
Multi-Objective Distributed Run-time Resource
Management for Many-Cores

Stefan Wildermann, Michael Glaß, Jürgen Teich
University of Erlangen-Nuremberg, Germany

{stefan.wildermann, michael.glass, teich}@fau.de

Abstract—Dynamic usage scenarios of many-core systems
require sophisticated run-time resource management that can
deal with multiple often conflicting application and system
objectives. This paper proposes an approach based on non-
linear programming techniques that is able to trade off between
objectives while respecting targets regarding their values. We
propose a distributed application embedding for dealing with soft
system-wide constraints as well as a centralized one for strict
constraints. The experiments show that both approaches may
significantly outperform related heuristics.

I. INTRODUCTION

Mixed workload and multi-application scenarios charac-
terize modern multi-core and future many-core systems. On
the one hand, such systems consist of applications with
different performance objectives and requirements which may
dynamically change during different execution phases. On
the other hand, the designer or user specifies objectives and
requirements for the overall system, e.g., regarding its power
consumption. Therefore, one of the main challenges is the
partitioning of the heterogeneous platform resources between
the applications in a way such that the different objectives
are optimized while fulfilling the requirements, involving a
dynamic resource allocation problem. Consequently, assigning
resources to applications is a multi-objective optimization
problem, commonly handled by optimization techniques at
design-time [1] for obtaining highly optimized design points.
Multi-objective optimization results in multiple non-dominated
design points. The advantage of having a set of options
rather than a single compromise solution is that a designer
can trade off objectives while selecting the design point for
implementing the system, e.g., accepting a small increase in
power consumption to obtain a strong increase in computing
performance.

Nonetheless, workloads of many embedded systems cannot
be fully predicted at design-time due to dynamic usage sce-
narios and unexpected unavailability of hardware resources
caused by aging or temperature effects. As a consequence,
run-time approaches will be necessary. However, considering
multiple objectives in run-time resource management (RRM)
has several challenges which are summarized in the following,
including drawbacks of how they are tackled currently in
related work.

Challenges and Related Work: We identify three main
research questions for which we provide solutions in this
paper.

How to automatically trade off between multiple often
conflicting objectives at run time in the absence of a hu-
man decision maker? The problem of trading off multiple
objectives is twofold. Not only are multi-objective optimiza-
tion techniques computationally expensive with a too high

computational overhead for being performed at run-time, but
Pareto-optimal solutions are also non-comparable. In run-time
optimization, the quality numbers of multiple objectives are
often aggregated to a scalar value by using a weighted sum.
This single objective function also delivers a total order on
otherwise non-comparable points. For example, [2] uses a
weighted sum over multiple objectives, such as performance
and energy consumption, and [3] weights the objectives of
minimizing communication cost and the overall computational
load on the processors. It is, however, hard to anticipate the
influence of the weighting on the quality numbers of the
objectives, particularly on how they may deviate from expected
target values. While it is possible to calibrate the weighting
such that it obtains acceptable results for one scenario (number
of applications, available platform resources, etc.), the results
might completely degrade for another.

How to specify and obtain desired target values for the
objectives? For several application domains of embedded sys-
tems, there are target values regarding objectives, e.g., desired
throughput in multimedia applications or signal processing.
They may even be set by the user during the operation of
the system. In this realm, both [4] and [5] propose RRMs
optimizing the energy consumption while respecting hard
performance constraints. However, the drawback of both ap-
proaches is that common constraints are soft, particularly when
specifying expected target values in multimedia and signal
processing. Considering them as strict bounds reduces the
possibility to trade off objectives, e.g., performance against
power consumption. An approach where power optimization
is performed with soft performance constraints is provided in
[6].

