Improving Efficiency of Extensible Processors by
Using Approximate Custom Instructions

Mehdi Kamal', Amin Ghasemazar', Ali Afzali-Kusha', Massoud Pedram’
'School of Electrical and Computer Engineering, University of Tehran
*Electrical Engineering Department, University of Southern California

{mehdikamal, a.ghasemazar, afzali}@ut.ac.ir, pedram@usc.edu

Abstract—In this paper, we propose to move the
conventional extensible processor design flow to the
approximate computing domain to gain more speedup. In this
domain, the instruction set architecture (ISA) design flow
selects both exact and approximate custom instructions (CIs).
The proposed approach could be used for the applications
where imprecise results may be tolerated. In the CI
identification phase of the flow, the CIs which do not satisfy the
maximum propagation delay but can provide approximate
results also may be included in the CI candidate set. Next, in
the selection phase, we propose a merit function which selects
CIs with higher cycle savings and small error rates. The
efficacy of the proposed approximate design flow is
investigated using the case studies of the discrete cosine
transform (DCT) and inverse DCT (iDCT) of the MPEG2
application. Also, the impact of the process variation on the
impreciseness of the results is investigated.

L INTRODUCTION

In recent years, the request for using embedded
processors in different application domains has been
considerably increased. Achieving high performance yet low
power embedded processors is not normally obtainable
through general-purpose processors. This, however, may be
attained via the use of extensible processors which have
emerged in the field of embedded computing as a promising
approach [1]. In this approach, by extending the instruction
set architecture (ISA) of the baseline embedded processor,
the critical portions of the running application on the
processor is accelerated. The extension includes adding some
extra custom instructions (CIs) to the instruction set of the
baseline processor. These CIs are executed through a
hardware which is called custom functional unit (CFU).

The successful use of the extensible processor approach
strongly depends on providing an efficient automated design
flow for customizing the ISA of the processors. There are
two main phases in the design flow including custom
instruction identification and selection, which are
computationally intensive and time-consuming. The ways
that these phases are performed directly impact the
effectiveness of the extensible processors. Many approaches
have been proposed to automate these phases (see, e.g., [1]).
In the identification phase, all the convex subgraphs of the
data flow graph (DFG) of the application which satisfy the
micro-architectural constraints such as delay and 1/O
limitations, are enumerated and placed in a CI candidate set.
Next, the isomorphic CIs are grouped to each other and
generate a CI group set which can be executed using a piece
of hardware in the CFU. Also, based on overlapping between

978-3-9815370-2-4/DATE14/©2014 EDAA

the nodes of the identified CIs a conflict graph indicating
these overlaps are generated. Finally, in the selection phase,
the best Cls from the CI candidate set are chosen.

The constraints play a major role in the speed
enhancement of the extensible processors. The maximum
propagation delay (MPD) of the Cls is one of the main
constraints which is defined based on the clock period (single
or multi clock) of the processor. This constraint guarantees
that the identified CI completes its operation before its
results are fetched by the next stage of the processor.
Satisfying this constraint eliminates CIs with higher cycle
savings. If we select CIs which do not meet this delay
requirement, either the operation will not be correctly
performed or the function is partially performed providing
imprecise results. If imprecise results can be tolerable, the
use of CIs with higher cycle saving may provide us with
more speed gain in extensible processors. This has been our
motivation for proposing to move from conventional ISA
extension design flow to an ISA extension design flow based
on approximate computing. The idea of approximate
computing is based on tolerability of result impreciseness in
some applications which are resilient to errors during
execution [2]-[4]. Since obtaining imprecise results is
computation less expensive, the use of approximate
computing may provide some speed and/or energy gains.
The accuracy decrease may affect the functional correctness
and reliability. Two targets may be considered for using the
approximate computing. The first target is the reducing
power consumption which is attained by using approximate
functions, which consume lower power compared to the
exact operations, or reducing the supply voltage. The second
one is the increasing the performance which may be achieved
by using approximate functions, which have smaller
propagation delay compared to the accurate functions, or
decreasing the period of the input clock [5].

In this paper, we suggest using the approximate
computing approach for designing the extensible processors
for the applications where imprecise operations are tolerable.
The flow may improve the speedup of the extensible
processor. In the design flow, the identification phase is
modified such that the approximate CIs which can be
identified. In the selection phase, a merit function is
proposed to select CIs with higher cycle savings and smaller
error rates. We also study the impact of the process variation
on the selected CIs in the approximate computing approach.
The rest of the paper is organized as fallows. In Section I,
first, we define the approximate CI and then describe our
proposed design flow based on approximate computing. The

results are discussed in Section III while the conclusion is
provided in Section IV.

II. APPROXIMATE CUSTOM INSTRUCTION

As mentioned before, the extended ISA is used to reduce
the runtime of the application. However, it is possible that a
candidate CI meets all constraint instead of the propagation
delay. In this case, in the conventional approach this CI is not
enumerated to be added to the CI candidate set in the
identification phase. This CI is omitted because its output
results are not accurate. However, by accepting the
inaccurate results from this CI, it could be added to the
candidate set, which may result in more speed gain.
Additionally, in the conventional approach, the process
variation decreases the yield of the manufactured chips.
Some methods to increase the yield of the extensible
processors have been presented [6] while all of them results
in decreasing the speedup. However, in approximate
computing approach, the error in computations is tolerable.
Hence, when the Cls are identified from the parts of the
application where the inaccuracy is acceptable, these Cls
could be selected without concern about process variation.
Therefore, in the presents of the process variation,
approximate computing approach may help to improve the
speedup of the extensible processors.

An approximate CI does not guarantee to result a precise
value, however, in some cases it may generate accurate
results. Note that if the maximum propagation delay
constraint is increased to a value equal to the propagation
delay of approximate Cls, the operation of these Cls will be
precise. However, since in this case, the clock period is
increased, the speedup will be reduced. For the arithmetic
operations such as adder and multiplier, the critical paths are
belongs to the most significant bits. Hence, the accuracy of
these types of operations depends on the range of the input
values. Figure 1(a) shows an example of a CI which contains
two 32-bit inputs and one 32-bit output while its MPD is
2.66 ns. Figure 1(b) shows the error rates of the generated
results under different clock periods. To find the error rates
for this CI, two different input patterns have been used. For
the first input pattern, 100K uniform random data have been
generated while for the second input pattern 100K normal
random (u = 0, ¢ = 255) data have been used. As we
expected, by decreasing the range of the data variation
(around zero), the slope of increasing the error rate is
decreased. In the case of the uniform random input, by
decreasing the clock period to 1.7 ns, almost all output
results are wrong, while in the case of the normal random
input, by reducing the clock period to 1.7 ns, only half of the
results are wrong. It shows, in approximate computing ISA
extension design flow, beside cycle saving of each CI, the
error rate of them should be considered to reduce the output
error rate. Therefore, in the proposed approximate computing
ISA extension design flow (see Figure 2), the identified CI
candidate set contains accurate and also, inaccurate ClIs,
which results in larger candidate set that may lead to
selecting a CFU with higher speedup. In CI selection phase
of the proposed flow, both speed gain and also, the
inaccuracy of the CIs are considered to reach higher speedup
with smaller error rate. Now, the details of the proposed flow
will be explained in the next paragraphs.

In the identification phase, the modified single-cut
identification algorithm proposed in [7] have been used
while the details of the algorithm are presented in Figure 3.

This algorithm is modified to check the maximum
propagation delay constraint for each identified CI (lines 10-
15). In the conventional approach, if the propagation delay
of an identified sub-graph is smaller than the MPD (it is
checked by function violate_ MPD()), the subgraph is added
to the CIs candidate set, and the algorithm continues its
search in the search tree. In despite, if the propagation delay
of the sub-graph is larger than the MPD, the algorithm stops
its search on the current branch of the search tree, and
continues its search from one other branch. However, when
inaccuracy of the Cls is acceptable, in the case where the
propagation delay of the sub-graph is larger than the MPD,
first, the identification algorithm adds this subgraph to the
candidate set, and next leaves this branch of the search tree,
and selects one other branch to search. Note that this added
CI is an approximate CI, which its results may be imprecise.
The algorithm is not continue its search in a branch that its
propagation delay is more than MPD due to the increasing
the error rate of the CIs which would be selected in this
branch.

B A Jniform Ra ormal Random (=0, 0=255) Input Data
10---@--_____ @
Tteell e

08
o N
2 06 >

04 - .

- ° .

17 1.9 2.1 23 25 2.7

Error Rate

Delay (ns)

(2) (b)
Figure 1. a) An example of a CI, and b) its output error rate under
different input patterns and propagation delay constraints.

Propagation delay DFG of
of operations

Applifation
Identification " Find Conflict
@—{ phase H Find Cl Groups H Graph
X Accurate Cls]
dentification v

Constraints l Find EET”a‘e H Synthesize Cls
Selection Phase| ortls
For Approximate Cls

X
MPD Constraint

Selected Cls

Figure 2. Proposed approximate computing ISA extension design flow

1: identification() {

2: topological sort() ;

3: search(l1, 0) ;

4: search(0, 0) ;

5003

6: search (current_choice, current index) {

7 if (current_choice == 1)

8: if (forbidden()) || ('output_port_check()) ||
('permanent_input_port_check()) || (!convexity check()) return ;

9: if (input_port_check()) {

10: if (Tviolate MPD())

11: add_to_CI_candidate_set();

12: else {

13: add_to_CI_candidate_set();

14: return;

15: H

16:

}
17: if ((current_index + 1) == NODES) return;
18: current index = current index + 1;
19: search(l, current index);
20: search(0, current index);
21: }

Figure 3. The pseudo code of the identification algorithm

After the identification phase, similar Cls are grouped
and the conflict graph of the CIs is generated. Next, the error
rate of the CIs which their propagation delays are more than
the MPD, should be calculated. Hence, to find the error rate
of the approximate Cls, by using a synthesis tool, the gate-
level netlist of them with their corresponding standard delay
files are extracted. Now, by using a gate-level simulator, the
error rates of the approximate CIs are calculated. The input
of the CIs during the simulation is the profiled data which are
collected during the running of the input application on the
baseline processor. For each input data, the output result at
the clock period of the processor is checked, and if the output
is different from the expected output, we consider it as error.
Now, based on the error counts, the error rate (ER) of each
ClI is calculated. Note that the ER value is bounded by [0,1],
and for the accurate Cls this value is equal to zero. It should
be noted that the error rate of a CI may be changed due to the
process variation. In the existence of the process variation,
the error rate may be decrease or increase.

Finally, in the selection phase, the CI groups with the
highest cycle saving should be selected. In the approximation
computing case, the selection phase should consider the
inaccuracy of the Cls along with their cycle saving. Hence,
in this case, we have a multi objective selection, where one
of them is maximizing the cycle saving while the other one is
minimizing the error rate. In this work, we use the greedy
selection algorithm to select the Cls. Therefore, we modify
the conventional merit function which is based on the cycle
saving (CS) to a merit function which assigns higher merit
value to the CIs with higher CS and smaller ER values.
Therefore, the proposed merit function is formulated as
#of Clsin CI Group i
j=£ . P Cly.Cs 0
Z]‘:{ CIsin CI Group i CIj. ER
where CIG;.merit is the merit value of the i CI group, while,
CI,.CS (CI.ER) shows the cycle saving (error rate) of the it
Clin the i~ CI group. During the greedy selection algorithm,
the merit value of each CI is calculated, and the CI group
with the highest merit value is selected. Next, the CI groups
based on the conflict with the selected CI group are pruned.
This process is continued until the CI candidate set becomes
empty.

ClG;.merit =

III. EXPERIMENTAL RESULTS

To study the efficacy of the proposed design flow, we
have extracted the custom instructions of the Discrete Cosine
Transform (DCT), and inverse DCT (iDCT) which are used
in image processing applications especially in lossy video
and image compressing algorithms. To determine the impact
of the imprecise DCT and iDCT components on the output
quality of the algorithms, we have applied the imprecise
DCT in the MPEG2 encoder while the approximate iDCT
have been used inside the MPEG2 decoder. Three video
streams have been used as the input of the MPEG2
encoder/decoder video compression algorithms which were
bus (150 frames), football (260 frames), and miss America
(150 frames). Note that only the custom instructions of the
DCT and iDCT parts of the MPEG2 encoder and MPEG2
decoder have been extracted. Also, it should be mentioned
that the DCT and iDCT in MPEG2 encoder/decoder take
more than half of the runtime of these compression
algorithms. The quality of the output videos are reported in
Peak Signal to Noise Ratio (PSNR) while the video streams

were in YUV color space. To find the approximate CFUs,
we have used the proposed design flow in Figure 2. The
delay of the CIs has been extracted in 45 nm technology [8].
The baseline processor was a S-stages in-order pipeline
MIPS processor, where its frequency was 666 MHz. All the
operations, except of the multiplying, took one cycle, while
the multiplying took 2 clock cycles. In this work, only the
single cycle Cls have been extracted under the I/O constraint
of 2/1. The CIs were identified under 1.5ns MDP constraint.
TABLE I reports the number of the identified CIs, CI groups,
and selected Cls for DCT and iDCT components in the two
cases of the conventional (denoted by CONYV) and
approximate computing (denoted by APXC) ISA extension
approaches. As the results show, the number of the identified
ClIs in the approximate computing approach is more than the
conventional approach which leads to selecting Cls with
higher cycle savings. The speedups are reported in two
different clock periods, 1.5 ns and 1.75 ns. Note that in the
case where the clock period is 1.75 ns, the MPD constraint
during the identification phase was 1.5 ns.

The results show, in the case of the DCT (iDCT), moving
the ISA extension design flow, from conventional approach
to approximate computing leads to about 460%(70%)
speedup improvement. In the case of the DCT, in
conventional approach there is only one CI group which
satisfied the constraint, while in the approximate computing
approach 23 CI groups exist that cycle saving of most of
them are higher than the identified CI group in conventional
approach. Also, in the selection phase, eight of the selected
CI groups where among the approximate Cls which lead to
higher speed gain in the approximate computing approach.
As an example, one of the approximate CI is (125 x Iny) +
(106 x In,), where its propagation delay is about 2.1 ns. This
CI was not identified in the conventional ISA extension
design flow, while its error rate under all video streams was
almost zero. Note that in the case where one of the inputs of
a primitive is a constant value, the propagation delay of that
primitive after the synthesis to gate level netlist, due to the
optimization, is much smaller than the propagation delay of
the primitive when both of its inputs are not constant. In the
case of the DCT (iDCT), in the conventional approach, by
extending the ISA, the number of the instruction fetch was
reduced about 12% (12%), while in the case of the
approximate computing, it was decreased about 57% (31%).

In the case of approximate computing, the cost of the
speed gain is imprecise results, which provides to lower
PSNR. TABLE II represents the average of the PSNRs of the
video streams under different clock periods, and also under
the impact of the process variation. To study the impact of
the process variation we have considered channel length (L)
and voltage threshold (V) variations. For both of them, we
have assumed a random variation where the o/u of it was
10%. Also, the variation was modeled for one hundred CFU
sample for each case. Note that the expected PSNR of the
bus, football, and miss America video streams was 28.5 dB,
32.4 dB, 43.6 dB, respectively. In the case where the impact
of the process variation is not considered, when the clock
period is 1.5 ns, the PSNR of the bus, football and miss
America output video streams of MPEG2 encoder (decoder)
have been decreased about 10% (14%), 13% (10%), and
37% (46%), respectively. While, by increasing the clock
period, which is about 16%, the PSNR reduction has been
decreased significant.

TABLE I THE NUMBER OF THE IDENTIFIED CIS, CI GROUPS, AND SELECTED CIS FOR DCT AND IDCT COMPONENTS IN THE CONVENTIONAL AND
APPROXIMATE COMPUTING APPROACHES. THE SPEEDUP OF THE SELECTED CIS WHERE THE CLOCK PERIOD IS 1.5 AND 1.75 Ns.

of identified Cls # of identified Cl Groups | # of Selected CI Groups Speedup Speedup Improvement
CONV APXC CONV APXC CONV APXC CONV APXC APXC APXC APXC
of Nodes Approach Approach | Approach Approach | Approach Approach | Approach Approach Approach Approach Approach
(1.5ns) (1.75ns) (1.5ns) (1.75ns)
DCT 132 16 62 1 23 1 9 1.05 5.92 5.07 463.8% 383.3%
iDCT 131 26 68 4 19 3 13 1.16 1.8 1.54 71.4% 46.9%

In this case, the PSNR reduction of the bus, football and
miss America output video streams of MPEG2 encoder
(decoder) have been reduced about 0.1% (0%), 0.2% (0%),
1.7%(0%), respectively. The results show, small increment
of the clock period may results in eliminating the PSNR
reduction due to the clock period violation. Note that, as
aforementioned, increasing the clock period leads to
decreasing the speedup that in this study the speedup
reduction was about 14.28% (see TABLE I), which may be
this reduction acceptable compared to the PSNR
improvement.

One of the main challenges in the nano-scale design is
process variation which affects the reliability of the circuits.
Hence, in this wok, we have studied the impact of the
process variation on the extracted approximate CFU. Oshows
the impact of the process variation on the PSNR of the
MPEG2 encoder and decoder. The results show, in the
present of the process variation, the PSNR values of the
video streams are not deterministic (see Figure 4). The
results depict, in the most cases, the average of the PSNRs
was decreased compared to the case when the process
variation impact was not considered. Also, by increasing the
clock period, the difference between the average and the
maximum PSNR was reduced, which shows increasing the
clock period may help to reduce the impact of the process
variation. As an example, Figure 4 shows the distributions of
the PSNRs of the MPEG2 decoder output in the case of the
football video stream under two clock periods. The plots
show by increasing the clock period, the distributions of the
PSNRs are reduced, and they are localized around the
maximum PSNR value. This behavior is observable in the
other video streams, and also in the case of the MPEG2
encoder. The results show in the present of the process
variation, when the clock period is 1.5 ns (1.75 ns), the
PSNR may be reduced about 19.7% (28.78%). The PSNR
variation in the case when the clock period is 1.5 ns is
smaller compared to the case when the clock period is 1.75
ns. This behavior originates from the fact that by decreasing
the clock period, the rate of increasing and decreasing the
error rate, when the clock period is changed, is reduced (see
Figure 1).

IV. CONCLUSION

In this paper, we have suggested to move the
conventional extensible processor design flow to the
approximate computing domain to gain more speedup. In
this work, for the identification phase, we have proposed to
identify CIs which do not satisfy the maximum propagation
delay but can provide approximate results. Also, in the
selection phase, we have proposed a merit function which
selects CIs with higher cycle savings and small error rates.

To evaluate the proposed design flow, we have extended the
ISA of a baseline processor for the DCT and iDCT
components of the MPEG2 encoder and decoder,
respectively. The results revealed that the approximate
computing approach may results in huge speed gain. In the
case of the DCT, the speedup improvement was about 460%
while the PSNR was reduced about 20%. Also, the impact of
the process variation on the impreciseness of the results has
been investigated. The results showed that the process
variation leads to losing the quality, while its impact may
degrade by increasing the clock period.

TABLE II PSNRS (IN DB) OF THE OUTPUT STREAMS OF THE MPEG2

ENCODER AND DECODER WITH AND WITHOUT CONSIDERING THE IMPACT OF
THE PROCESS VARIATION

Wllhou.t P.rocess by Considering Process Variation
Variation
Video MEPG2 MPEG2 MEPG2 Encoder MPEG2 Decoder

Stream MPD Encoder Decoder MIN AVG MAX MIN AVG MAX
bus 15 25.6 24.4 17.5 253 27.1 23.7 24.8 28.4
175 28.5 28.5 18.2 27.2 28.5 25.2 28.2 28.5

football 15 28.1 29.1 2238 24.7 30.0 28.4 29.2 31.0
175 32.3 32.4 29.3 32.2 30.9 29.7 32.1 324

miss 1.5 27.3 23.6 15.4 25.9 40.3 19.1 23.8 433
America 175 42.9 43.6 16.7 40.0 42.9 23.2 41.7 43.6

Football (MPD = 1.5ns) Football(MPD = 1.75ns)

°

V.mm.y
26020820
—

o T o

- 2288

286 28.8 29.1 204 29.6 29.9 30.1 304 307 309 29.8 30.1 304 30.6 30.9 312 314 317 320 322
PSNR (d8) PSNR (dB)

Figure 4. The distributions of the PSNR variation in the case of MPEG2
decoder (in the case of football stream) under process variation

REFERENCES

[1] C. Galuzzi and K. Bertels, “The Instruction-Set Extension Problem: A Survey,”
ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 18,
pp.1-28,2011.

[2] H. Esmaeilzadeh, ef al., “Architecture Support for Disciplined Approximate
Programming,” In Proceedings of International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2012,
pp.301-312.

[3] L. Leem, er al., “ERSA: Error resilient system architecture for probabilistic
applications,” In Proceedings of Design, Automation and Test in Europe
(DATE), 2010, pp. 1560 —1565.

[4] V. Gupta, et al., “IMPACT: Imprecise adders for low-power Approximate
Computing,” In Proceedings of IEEE/ACM international symposium on Low-
power electronics and design (ISLPED), 2011, pp. 409-414.

[5] R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via
algorithmic noise-tolerance,” In Proceedings of IEEE/ACM international
symposium on Low-power electronics and design (ISLPED), 1999, pp. 30-35.

[6] M. Kamal, ef al., “An Architecture-Level Approach for Mitigating the Impact
of Process Variations on Extensible Processors,” In Proceedings of Design,
Automation and Test in Europe (DATE), 2012, pp. 467-472.

[7] L. Pozzi, et al., “Exact and Approximate Algorithms for the Extension of
Embedded Processor Instruction Sets”, [EEE Transactions of Computer-Aided
Design of Integrated Circuits and Systems (TCAD), Vol. 25, No. 7, July 2006.

[8] Nangate 45nm Open Cell Library. http://www.nangate.com/.

