-
butions of leakage and cell delay are generally non-Gaussian.
This is also true for approximately 56% of the dynamic energy
distributions. Most valid Gaussian approximations can be
observed for fall energy distributions, for instance the NAND2
fall energy in the lower right corner of Fig. 2. On the contrary,
nearly all GLD approximations represent raw data well, see



Fig. 2. Example Q-Q plots of performance distributions, sample size 1000

Fig. 3. Total number of performance distributions and numbers of valid GLD
and Gaussian approximations

Fig. 2. There are four exceptions, exclusively leakage power
distributions due to slight deviations in the tail regions: buffer
leakage for input A=1 (middle of right column in Fig. 2),
NAND2 leakage for inputs A=0 and B=1 as well as A=1
and B=0, and NOR2 leakage for inputs A=B=0. In general,
assuming Gaussian distributions introduces inaccuracies, but
approximating raw data by GLDs performs well.

Preserving correlations is the second important task in
probabilistic modeling. For a selected set of performance
characteristics, we compare raw data and a sample of size
1000 from our probabilistic standard cell models. The scatter
plots in Fig. 4 demonstrate the good agreement between the
cluster of points. This holds for intra-cell correlations (inverter
and buffer instances 1), inter-instance correlations (inverter
instances 1 and 2), and inter-cell correlations (inverter and
buffer). The maximum absolute difference between the rank
correlation coefficients from raw data and from our test sample
is in the range of 0.05 to 0.07 and hence very small. It can be
reduced below 0.02 by increasing the sample size by an order

Fig. 4. Examples of preserved correlations; plots in a column share x-
coordinates; plots in a row share y-coordinates; performance characteristics
defined in corresponding rows and columns; #k defines the instance number
of the shown logic gate; arbitrary units

of magnitude.
Altogether, this example demonstrates that the GLD ap-

proach is very accurate in standard cell modeling. It captures
well both correlations and non-Gaussian distributions.

V. APPLICATION SCENARIOS

The principal application of probabilistic standard cell mod-
els in gate-level analyses is schematically illustrated at the
examples of an AND4 circuit and a NAND4 circuit composed
by 2 NAND2 gates, a NOR2 gate, and an inverter, see Fig. 5.

To utilize the sampling approach in [12], all standard cells
need to be considered when building the circuit correlation
matrix R. At this stage, we make use of our sub-divisions
of correlations into intra-cell, inter-cell, and inter-instance
components. For the AND4 circuit, NAND2 and NOR2 intra-
cell correlations (RA and RO), NAND2 inter-instance cor-
relations (RA A), and inter-cell correlations between NAND2
and NOR2 (RA O) have to be taken into account to build the
correlation matrix (black part only),

RNAND4 =


RA RA A RA O RA I

RT
A A

RA RA O RA I

RT
O A

RT
O A

RO RO I

RT
A I

RT
A I

RT
O I

RI

 . (3)

An inverter has to be appended to create a NAND4 circuit.
Consequently, the corresponding sub-matrices, the gray sub-
matrices in (3), have to be added to the AND4 correlation
matrix to obtain the NAND4 correlation matrix RNAND4.

Fig. 5. Gate level schematics of an AND4 and a NAND4 circuit



Fig. 6. Leakage power distributions of 4-input AND and NAND circuits for
A=D=1 and B=C=0 determined by statistical gate level analyses and Monte
Carlo SPICE simulations

In a statistical gate-level analysis, the circuit correlation
matrix R and the GLD parameters are the inputs to the
sampling algorithm in [12]. Subsequent parameter selections
according to the current scenarios and suitable calculations can
then be carried out utilizing the sample data.

If, for instance, the leakage power distributions of the AND4
and the NAND4 circuits in Fig. 5 are of interest for the input
signals A=D= 1 and B=C= 0, the NAND2 leakage power
for A=1 and B=0 (instance #1) as well as A=0 and B=1
(instance #2), the NOR2 leakage power for A=B= 1, and the
inverter leakage power for A=0 (NAND4 circuit only) have
to be summed. In Fig. 6, the good agreement between the
results of the gate level calculations and Monte Carlo SPICE
simulations demonstrates that, in principle, probabilistic stan-
dard cell models can be applied in statistical gate level circuit
analyses. While the SPICE simulations took more than 30 s to
complete, the gate level calculations finished in approximately
0.6 s, which corresponds to a 50X speed up.

Other circuit performance characteristics can be derived
from the same set of sample data by selecting and summing the
corresponding standard cell performance characteristics, for
instance propagation delay as the sum of cell delays or energy
consumption as the sum of dynamic energy consumptions of
the cells. This allows a joint analysis of the variability in circuit
performance and power including their correlations.

VI. SUMMARY, CONCLUSIONS & OUTLOOK

In this paper, we presented a probabilistic modeling ap-
proach that considers model parameters as multi-dimensional
random variables. Combining rank correlation coefficients and
generalized lambda distributions (GLD), the method
(1) simultaneously handles global and local process varia-

tions;
(2) efficiently approximates Gaussian and non-Gaussian dis-

tributions; and
(3) jointly considers multiple performance characteristics,

such as delay and power, including their correlations.
Applied to an example set of standard cells in a 28 nm
industrial technology, we could show that assumptions of
Gaussian distributions of performance characteristics may be
wrong while the GLD accurately models the data. Further-
more, the correlations in raw data could be captured. The
proposed sub-division of correlations into intra-cell, inter-cell,
and inter-instance correlations may be a step towards efficient
correlation handling in digital circuit design and analysis.

The model application was demonstrated for simple gate-
level digital circuits. Compared with SPICE reference simula-
tions, we obtained a 50X speed up and accurate results with
the probabilistic gate-level analysis. How this sampling-based
analysis approach can be applied to very complex circuits
remains as future work, yet.

Although we applied our approach to an example set of
standard cells in a 28 nm industrial technology, it can con-
veniently be adapted to other problems, such as probabilistic
device compact modeling or SRAM performance modeling,
which are mostly subject to current research. We work towards
future publications demonstrating how this method can be
successfully utilized in these areas as well.
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