How to distribute RRM in the presence of global and system-
wide constraints? Distribution of run-time management has
been identified as one of the most important prerequisites
to scale with the increasing size of near future many-core
systems [7]: Centralized RRM forms a single point of failure,
requires high monitoring and processing overhead, and creates
bottlenecks and hotspots around the processor performing the
run-time management. Only few approaches enable distributed
RRM despite their advantages with respect to near future
many-core systems. Existing approaches like [8], [9], [10]
support physical constraints concerning the availability of plat-
form resources. They, however, do not provide solutions for
system-wide requirements regarding non-functional objectives
like power budgets. A serious problem is that the presence of
system-wide requirements hampers the possibility to distribute
the run-time management.

Our contribution: In this paper, we provide a run-time
management scheme based on nonlinear programming. The
resource allocation problem is NP-hard. However, through978-3-9815370-2-4/DATE14/©2014 EDAA



10 20 30 40
0

5

10

(1×r1)

(1×r1, 1×r2)
D

non-dominated because
resource requirements
are not comparable with
those of B

(1×r3)A

(2×r1, 1×r2)B

(2×r1, 2×r2)
E

dominated by D

(1×r1, 3×r2)
C

throughput [Mbit/s]

po
w

er
co

ns
um

pt
io

n
[W

]

Fig. 1. Example of implementations depicted as a Pareto front for objectives
throughput, power consumption, and usage of three resource types (r1, r2,
r3). Examples of resource types are processors of different types, memory
usage, communication bandwidth, etc.

application of Lagrangian relaxation, we are able to transform
it into a convex optimization problem, which approximates
the result of the original problem but can be solved much
more efficiently. We present an algorithm for solving this
approximation problem and derive (a) a distributed RRM
for dealing with soft system-wide requirements, and (b) a
centralized RRM capable of dealing with strict bounds on
global constraints. Our approaches (c) automatically trades off
between objectives while (d) a target value can be specified
for each of them.

II. HYBRID STRATEGIES FOR RUN-TIME RESOURCE
MANAGEMENT

There is an emerging trend of providing hybrid strate-
gies to perform resource management in many-core systems.
Hybrid strategies combine computationally expensive opti-
mization and verification techniques at design-time with run-
time management techniques [7]. The goal is to enhance the
predictability of executing real-time applications on dynamic
many-core platforms. Such techniques take a formal model [4]
or the application source code [11] as entry point where the
application is partitioned into multiple actors or tasks. Based
on this specification, design space exploration and profiling
techniques are applied [4], [11] to evaluate various operating
points of an application by generating different mappings of
tasks onto the resources.

Formally, an operating point of application i can be charac-
terized by a vector xi, containing the respective code version,
quality numbers, e.g., with respect to execution time and power
consumption, and the required platform resources, e.g., types
and number of used processors, memory usage, communica-
tion bandwidth, etc. (cf. [2], [4], [12]). The set of all possible
operating points available for application i is denoted by Di. It
is efficient to formulate Di as a Pareto front, only containing
points which are non-dominated regarding their objectives and
resource requirements [12]. Fig. 1 illustrates an example. Note
that it might be necessary to prune Di at design-time for being
able to reduce the memory requirements for storing operating
points.

Whenever resource availability or status, or application
requirements change, the system should be reorganized to
efficiently utilize the available resources by triggering the
run-time management. For this purpose, applications should
contain control points [11] which are points in the code where
it is possible to switch between different operating points.

Thus, whenever an application reaches a control point, RRM
is able to adapt its resource allocation. The main goal of
the run-time management is then to identify an allocation of
the resources between the applications which is optimal with
respect to possibly conflicting goals, e.g., maximizing appli-
cation performances while minimizing power consumption.
Mathematically, this basically becomes a knapsack problem
[5], [2]: Select one operating point for each application such
that the objectives are optimized while all constraints and re-
source restrictions are fulfilled. In the next section, we analyze
this problem and then provide an approximation algorithm for
solving it in a distributed fashion.

III. RUN-TIME RESOURCE ALLOCATION

There is no best practice for dealing with multiple objectives
at run-time because RRM requires a total order over all Pareto-
optimal, non-comparable solutions. We therefore propose to
split the set of objectives such that one objective becomes the
main optimization goal. For the remaining objectives, target
values can be specified which constitute desired values which
should be reached, but solutions may also deviate from these
values. RRM therefore becomes the minimization1 problem
shown in Eq. (1).

The main optimization goal is expressed in Eq. (1a).
The (possibly vector-valued) remaining objective functions
fi(xi) are incorporated into the optimization problem as soft
constraints acc. to Eq. (1b), where f i specifies the desired
(vector-valued) target value as upper bound2. Applications
may additionally have hard constraints acc. to Eq. (1c). The
target values or hard constraints regarding the (possibly vector-
valued) system objective function g(x1, . . . , xn) are handled
in Eq. (1d). The resource restrictions in Eq. (1e) are strict
due to the availability of physical resources. Note that all
function can be non-linear and non-convex and do not have to
be differentiable.

minimize h(x1, . . . xn) (1a)

subject to fi(xi) ≤ f i, i = 1, ..., n (1b)

Fi(xi) ≤ F i, i = 1, ..., n (1c)
g(x1, . . . , xn) ≤ g (1d)
r(x1, . . . , xn) ≤ r (1e)

For the remainder of this paper, we assume that above func-
tions depending on multiple applications can be formulated as
sums of application-specific functions, e.g., h(x1, . . . , xn) =∑n
i=1 hi(xi), which is, e.g., the case for objectives and con-

straints regarding power/energy, average performance metrics,
area, processor load, etc. Objective functions, where this is
not the case, can however be decoupled by augmenting xi
with additional variables and introducing further constraints
(cf. [13]).

A. Dealing with Hard Application Constraints
Dealing with the hard application constraints in Eq. (1c) is

alleviated due to the design-time characterization of operating

1This is w.l.o.g., because an objective f(x) that should be maximized can
be rewritten as f ′(x) = −f(x) and we consequently obtain an objective to
be minimized.

2This is again w.l.o.g., because an objective f(x) ≥ f with lower-bounded
target value can be rewritten as the equivalent upper-bounded inequality
−f(x) ≤ −f .



points. All operating points that do not fulfill these require-
ments are removed from the Pareto set. RRM only selects
operating points xi ∈ D′i where

D′i = Di \ {xi|Fi(xi) > F i}. (2)

Consider Fig. 1 for an example: If the application constraint
is to reach a throughput of at least 15 Mbit/s (dashed line),
only operating points A, B, and E should be considered. This
drastically enhances the predictability of dynamic RRM. For
the further analysis of the RRM optimization problem, we can
therefore omit Eq. (1c).

B. Approximation Algorithm for Resource Allocation Problem

Generally, the optimization problem as formulated in Eq. (1)
is NP-hard. We apply non-linear programming techniques
[14] to derive an approximation algorithm for the solution
of the resource allocation problem. First, the Lagrangian
of the problem is formulated, which relaxes the constraints
by summarizing the objective and the costs for violating
constraints in a scalar function. Second, the dual optimization
problem of the resource allocation problem is formulated. It
considers an objective function, called the dual function, that
is based on the Lagrangian for the combined optimization of
the objective and the constraint violations. We then propose
an algorithm which solves the dual optimization problem. As
the dual problem is a convex optimization problem, we can
solve it much more efficiently than the original problem. The
solution of the dual problem only approximates the solution
of the original problem. In the next section, we therefore
derive two RRM techniques based on this algorithm, where
one enables distributed application embedding and one enables
the handling of strict system-wide constraints.

The Lagrangian of the resource allocation problem is

L(x, λ, µ, ν) =

n∑
i=1

hi(xi) +

n∑
i=1

λTi
(
fi(xi)− fi

)
+

+ µT

(
n∑
i=1

gi(xi)− g

)
+

+ νT

(
n∑
i=1

ri(xi)− r

)
.

(3)

L(x, λ, µ, ν) is a weighted sum of the main objective function
h(x1, . . . , xn) (with a weight of 1) and the constraints, where
λi is the Lagrangian multiplier associated with the (soft)
constraints of application i, µ is associated with the system
constraints, and ν is associated with the resource restrictions.

The dual function serves as the objective function of the
dual problem. The dual function of the resource allocation
problem determines the minimal value of L(x, λ, µ, ν) for
given Lagrangian multipliers acc. to

d(λ, µ, ν) = inf
x=(x1,...,xn)

L(x, λ, µ, ν) =

=

n∑
i=1

inf
xi∈Di

{
hi(xi) + λTi fi(xi) + µTgi(xi) + νTri(xi)

}

−
n∑
i=1

λTi fi − µTg − νTr. (4)

Algorithm 1: Approximation algorithm for solving the
dual optimization problem in #rounds iterations.

1 while t ≤ #rounds do
2 for each i = 1, . . . , n do

/* Application Subproblem */
3 Find xi ∈ Di that minimizes{

hi(xi) +λTi fi(xi) +µTgi(xi) + νTri(xi)
}

(5)

/* Application Constraints */
4 ∆λi = fi(xi)− fi; // subgradient
5 λi = max {0, λi + αt ·∆λi

}; // update
rule

/* System Constraints */

6 ∆µ =
n∑
i=1

gi(xi)− g; // subgradient

7 µ = max {0, µ+ αt ·∆µ}; // update rule
/* Resource Restrictions */

8 ∆ν =
n∑
i=1

ri(xi)− r; // subgradient

9 ν = max {0, ν + αt ·∆ν}; // update rule
10 t = t + 1;

This function is concave even when the objective and con-
straint functions of the original problem are not. The dual
optimization problem is

maximize d(λ, µ, ν)

subject to λ ≥ 0, µ ≥ 0, ν ≥ 0

which is a convex optimization problem as it maximizes
the concave function d(λ, µ, ν). As such, it is possible to
apply standard methods to determine the optimal values for
λ, µ, ν. We apply the subgradient method [14] and obtain
Algorithm 1, which specifies an iterative scheme for solving
the dual problem. In each iteration, we first consider each
application i: For given values of λ, µ, ν, we determine that
xi ∈ Di which constitutes the application-specific minimum
of Eq. (5) (line 3), which is derived from Eq. (4). Then, all
Lagrangian multipliers are updated by the subgradient method,
which is based on the gradient descent method, extended to
non-differentiable functions. For updating each multiplier, it
chooses a subgradient of d(λ, µ, ν) into the direction of the
respective multiplier (lines 4, 6, 8, respectively). The multipli-
ers are recomputed by scaling the subgradient by a step size
αt and then adding it to the respective multiplier, which are
then projected to feasible values so that λ ≥ 0, µ ≥ 0, ν ≥ 0
(lines 5, 7, 9, respectively).

IV. DECOMPOSING THE RESOURCE ALLOCATION
PROBLEM

A general description of distributed RRM method is pro-
vided in [7]. The RRM problem is divided into subproblems
(also called clusters). One processing core is assumed to
manage the resource allocation for one cluster. These cluster
managers communicate with each other via a global man-
ager. The idea of mathematical decomposition theory is quite
similar: In decomposition theory, the original large problem
is decomposed into distributively solvable subproblems that
are coordinated by a high-level master problem. Algorithm 1



master problem
update µ and ν (Algo. 1, lines 6-9)

...
cluster manager application 1

1) find minimizer x1 (Algo. 1,
line 3)

2) update local multiplier λ1
(Algo. 1, lines 4,5)

cluster manager application n
1) find minimizer xn
2) update local multiplier λn

g1(x1)
r1(x1) µ, ν

gn(xn)
rn(xn)

µ, ν

Fig. 2. Schematic illustration of resource allocation based on dual decom-
position.

specifies a dual decomposition of the resource allocation
problem, illustrated in Fig. 2. It basically defines a round-based
negotiation scheme: The master problem sets the prices (i.e.,
the corresponding multipliers) of constraints and resources,
while every subproblem has to decide how much to contribute
to each constraint and how many resources to use. Through
iterative execution, the values of the multipliers are negotiated
at master level, and the operating points xi that minimizes
Eq. (5) on the subproblem level. For a start, we consider sub-
problems at a granularity of single applications. Nonetheless,
several applications could also be summarized together into
one cluster as a coarser granularity of decomposition.

The main challenge is that the dual problem only approxi-
mates the optimum of the primal resource allocation problem
in Eq. (1). This means that there might be a gap between the
optimal value h∗ of the primal problem and the optimal value
d∗ of the dual optimization problem. However, d∗ is always a
lower bound for h∗, i.e.,

d∗ ≤ h∗. (6)

The consequence of this duality gap is that the negotiated
outcome may violate constraints. This means when embedding
the applications according to the negotiation result, there
might arise conflicts due to, e.g., over-utilization of resources.
We therefore provide two heuristics to deal with this; (a)
a distributed embedding for soft system constraints and (b)
a centralized embedding for hard system constraints. Note
that when the duality gap is zero, the embedding approaches
will guaranteed yield a Pareto-optimal solution of the original
multi-objective optimization problem.

Distributed Application Embedding (DAE): One chal-
lenge of distributed application embedding is the potentially
conflicting resource requirements of the applications. This can
be tackled by applying mechanisms which allow cluster man-
agers to explore the availability of platform resources and to
enforce their exclusive reservation, e.g., by using mechanisms
known from invasive computing [15]. During embedding of
application i, the operating point xi is selected that minimizes
Eq. (5) while being feasibly implementable on the set of free
resources. By doing this, the hard resource restrictions are self-
enforced, while also respecting the soft system constraints by
considering the costs arising due to the Lagrangian multipliers.

Centralized Application Embedding (CAE): Whenever
hard system constraints are present, the decentralized embed-
ding cannot be chosen as it does not check for the violation
of system constraints. This case can be solved in a centralized
fashion. Applications are prioritized according to the value of
Eq. (5) of the negotiated result, where the application with
highest value has highest priority. Applications are considered

sequentially ordered according to their priorities, and the
operating point is determined that minimizes Eq. (5) while
being feasibly implementable on the unallocated resources
without violating any constraint.

V. EXPERIMENTAL EVALUATION

We experimentally evaluate the approaches to analyze scal-
ability, execution time, and applicability for an embedded
system case study.

A. Scalability
In the following experiments, we consider a heterogeneous

many-core consisting of 4 resource types (e.g. processors) each
with 25 instances. For each considered synthetic application,
100 operating points are generated each randomly assigned
with the required amount of resources of the four resource
types, power consumption and speedup/throughput. Domi-
nated points are removed, thus only keeping Pareto-optimal
operating points for application embedding. Note that appli-
cations are also allowed to select no operating point during
negotiation and embedding. We investigate (1.) performance
maximization under a given power budget, and (2.) power
consumption minimization under performance constraints for
each application.

1) Performance Maximization under Power Requirement:
The first optimization scenario is formulated as follows:

maximize
n∑
i=1

speedupi(xi)

subject to
n∑
i=1

poweri(xi) ≤ power

n∑
i=1

ri(xi) ≤ r̄

The goal is to maximize the average speedup were the
constant normalizing factor can be neglected [9], [10]. Only
the available resources can be used according to the resource
restrictions. The target value for the power consumption is set
to power=10 W. We choose a non-diminishing step size rule
with αt = 0.1/

√
t for Algo. 1. As the dual solution specifies

an upper bound for the problem, we execute the algorithm for
800 rounds per experiment to obtain this bound and use it
as reference for each test case. First, we analyze the impact
of the number of rounds on the quality of the application
embedding. Several experiments are conducted with 10, 20,
and 35 applications for 20, 50, and 95 rounds. For each setup,
100 test cases are generated and solved by DAE. Fig. 3 shows
the median of the speedups relative to the upper bound for
100 experiments per setup. The results show that the number
of rounds has to increase approx. linearly with the number of
applications.

Next, we compare CAE and DAE to RRM approaches based
on the knapsack heuristic from [5]: (KS) knapsack heuristic
with strict power constraint, and (KW) knapsack heuristic with
weighted sum for speedup and power consumption, calibrated
for the case of 10 applications.

We analyze experiments with (a) 10 applications and 20
negotiation rounds, (b) 20 applications and 50 rounds, and
(c) 35 applications and 95 rounds. Fig. 4 summarizes the
results of 100 experiments per setup obtained for the main



20 50 95
0

0.5

1

#rounds

re
la

tiv
e

sp
ee

du
p

10 apps
20 apps
35 apps

Fig. 3. Scalability of DAE showing dependency between embedding quality
(median of 100 experiments per setup) and amount of applications and rounds.

KS
KW

CAE
DAE

0

0.5

1

re
la

tiv
e

sp
ee

du
p

KS
KW

CAE
DAE

0

10

20
po

w
er

co
ns

um
pt

io
n

(a) 10 applications, #rounds=20

KS
KW

CAE
DAE

0

0.5

1

re
la

tiv
e

sp
ee

du
p

KS
KW

CAE
DAE

0

5

10

15

20

po
w

er
co

ns
um

pt
io

n

(b) 20 applications, #rounds=50

KS
KW

CAE
DAE

0

0.5

1

re
la

tiv
e

sp
ee

du
p

KS
KW

CAE
DAE

0

10

20

po
w

er
co

ns
um

pt
io

n

(c) 35 applications, #rounds=100

Fig. 4. Results of performance maximization under power requirements
(10W) for different number of applications. The boxplots summarize 100
experiments per setup, giving the minimum, the 10th percentile, median, 90th
percentile, and maximum together with the average (×).

optimization goal relative to the upper bound and the power
consumption. The proposed application embedding algorithms
achieve significantly better results than KS in over 50% of
the experiments in all setups, and also than KW with the
exception of setup (c). However, the KW improvement comes
with a tremendous excess of the target value for power
consumption. The reason is, that KW is calibrated for the
case of 10 applications, where it keeps the power restriction
for 90% of the experiments. This calibration does not scale
with the number of applications. Contrary, the centralized
heuristics with strict constraints (KS, CAE) always fulfill the
power consumption constraint. But due to the negotiation of
the Lagrangian multipliers and their consideration during the
distributed embedding, also DAE is able to keep the violation
of the constraint in an acceptable range for setups (b) and
(c), showing that the distributed application embedding is
competitive with the centralized embedding for cases with
many applications. For setup (a) with only a few applications,
the distributed approach may lead to a tremendous violation.
For this lower complex scenario, however, it is conceivable to
apply a centralized approach like CAE.

The deviation of the speedup selected during negotiation and
the actually obtained speedups during embedding is within
acceptable bounds: It deviates for less than 21% of the
applications in the experiments for setup (a) for DAE, less
than 14% for setup (b), and less than 7% for setup (c).

2) Power Consumption Minimization under Performance
Requirements: The second optimization scenario is formulated
as:

minimize
n∑
i=1

poweri(xi)

subject to throughputi(xi) ≥ throughputi, ∀i
n∑
i=1

ri(xi) ≤ r̄

where the goal is to minimize the power consumption under
individual performance constraints of n resource-competing
applications. KS and CAE use strict throughput constraints,
meaning only operating points fulfilling this requirement are
selected. