
CoMik: A Predictable and Cycle-Accurately
Composable Real-Time Microkernel

Andrew Nelson1, Ashkan Beyranvand Nejad1, Anca Molnos2, Martijn Koedam3, Kees Goossens3
1Delft University of Technology, Netherlands, 2CEA Leti, France, 3Eindhoven University of Technology, Netherlands

Abstract—The functionality of embedded systems is ever in-
creasing. This has lead to mixed time-criticality systems, where
applications with a variety of real-time requirements co-exist on
the same platform and share resources. Due to inter-application
interference, verifying the real-time requirements of such systems
is generally non trivial.

In this paper, we present the CoMik microkernel that provides
temporally predictable and composable processor virtualisation.
CoMik’s virtual processors are cycle-accurately composable, i.e.
their timing cannot affect the timing of co-existing virtual
processors by even a single cycle. Real-time applications executing
on dedicated virtual processors can therefore be verified and
executed in isolation, simplifying the verification of mixed time-
criticality systems. We demonstrate these properties through
experimentation on an FPGA prototyped hardware platform.

I. INTRODUCTION

Mixed time-criticality systems are becoming more common.
As embedded systems are typically resource constrained, it is
not always possible to provide each application with dedicated
hardware resources. They must therefore share resources, such
as a processor. The timing interference caused by resource
sharing must be taken into account when modelling and veri-
fying the application’s timing requirements. On mixed time-
criticality systems, non real-time and real-time applications
can share the same resource, complicating the verification or
even making it impossible.

As a solution to this problem, we propose the CoMik
microkernel that virtualises the processor, as illustrated in
Figure 1. It cycle-accurately divides the processor into Time
Division Multiplexed (TDM) slots. A virtual processor consists
of one or more of these slots on the same processor. Partitions
consist of a guest Operating System (OS) or an application
without an OS. Each partition can perform dynamic memory
allocation, receive partition-level interrupts and perform in-
dependent power-management, using Dynamic Voltage and
Frequency Scaling (DVFS), without interfering with the timing
of concurrent partitions.

In this paper, we present the cycle-accurately composable
CoMik microkernel. We contribute:

• The CoMik microkernel and its processor virtualisation.
• CoMik’s virtual processor context swapping scheme that

ensures that absolutely no temporal interference occurs
between partitions, not even a single cycle.

• Our experimental analysis of CoMik’s predictable and
cycle-accurately composable properties on an FPGA pro-
totyped platform.

II. RELATED WORK

Interference between applications is a particular problem for
safety-critical applications, such as those found in the auto-

978–3–9815370–2–4/DATE14/ c©2014 EDAA

Applications

Guest OS Application
Interface

Cycle-Accurate Partitioning
Virtual Processor 1 Virtual Processor n

IM E IM E

Main
function

Interrupt
handler

Exception
handler

Processor

CoMik Microkernel

Figure 1. CoMik’s cycle-accurately composable processor virtualisation.

motive [1] and aeronautical [2]–[5] industries. The strictest
standards are found in the avionics industry, hence we focus
here on ARINC specification 653 [6], which is an avionics
industry standard for the implementation of temporal and
spatial partitioning [3], [5]. The standard also specifies require-
ments for interfaces, libraries and programming languages,
enabling interoperability between ARINC 653 compliant sys-
tems [4]. LynxOS-178 [7], VxWorks 653 [8], INTEGRITY
[9] and PikeOS [10] are commercially available ARINC 653
compliant RTOSs.

ARINC specifies partitions at the application-level. One
or more mixed-time criticality applications can belong to a
partition [2]. ARINC 653 does not specify that a system must
have run-time memory management. Instead, it is expected
that a partition’s memory usage has been verified prior to run-
time [2]. ARINC 653 specifies that time on the processor is
split into periodic major time frames. Partitions are allocated
one or more time slices to execute within the major time
frame. This guarantees the minimum amount of service that
a partition receives, but not when it will receive it within
the frame. The time at which a partition is serviced is
therefore affected by the presence/absence of other partitions
and is therefore not cycle-accurately temporally isolated. Inter-
partition communication is permitted, allowing the timing of
data dependent applications to be affected by applications in
other partitions.

Outside of safety critical domains, temporal and spatial
partitioning is used for embedded system virtualisation [11].
The OKL4 microvisor [12] is a virtualising microkernel, that
is developed for use on mobile phones. It enables mixed time-
criticality applications to execute on virtual machines as if they
were running directly on the hardware platform. OKL4 uses
thread-level partitions, with time slices allocated per-thread.
Threads are scheduled following a priority based pre-emptive
schedule. As with ARINC 653, precisely when the partition
receives service depends on the presence/absence of other par-
titions. OKL4 permits inter-partition communication, enabling
timing interference between the communicating partitions.



clk

int

int FSL
cl

k

of
f-t

ile
in

te
rr

up
ts

dmem
cmems

imem

dmamems

ILMB

DLMB
PIC

PIT

DVFS

core
MicroBlaze

DMAs

DPLB

DTL

DTL DTL

System Clock Tile Clock

Figure 2. CompSOC processing tile

CoMik combines partition-level cycle-accurate temporal
isolation with a virtualised processor interface. Partitions are
allocated one or more dedicated virtual processors on one
or more shared physical processors. A limitation of CoMik’s
cycle-accurate isolation is that guaranteed partitions may not
receive information from any other partitions, but they may
send information in a non-blocking manner to best-effort
partitions. Best-effort partitions may communicate freely, but
can experience inter-partition timing interference due to the
communication.

III. BACKGROUND

The CompSOC hardware platform [13], [14] is designed for
temporal composability and predictability and when coupled
with CoMik’s virtual processors enables virtual hardware
platforms that are cycle-accurately isolated. Processing and
memory tiles are connected via the composable and predict-
able Æthereal NOC [15]. Memory tiles can be used as a
dedicated resource, or shared using a composable arbitration
scheme, such as TDM or CCSP with delay blocks [16].

As illustrated in Figure 2, CompSOC processing tiles
consist of a single MicroBlaze processing core, some local
memory and one or more DMA to access off tile memory.
The MicroBlaze core is a soft core that we configure to have
a single 5-stage in-order pipeline with no branch prediction.
The in-order pipeline simplifies the core’s predictability, while
disabling the branch prediction enables CoMik to maintain
composability between partitions, as the branch predictor’s
state, which is influenced by application execution, would be
carried over between partitions. These are general require-
ments that can be fulfilled on other processors. While not
presented in this paper, we have also successfully ported
CoMik to ARM’s Cortex-M3 [17] processor.

In the CompSOC processing-tile, local memories are used
to store application instructions (imem) and data (dmem), and
are accessed via single-cycle Local Memory Buses (LMBs). A
Memory Protection Unit (MPU) is not strictly necessary for
temporal isolation, but can be used if required. Otherwise,
it is assumed that the partitions memory space has been
verified prior to run-time, similar to ARINC 653. DMA
modules are used for inter-tile communication, and are ac-
cessed via the Processor Local Bus (PLB). They read/write
directly from/to a dedicated local memory (dmamem) and
the NOC. Inter-tile communication is achieved using Memory
Mapped Input/Output (MMIO) transactions, using the Device
Transaction Level (DTL) protocol. Data is transferred either
from/to a shared memory tile or directly from/to a scratchpad
communication memory (cmem) on another processing tile.

CoMik
VP2 VP3VP1

CoMik

Processor 1 Processor 2

VP5VP4 VP4

Virtual
Processor 3

Virtual
Processor 2C

oM
ik

C
oM

ik

C
oM

ikVirtual
Processor 1

Example Virtual Processor TDM Schedule

TDM Slot

Figure 3. Temporal processor virtualisation.

To maintain partition-level composability, all tile hardware
involved in inter-tile communication must be dedicated re-
sources or composably arbitrated. Figure 2 illustrates a suit-
able memory architecture using dedicated resources. Dual-port
memories are used for the dmamems and cmems enabling
single cycle memory access via the DLMB. One single port
memory could be used with composable arbitration, but the
choice is a trade-off between the cost of dual-port memories
and a higher memory access latency due to arbitration.

A Programmable Interrupt Timer (PIT) is used to generate
partition context-switch interrupts according to the processor’s
TDM schedule. The context-switch interrupt and off-tile inter-
rupts are passed through the Programmable Interrupt Control-
ler (PIC). It is programmed with a mask via the Fast Simplex
Link (FSL), to only allow interrupts intended for a partition to
pass through. The DVFS module enables per-tile voltage and
frequency scaling.

IV. COMIK MICROKERNEL

The purpose of the CoMik microkernel is to create multiple
virtual processors that can be used as dedicated resources
by partitions. These virtual processors are cycle-accurately
temporally-isolated, meaning that activity on concurrent vir-
tual processors that do not belong to the same partition,
cannot affect each other’s timing by even a single cycle. A
partition can therefore be temporally verified in isolation as
the presence/absence of concurrent partitions does not affect
the partition’s timing.

CoMik’s virtual processors provide a similar interface to
the physical processor. They require a pointer to a main
function and optionally pointers to partition-level interrupt and
exception handlers. As with a physical processor, the pointer
to the main function points to the start of the partition’s in-
structions that represent its functionality. Similarly, the pointer
to the interrupt handler points to instructions that execute
whenever a partition receives an interrupt, and the pointer
to the exception handler points to instructions that execute
whenever an exception is raised.

On multi-core platforms, such as CompSOC, CoMik creates
multiple virtual processors per physical processor. CoMik
operates in a distributed manner per physical processor, con-
figuring each virtual processor using its slot allocation in
CoMik’s TDM scheduling table, as illustrated in Figure 3.

Partitions consist of either a guest OS, or an application
without an OS, as illustrated in Figure 1. The timing of a
partition is designated as being guaranteed or best-effort. Vir-
tual processors allocated to guaranteed partitions only use the
TDM slots allocated to them, whereas the virtual processors
allocated to best-effort partitions may use otherwise unused



until
I + C −R

clock gateschedule
partition

context
store

context
load

previous
virtual processor

next
virtual processor

slot I + C
virtual processor
start of

reload
processor pipeline R

critical region/
multi-cycle instruction

uninteruptible U

interrupt time I

jitter J CoMik slot C

transition T

end of virtual processor slot I

max(J)+ max(T ) ≤ C −R

Figure 4. Cycle-accurate temporally-isolated virtual processor context switch.

TDM slots in addition to their TDM allocation. By only using
their allocated TDM slots, guaranteed partitions ensure that
the behaviour of other partitions do not affect their timing.

A. Virtual Processor and Partition Scheduling
As multiple virtual processors must share the same physical

processor resource, TDM arbitration is used to decide which
virtual processor is scheduled. TDM arbitration not only en-
sures a level of service but when the service will be delivered.
It is also relatively simple to formally analyse.

Figure 3 illustrates how virtual processors are scheduled fol-
lowing a TDM schedule. In the diagram, physical processor 1
is virtualised as processors 1-3 and physical processor 2 is
virtualised as processors 4 and 5. The TDM schedule for
processor 1 is illustrated, showing that each virtual processor
has one slot in the TDM table. At the start of each TDM
slot, CoMik switches context from the previously scheduled
virtual processor to the next virtual processor, ensuring cycle-
accurate temporal isolation between them. This is explained
in more detail in Section IV-B. Figure 3 also illustrates how a
virtual processor may have multiple TDM slots, as shown for
virtual processor 4 on physical processor 2. The slots do not
need to be consecutive and may have any distribution within
the TDM schedule.

If a slot in the TDM table has not been allocated to a virtual
processor, or the slot is allocated to a virtual processor that will
be clock gated for the entirety of the slot, the slot is deemed
to be unused. These slots can be used by virtual processors
that belong to partitions with best-effort timing. A round-
robin arbitration scheme is used to decide which best-effort
virtual processor gets the slot. Virtual processors allocated to
partitions that are guaranteed to be cycle-accurately tempor-
ally isolated from other partitions cannot use the otherwise
unused slots, as the availability of these slots depends on the
presence/absence of other partitions and their timing.

CoMik does not perform any scheduling at the partition-
level. Virtual processors are scheduled with cycle-accurate
guaranteed or best-effort timing, but CoMik is agnostic to
what a partition executes on them. This provides a clear
separation of concerns. For instance, a guest Real-Time OS
(RTOS) is free to use any partition-level scheduling scheme,
but the timeliness of whatever processes/tasks/threads that it
schedules is solely the responsibility of the partition. Care
must also be taken at design time when dimensioning the
TDM table. For instance, shorter TDM slots allow for a higher
throughput of virtual processor context switches, enabling
lower virtual processor response times, but increases context
switching overhead.

B. Cycle-accurate Temporal Isolation
Partitioning and cycle-accurate temporal isolation simplifies

the verification of real-time applications that share resources.

This is partially achieved through scheduling, as explained in
Section IV-A. CoMik’s TDM scheduling scheme is regulated
by a periodic interrupt that signifies a virtual processor context
swap. Critical regions and multi-cycle instructions prevent the
interrupt from being handled immediately. CoMik ensures that
this jitter does not permeate to the next scheduled virtual
processor, providing cycle-accurate temporal isolation.

Figure 4 illustrates how CoMik swaps virtual processor
contexts. In this example, the scheduling interrupt arrives at
time I , but cannot be handled immediately, as the processor is
uninterruptible for a duration of U . This causes a jitter of time
J . U is variable, depending on the critical region or multi-
cycle instruction. After the jitter, control passes to CoMik’s
interrupt routine that performs the virtual processor context
switch. The context of the previous partition is stored. This
entails storing the state of the physical processor’s registers,
etc., on the stack of the partition. CoMik then schedules the
next virtual processor as described in Section IV-A, before
restoring its context. In Figure 4, this transition from one
virtual processor context to the other takes time T . Duration
T is variable, due to variation in scheduling time.

If the following virtual processor started immediately after
its context is loaded, its precise start time would depend on
the jitter J and the transition time T . To provide complete
cycle-accurate isolation, CoMik ensures that the resumption
time of the virtual processor is independent of this variation.
We achieve this by splitting the TDM slot into a fixed
duration CoMik slot and virtual processor slot, as illustrated
in Figure 3. The CoMik slot starts at the time the context
change interrupt is raised and lasts for a fixed duration, C in
Figure 4. The virtual processor slot starts precisely at time
I + C. We achieve this by clock gating the physical processor
after the next virtual processor’s context has been loaded. The
processor is ungated at time I + C −R, which is a constant R
cycles earlier than the start time of the virtual processor slot
I + C to allow the processor pipeline to return to the state
it was in when the virtual processor was swapped out. For
the MicroBlaze processor, R is 2 cycles to account for the
instruction fetch and decode stages of the pipeline, enabling
the virtual processor slot to start where it left off, with the
instruction at the execution stage of the pipeline.

To ensure that the virtual processor slot starts on time, the
jitter and the context transition time must be less than or
equal to the time at which the physical processor ungates,
max(J) +max(T ) ≤ C −R as is illustrated in Figure 4.
A definitive upper bound max(T ) can be derived for the
duration of the transition time. No inherent upper bound for the
interrupt jitter max(J) exists, as there is no inherent limit to
the duration of an uninterruptible critical region U . The jitter
bound max(J) is therefore a design decision that restricts the
maximum length of partition-level critical regions. The jitter



557056 1114112 16711680 cycles

Interrupt Handled Used Idle SlotInterrupt

Tick

MP3

Figure 5. A best-effort MP3 decoder partition that is cycle-accurately isolated
from a guaranteed partition responding to PIT interrupt “ticks”.

bound should last minimally long enough to accommodate the
processor’s longest multi-cycle instruction. Increasing the dur-
ation of the jitter bound max(J) also increases the necessary
duration of the CoMik slot C. A trade-off therefore exists
between accommodating a longer worst-case critical region
and decreasing the CoMik slot overhead.

V. EXPERIMENTATION

We continue by experimentally demonstrating CoMik’s
cycle-accurate temporal isolation and predictability. We
demonstrate this for an FPGA prototyped instance of the
CompSOC hardware platform, as described in Section III. The
clock frequency is set to have an upper bound of 120 MHz.
We configure CoMik to use a CoMik slot duration of 4096
cycles and a virtual processor slot duration of 65536 cycles,
making a virtual processor TDM scheduling slot 69632 cycles.

We begin by demonstrating the timing of concurrently
executing CoMik partitions. We do this by executing a soft
real-time MP3 decoder as a best-effort partition and a firm
real-time application that generates “ticks” in response to
periodic interrupts, as a guaranteed partition. The tick partition
clock gates between ticks, leaving full slots between ticks
unused. Each partition is allocated a single virtual processor
on the same physical processor. Each virtual processor has a
single slot in a TDM table with a length of two slots.

Figure 5 presents the resultant timing of the two partitions.
The tick is produced at regular intervals, except when the time
of the tick does not occur when the tick partition is scheduled.
In this instance the tick is produced in the partition’s next
scheduled virtual processor slot. The TDM slots that the
tick partition leaves unused due to clock gating, are given
to the best-effort MP3 decoder partition. The MP3 decoder
therefore finishes decoding its frame earlier, enabling its power
management scheme to temporarily clock gate the processor
while still meeting its throughput requirement.

We conclude our experimentation by demonstrating that
the timing of the tick partition, that is guaranteed to be
cycle-accurately isolated, does not change by a single cycle
whenever another partition is added to the system. To achieve
this, we add another best-effort partition to be executed
concurrently with the MP3 and tick partitions. The virtual
processor of the added partition is not allocated any TDM
slots, so it can only make use of unused slots. In Figure 5, the
MP3 partition has a monopoly on unused slots, as it is the only
best-effort partition. With the addition of another best-effort
partition, the unused slots are allocated to partitions using a
round-robin arbitration scheme.

Figure 6 presents the difference between the timings of the
MP3 and tick partitions with the added best-effort partition,
and the MP3 and tick partition timings that were used for
Figure 5. The best-effort MP3 decoder partition shows timing
variation between runs. While the MP3 partition still receives
the level of service guaranteed by its virtual processor’s
TDM slot allocation, it must share any unused slots with

-50

-40

-30

-20

-10

0

10

0 20 40 60 80 100 120

D
iff

er
en

ce
(c

yc
le

s
×
1
0
4
)

Number of Produced Ticks or Decoded MP3 Frames

Guaranteed Tick App.
Best-Effort MP3 Decoder

Figure 6. Timing difference when run with and without an additional Best-
Effort Application.

the added best-effort partition. This demonstrates that the
presence/absence of partitions can affect the timing of best-
effort partitions. The guaranteed tick partition has exactly the
same timing with or without the additional best-effort partition,
demonstrating that it is cycle-accurately temporally isolated.

VI. CONCLUSION

The CoMik microkernel enables the creation of predictable
and cycle-accurately composable virtual processors. Parti-
tions that execute on dedicated virtual processors are cycle-
accurately temporally isolated from interference by partitions
executing on other virtual processors. Partitions can therefore
be verified to meet their temporal requirements, in isolation.
This verification remains valid on a system composed of
multiple mixed time-criticality partitions. We experimentally
demonstrate CoMik’s predictable and cycle-accurately com-
posable properties on an FPGA prototyped hardware platform,
showing that mixed time-criticality partitions do not interfere
with guaranteed partition timings by even a single cycle.
Acknowledgements This work was partially funded by projects EU FP7
288008 T-CREST & 288248 Flextiles, Catrene CA501 COMCAS & CA104
Cobra, CA505 BENEFIC, CA703 OpenES, & NL STW 10346 NEST.

REFERENCES

[1] G. Pelz et al., “Automotive system design and autosar,” in Advances in
Design and Specification Languages for SoCs, 2005.

[2] S. Samolej, “ARINC Specification 653 Based Real-Time Software
Engineering,” e-Informatica, 2011.

[3] J. Rushby, “Partitioning in avionics architectures: Requirements, mech-
anisms, and assurance,” NASA, Tech. Rep., 1999.

[4] P. Prisaznuk, “ARINC 653 role in integrated modular avionics (IMA),”
in DASC, 2008.

[5] J. Windsor et al., “Time and space partitioning in spacecraft avionics,”
in SMC-IT, 2009.

[6] ARINC, “653 Avionics Application Software Standard Interface,”
http://www.arinc.com.

[7] LynuxWorks, “LynxOS-178,” http://www.lynuxworks.com.
[8] Wind River, “VxWorks 653,” http://www.windriver.com.
[9] Green Hills Software, “INTEGRITY,” http://www.ghs.com.

[10] SYSGO, “PikeOS,” http://www.sysgo.com.
[11] G. Heiser, “The role of virtualization in embedded systems,” in IIES,

2008.
[12] G. Heiser et al., “The OKL4 microvisor: Convergence point of microker-

nels and hypervisors,” in APSYS, 2010.
[13] A. Molnos et al., “A composable, energy-managed, real-time MPSoC

platform,” in OPTIM, 2010.
[14] A. Hansson et al., “CoMPSoC: A template for composable and predict-

able multi-processor system on chips,” TODAES, 2009.
[15] K. Goossens et al., “The aethereal network on chip after ten years:

Goals, evolution, lessons, and future,” in DAC, 2010.
[16] B. Akesson et al., “Real-Time Scheduling Using Credit-Controlled

Static-Priority Arbitration,” in RTCSA, 2008.
[17] ARM, “Cortex-M3 Processor,” http://www.arm.com.


