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Abstract—In this paper, we propose a novel integrated circuits
performance estimation algorithm through a physical subspace
projection and maximum-a-posteriori (MAP) estimation. Our goal
is to estimate the distribution of a target circuit performance with
very small measurement sample size from on-chip monitor circuits.
The key idea in this work is to exploit the fact that simulation
and measurement data are physically correlated under different
circuit configurations and topologies. First, different groups of
measurements are projected to a subspace spanned by a set of
physical variables. The projection is achieved by performing a
sensitivity analysis of measurement parameters with respect to
the subspace variables using a virtual source MOSFET compact
model. Then a Bayesian treatment is developed by introducing
prior distributions over these subspace variables. Maximum a
posteriori estimation is then applied using the prior, and an
expectation-maximization (EM) algorithm is used to estimate the
circuit performance. The proposed method is validated by post-
silicon measurement for a commercial 28-nm process. An average
error reduction of 2x is achieved which can be translated to 32x
reduction on data size needed for samples on the same die. A 150x
and 70x sample size reduction on training dies is also achieved
compared to traditional least-square fitting method and least-angle
regression method, respectively, without reducing accuracy.

I. INTRODUCTION

Continued scaling of CMOS technology has introduced in-
creased variations of process and design parameters, which
affects all aspects of circuit performance [1]. A critical problem
in post-Silicon validation is to build statistically valid prediction
models of circuit performance based on a small number of
measurements. These prediction models could then be used in
many circuit applications such as parametric yield prediction and
robust circuit design.

A widely adopted performance modeling technique is response
surface modeling (RSM) which approximates the circuit per-
formance (e.g., delay, power, etc.) as an analytical (typically
linear or quadratic) function of device parameters (e.g., Vth,
Tox, etc.) [2]. However, a large number of device-level random
variables must be used to capture device-level variations, which
results in a variation space of very high dimensions. Although
principal component analysis (PCA) could be employed as
a useful dimensionality reduction method to convert a high-
dimensional space into a set of uncorrelated variables, the
required training sample size is quite large [3]. When the
data set is not large enough to support the variable space,
parameter estimates by RSM become very-much data-dependent;
this phenomenon is known as over-fitting.

One common strategy for preventing over-fitting in perfor-
mance modeling is by adding regularization terms to error
functions. An example of such a strategy is least-angle regression
(LAR) which uses L1-norm regularization [4]. One major benefit
of regularizing with the L1-norm is that it results in sample
complexity logarithmic in the number of features. On the other
hand, an L2 regularization results in sample complexity that
is linear in the number of features. Recent work employed

Bayesian inference to address the over-fitting problem where
sparse model coefficients and correlated performance variability
were exploited [5] [6]. Such methods require the reuse of data
collected from the same system (either a different mode/corner
or a different stage) and 50 or more samples are still required
for each measurement.

In post-Silicon performance estimation, a typical situation is to
predict the performance of a target system based on a very small
number of measurements taken from different configurations of
on-chip monitor circuits (e.g., device-array test structure, ring-
oscillator structure, etc.). The very small size of the data set is
typically due to the following two reasons: (1) a limited number
of replicated devices under test (DUTs) per die due to limited
area and pads for on-chip monitor circuits; and (2) a limited
number of training dies are measured due to test time limitations.
To the best of our knowledge, there is no satisfactory solution to
the problem of predicting circuit performance based on a very
small data set of measurements. This paper proposes one such
solution.

The key idea in this work is to exploit two types of physical
correlation. The first is the one that exists between simulation
and measurements under different circuit configurations and
topologies. The second exists between different groups of per-
formance measurements. These correlations can physically be
traced back to the hidden intrinsic parameters of the technology
such as threshold voltage and source velocity. The core of
the proposed method is to first project different groups of
measurements onto a subspace spanned by a set of physical
variables (e.g., Vthn and Vthp). The projection is achieved by
performing a sensitivity analysis of measurement parameters
with respect to subspace variables using the MIT virtual source
(MVS) compact model. A prior distribution is defined over these
subspace variables and a Bayesian formalism is introduced to
estimate the performance parameters. This is achieved using a
maximum a posteriori (MAP) estimation defined over all the
group measurement distributions and the subspace variable prior.
A modification of an expectation-maximization (EM) algorithm
is employed to iteratively solve the MAP estimation problem.

II. BACKGROUND AND PROBLEM DEFINITION

Without loss of generality, we consider the problem of esti-
mating a single performance of interest, denoted by g. Assume
that g follows a Gaussian distribution g ∼ N (μg, σg):

pdf(g) =
1√

2π · σg

· exp[− (g − μg)
2

2 · σ2
g

] (1)

where μg and σg are, respectively, the mean and standard devia-
tion of the performance distribution. However, due to constraints
on testing costs, measurements of g may not be directly available.
Instead, groups of measurement data of other performance pa-
rameters are provided that we denote by F = {F1, F2, ..., Fm}.

As an example, consider the problem of post-Silicon validation
of a digital system. In this application, the performance metric978-3-9815370-2-4/DATE14/ c©2014 EDAA



g might be critical path delays or leakage power across a die
and Fi would be measurement results from on-chip monitoring
arrays (e.g., threshold voltages, Idsat for transistors, frequencies
for ring oscillators (ROs) [7][8]). Here the variability of g is
mainly caused by parameter variations such as Vth and Vdd. Our
task therefore is to predict the distribution of g given F and,
consequently, predict the parametric yield.

To formalize the above description, we define a measurement
group to be a performance measured under a certain circuit
topology and configuration. We assume that there are m such
groups. To each group i (i ∈ [1,m] ), we associate a random
variable Fi to model the variability of the measurement under
a certain circuit configuration. Therefore the aforementioned F
could be represented by {F1, F2, ..., Fm}. We also assume that
each Fi follows a Gaussian distribution Fi ∼ N (μFi

, σFi
):

pdf(Fi) =
1√

2π · σFi

· exp[− (Fi − μFi
)2

2 · σ2
Fi

] (2)

For each group Fi, we obtain a set of independent observations

{Fi} = {F (1)
i , F

(2)
i , ..., F

(Ni)
i }, where Ni is the sample size of

the i-th group. The problem we aim to address is to estimate
μg and σg given the observations {F1, F2, ..., Fm} with the
constraint that Ni are very small. For simplicity, we consider
the case where N1 = N2 = ... = Nm = N .

This problem cannot be addressed by the conventional moment
estimation techniques because it is hard to assign a weight to
each group and because the relationships between g and the
Fi’s are unclear [9]. One possible approach is to apply principal
component analysis (PCA) to F and select its top features X. The
problem is then converted into a performance modeling problem.
If the performance function is approximated as:

g(ΔX) =
M∑
k=1

αgk · bk(ΔX) (3)

where {bk(ΔX); k = 1, 2, ...,M} contains the basis functions
(e.g, linear, quadratic, etc), and {αgk; (k = 1, 2, ...,M)} are
the model coefficients. The unknown model coefficients αgi are
usually determined by solving a linear system with N sampling
points:

G = B · αg (4)

where
αg = [αg1 αg2 ... αgM ]T (5)

G = [G(1) G(2) ... G(N)]T (6)

G(i) = g(ΔX(i))

B =

⎡
⎢⎢⎢⎣

b1(ΔX(1)) b2(ΔX(1)) · · · bM (ΔX(1))
b1(ΔX(2)) b2(ΔX(2)) · · · bM (ΔX(2))

...
...

...

b1(ΔX(N)) b2(ΔX(N)) · · · bM (ΔX(N))

⎤
⎥⎥⎥⎦ (7)

However, the relationship between X and G is unknown and
we have no prior information on {αgk; (k = 1, 2, ...,M)}. Under
the constraint of very small N , strong over-fitting would appear
and the prediction would be inaccurate. Although least-angle
regression (LAR) or sparse regression could add a regulariza-
tion term on {αgk; (k = 1, 2, ...,M)}, an appreciable number
of samples is still required. This is the main motivation for
the development of a new performance estimation method via
physical subspace projection and Maximum A Posteriori (MAP)
estimation. In contrast to PCA, we project F onto a physical
variable subspace X where a Bayesian inference learns a prior
distribution on the X parameters using measurement data from
all the groups. The estimates of μg and σg are also obtained via
a projection onto the X subspace, and the projection operation

itself is facilitated using the virtual source (VS) MOSFET model
[10].

III. PHYSICAL SUBSPACE PROJECTION

A. Review of MIT Virtual Source (MVS) Model
The VS model is an ultra compact, charge-based MOSFET

model that provides a simple, physics-based description of
carrier transport in modern short-channel MOSFETs [10][11]. It
essentially substitutes the quasi-ballistic carrier transport concept
for the concept of drift-diffusion with velocity-saturation. In
doing so, it achieves excellent accuracy for the I-V and C-V
characteristics of the device throughout the various domains of
circuits operation. The number of parameters needed is consid-
erably fewer (11 for DC and 24 in total) than in conventional
models[12].

Recently, the statistical extension of MVS was developed
with the capability of mapping the variability characterization
in device behavior onto a limited number of underlying model
parameters, which in turn enables the efficient prediction of
variations in circuit performance [13].

B. Definition of Physical Subspace
We define physical subspace as a variable space spanned by

model parameters in the VS model (e.g., Vtn, Vtp, etc.). Notice
that model parameters are different from measured parameters.
For example, Vt is commonly measured through the so-called
“constant current method” where threshold voltage is the gate
bias corresponding to an arbitrary value of drain current, for
instance 0.1μA [14]. Such measured Vt relates to factors such
as transistor geometries and devices under test (DUTs). Hence
its absolute value does not have physical meaning. A VS model
parameter, in contrast, is a physical parameter with fixed value
shared by all transistors with different geometries.

Although parameters measured from different groups have
large differences in their absolute values, they are strongly
correlated. This assertion is not only valid for the same parameter
measured from different configurations (e.g., Vt measurement
for transistors with different geometries), but is often also valid
for different parameters measured from different configurations
(e.g., Idsat for a transistor and frequency for a ring oscillator
(RO)). Fig. 1 shows different groups of on-chip monitoring
measurements from a real product. All parameters in the red
box refer to parameters that are directly measurable. They are
governed by a hidden model parameter, namely, Vtn (other
hidden parameters and their link to measured parameters are not
shown in this figure).

Fig. 1. The graphical model link for parameter correlations.

C. Physical Subspace Selection
The selection of physical subspace X is a key step in physical

subspace projection. Here we propose a least-angle regression
(LAR) method to solve this feature selection problem before
using any measurement results. A set of MVS model parameters



Y = {Y1, Y2, ..., Ys} are preselected as candidate subspace
variables. Then Monte-Carlo simulations are run to compute
target performance g by randomly generating samples of each
VS model parameter. X is initially set to be {�}. Next, LAR
finds the vector Ysi that is most correlated with g. Once Ysi

is identified, Ysi is removed from Y and added to X. The
model coefficient α is determined by solving the linear equation
G = ΔX ·α and the residual of the approximation is calculated
by:

Res = G−ΔX · α (8)

Then a new vector Ynew which has most correlation with the
residual Res is found. The whole process is repeated until Res
is smaller than a given threshold. For performance of a typical
digital system, we found that X = {Vtn, Vtp} would be sufficient
for a Res criterion of 0.02G and X = {Vtn, Vtp, vxon, vxop}
would be sufficient for a Res criterion of 0.01G where vxon
and vxop are the virtual source velocity for NMOS and PMOS,
respectively. It is intuitive that Vtn and Vtp are the top features
because random dopant fluctuation and channel length variability
are highly important physical sources of performance variation.
For simplicity, we select X = {Vtn, Vtp} for the rest of this
paper.

D. Process Shift Calibration
Once the physical subspace X and its corresponding basis

functions B = {bk(ΔX); k = 1, 2, ...,M} are obtained we are
able to determine model coefficient αg and αFi

by solving linear
equations G = B ·αg and Fi = B ·αFi

, respectively. This allow
us to build a one-to-many function from X to target performance
g and measurements F. In order to reuse prior information, we
assume the coefficients αg and αFi

of post-layout simulations
are identical with the αg and αFi

of measurement results. While
this assumption usually holds in many practical applications,
it is sometimes the case that there is mismatch between the
nominal performance values of post-layout simulations and the
measurements with a typical shift of 15% or less. The shifts in
the corresponding performance distributions are due to modeling
and extraction inaccuracy. Therefore a very small sample size
would be needed to calibrate Fnom and gnom.

Fig. 2. A comparison of measured and VS model predicted Ring Oscillator
(RO) stage delay versus (a) NMOS Vt and; (b) PMOS Vt, respectively. Nominal
post-layout simulation without any shift and variation is also marked. Vtn on left
and Vtp on right are hidden but their impact on prediction has been modeled.

To further illustrate the calibration, Fig. 2 shows an example of
RO stage delay measurements versus Vtn and Vtp extracted from
same-die test arrays and compared with modeling prediction.
A prediction of nominal performance without process shift
calibration is also shown in the figure. Note that measurement

results are sampled from dies on various wafers and lots, and
only a few dies (< 10) are needed to calibrate the nominal shift.

After building the link between physical subspace and perfor-
mance, we are able to draw the performance map for different
systems. Fig. 3 shows the INV and NAND RO stage delay
versus Vtn and Vtp. A high similarity is observed between the
two maps; this means that knowing the measurement result for
one digital system would give us confidence in predicting other
digital system performances.

Fig. 3. Sensitivity analysis on (a) INV and (b) NAND2 ring oscillator (RO)
stage delay using VS model.

E. Physical Subspace Projection
The purpose of physical subspace projection is to transfer

measurement data from different groups into a unique physical
subspace X. This is a one-to-many function that cannot be
resolved using deterministic methods. However, given α and the
calibrated process shift, we could calculate the pdf on X, and
solve the whole problem using maximum a posteriori (MAP)
estimation.

In line with our previous assumptions, the subspace X satisfy
a multivariate Gaussian distribution X ∼ N (μX,θ):

pdf(X) =
1√

(2π)k |θ| ·exp[−
1

2
(X−μX)Tθ−1(X−μX)] (9)

where μX and θ are the mean vector and the covariance matrix
of X, and k is the dimension of X.

We also assume the “uncertainty” of μX follows a conjugate
Gaussian prior distribution μX ∼ N (μ0,Σ0).

pdf(μX) =
1√

(2π)k |Σ0|
·exp[−1

2
(μX−μ0)

TΣ−1
0 (μX−μ0)]

(10)
μFi

and σFi
are calculated by:

μFi = μ(Fi(ΔX)) =

M∑
k=1

αFik · μ(bk(ΔX)) = μFi(μX,θ)

(11)

σ2
Fi

= σ(Fi(ΔX))2 =

M∑
j=1

M∑
k=1

αFijαFik · σ(bj(ΔX), bk(ΔX))

−(

M∑
k=1

αFik · μ(bk(ΔX)))2 = σ2
Fi
(μX,θ)

(12)
where μ(bk(ΔX)) and σ(bj(ΔX), bk(ΔX)) are the mean and
covariance of the basis function, respectively.

Therefore the probability of observing data point F
(ni)
i in ith

group associated with subspace distribution pdf(F
(ni)
i |μX, θ)

pdf(F
(ni)
i |μX,θ) =

1√
2πσFi(μX,θ)

exp[− (F
(ni)
i − μFi(μX,θ))2

2 · σFi(μX,θ)2
]

(13)
which is the complete form of physical subspace projection.



IV. MAXIMUM A POSTERIORI ESTIMATION

A. Initial setting
Our proposed physical subspace projection method is facil-

itated by a Bayesian inference which efficiently exploits the
correlation between different groups of measurement to improve
the accuracy of the estimator. Before we start, a proper physical
variable subspace X is selected and prior knowledge is learned
by fitting αg and αFi

, as described in Section III. Process shifts
will be calibrated by a few training dies and initial guess of
parameters μ0, Σ0 and θ will be selected. μ0 is the nominal
value for the subspace variables and Σ0 is the covariance matrix
of subspace variables under inter-die variation. The initial value
of θ equals to the covariance of subspace variables under only
intra-die variation.

B. Learning a Prior Distribution
The first step is to project very small samples in different

measurement groups {{Fni
i ;ni1, 2, ..., Ni}; i = 1, 2...,m} to

selected subspace X and obtain the probability of observing Fi

given μX and θ. Then we further combine it with the prior
distribution pdf(μX) in (10) to accurately estimate μX and θ
and essentially μg and σg .

Assuming samples from different measurement groups are
independent, we can write the likelihood function pdf(F|μX,θ)
as:

pdf(F|μX,θ) =

m∏
i=1

pdf(Fi|μX,θ) (14)

Assuming samples from the same measurement groups are
independent, the likelihood function pdf(Fi|μX,θ) is written
as:

pdf(Fi|μX,θ) =

Ni∏
ni=1

pdf(F
(ni)
i |μX,θ) (15)

According to Bayes’ theory, the joint distribution p(F,μX|θ)
is given by the product of the prior pdf(μX) and the likelihood
function pdf(F|μX,θ), described by posterior distribution:

pdf(F,μX|θ) = pdf(μX|θ) · pdf(F|μX,θ) (16)

Substituting (14) and (15) into (16) and noticing that
pdf(μX|θ) = pdf(μX) yield:

pdf(F,μX|θ) = pdf(μX) ·
m∏
i=1

Ni∏
ni=1

pdf(F
(ni)
i |μX,θ)

= pdf(μX) · pdf(F (n1)
1 |μX,θ)) · ... · pdf(F (Nm)

m |μX,θ)

(17)

This demonstrates the sequential nature of Bayesian learning
in which the current posterior distribution forms the prior when
a new data point is observed. Fig. 4 shows the results of
Bayesian learning on μX as the portfolio of the measurement
groups expanded. The first column of this figure corresponds
to the situation before any data points are observed and shows
a plot of the prior distribution μX ∼ N (μ0,Σ0). The first
row shows the likelihood function pdf(Fi|μX,θ) for different
measurement alone. The second row shows posterior distribution
pdf(μX,F|θ) by multiplying its likelihood function from the
top row by the prior. As this process continues, the posterior
distribution is much sharper and in the limit of an infinite number
of data points, the posterior distribution would become a delta
function centered on the true parameter values.

C. Maximum A Posteriori Estimation
Our final goal is to find an optimal estimation of μX

which maximize the log likelihood of posterior distribution
lnpdf(μX,F|θ). However, a key step is still missing, which is

to determine the hidden variable θ which maximizes the log
likelihood function

lnpdf(F|θ) = ln

∫
X

pdf(μX,F|θ)dμX (18)

The difficulty arises from the presence of integration that
appears inside the logarithm in (18), so that the logarithm
function no longer acts directly on the Gaussian. If we set the
derivatives of the log likelihood to zero, we will no longer obtain
a closed form solution. The idea presented in this paper follows
the expectation maximization (EM) algorithm [15].

For any normalized distribution q(μX), we have

lnpdf(F|θ) = 1 · lnpdf(F|θ) = ∫
X
q(μX)dμX · lnpdf(F|θ)

=
∫
X
q(μX)lnpdf(F|θ)dμX =

∫
X
q(μX)lnpdf(μX,F|θ)

pdf(μX|F,θ)dμX

=
∫
X
q(μX)

(
lnpdf(μX,F|θ)− lnq(μX)− lnpdf(μX|F,θ)

q(μX)

)
dμX

(19)

Here the second item − ∫
X
q(μX)lnq(μX)dμX is always

a constant. The third item
∫
X
q(μX)lnpdf(μX|F,θ)

q(μX) dμX is the

Kullback-Leibler divergence between pdf(μX|F,θ) and q(μX)

which is ≥ 0, with equality if and only if q(μX) =

pdf(μX|F,θ).

Algorithm 1 Algorithm to solve Maximum A Posteriori estima-

tion

Require: a joint distribution pdf(μX,F|θ) over observed vari-

ables F and latent variables μX, governed by parameters θ,

convergence requirement ε.
Ensure: θ which maximize the likelihood function lnpdf(F|θ)

and μX which maximize the likelihood function

pdf(μX,F|θ)
1: Choose an initial setting for the parameters θnew;

2: repeat
3: θold = θnew;

4: Evaluate pdf(μX|F,θold) = pdf(μX,F|θold)

pdf(F|θold)
;

5: Evaluate θnewgiven by

6: θnew = argmaxθ Q(θ,θold);
7: Q(θ,θold) =

∫
X
pdf(μX|F,θold)lnpdf(μX,F|θ)dX;

8: until |θold − θnew| < ε
9: μX = argmaxμX

lnpdf(μX,F|θnew);

This suggests an iterative algorithm, as summarized in Al-
gorithm 1. Given an initial value of θold, the first step is
to maximize likelihood lnpdf(F|θold) with respect to q(μX),
which yields to q(μX) = pdf(μX|F,θold). The second step is

to fix the distribution q(μX) and maximize lnpdf(F|θold) with

respect to θold. The whole process is repeated until convergence
and estimations of θ and μX are obtained.

Once θ and μX are obtained, we could further estimate the
mean and standard deviation of target performance μg and σg:

μg = μ(g(ΔX)) =
M∑
k=1

αgk · μ(bk(ΔX)) (20)



Fig. 4. Illustration of sequential Bayesian learning of μX from prior and on-chip monitor circuit.

σ2
g = σ2(g(ΔX)) =

M∑
i=1

M∑
j=1

αgiαgj · σ(bi(ΔX), bj(ΔX))

−(

M∑
k=1

αgk · μ(bk(ΔX)))2

(21)

Fig. 5. Proposed method employing a Bayesian interface and Maximum A
Posteriori estimation.

A summary of our physical subspace projection and maximum
a posteriori estimation is shown in Fig. 5.

V. VALIDATION

In this section, we demonstrate the accuracy and efficacy of
our proposed physical subspace projection and MAP algorithm
using measurement results. We consider on-chip measurement
results collected from 3186 dies in 27 wafers in a 28-nm bulk
CMOS process. Each chip contains different test arrays which
include device-array and ring oscillator (RO)-array, which are
often used as monitor circuits due to their simplicity and small

area overhead. Information about each measurement group is
summarized in Table I.

TABLE I
A SUMMARY OF MEASUREMENT GROUPS

# of meas group 1 2 3 4 5 6

DUT INV NAND NOR INV NAND NOR

Circuit topology Device Device Device RO RO RO

# of replicas 4 4 4 4 4 4

Table II shows cross-group validation errors in RO frequency
predictions using the proposed physical subspace projection
method, with different mixtures of device- and RO-array mea-
surements. We use RO frequency as the performance of interest
to mimic the operation of a digital system. As we compare cross-
group prediction errors, we observe smaller prediction errors as
the number of different measurement groups grows. Fig. 6 shows
relative error on group #6 frequency predictions as a function
of Ni replicas on the same die. All 3186 dies are used for
training and the number of samples per die varies. Our proposed
“VS+MAP” method is able to achieve higher accuracy using
multiple-group measurements compared with response surface
method (RSM) using single group measurements. We observe
consistently 2x sample accuracy improvement over sample mean,
which represents a 32.5x sample size reduction.

Fig. 7 shows how the average performance prediction varies
with the number of training dies. All samples on training
dies are used but the number of training dies varies in this
case. Compared with standard “PCA+LSR” and “PCA+LAR”
method, our proposed “VS+MAP” method is able to achieve
substantially higher accuracy, with 70x and 150x sample reduc-
tion, respectively. Here we split the data set into 27-folds while
dies on the same wafer remain in the same fold. Each time we
select one or several folds to train the model and use the rest to
do validation. The whole process is repeated and the prediction
error is averaged.

VI. CONCLUSION

In this paper, we have propose a novel performance esti-
mation algorithm through a physical subspace projection and



TABLE II
RELATIVE PREDICTION ERROR FOR CROSS-GROUP VALIDATION.

# Measurement group Prediction group %error

1 1,2,3 4 3.22

2 1,2,3 5 2.99

3 1,2,3 6 2.7

4 5,6 4 2.4

5 4,6 5 2.19

6 5,6 4 3.54

7 1,2,3,4 5 2.26

8 1,2,3,4 6 2.17

9 1,2,3,5 5 2.26

10 1,2,3,5 6 2.06

11 1,2,3,6 4 2.32

12 1,2,3,6 5 2.15

13 1,2,3,4,5 6 2.1

14 1,2,3,4,6 5 1.98

15 1,2,3,5,6 4 2.01

Fig. 6. Relative prediction error for group #6 versus replicate samples per die.
A mixture of measurement groups is compared.

Fig. 7. Relative prediction error for group #6 versus number of training dies.
Various algorithms are compared.

maximum a posteriori estimation with very small sample size.
The key idea in this work is to exploit the fact that simulation
and measurement data are physically correlated under different
circuit configurations and topologies. First, different population
of measurements are projected to a subspace expanded by a set
of physical variables. The projection is achieved by performing
a sensitivity analysis of measurement parameters on subspace
variables using virtual source compact model. Then we develop
a Bayesian treatment by introducing prior distributions over these
projected variables. Maximum a posteriori estimation is also
applied using the prior. The proposed method is validated by
post-silicon measurement of a commercial 28-nm process. A
superior sample size reduction is shown in two aspects. First,
an average prediction error is reduced by a factor of 2 which
can be translated to a 32x reduction on data needed for samples
on the same die. Second, a 150x and 70x sample size reduction
on training dies is achieved compared to traditional least-square
fitting method and least-angle regression method, respectively,
without surrendering any accuracy.
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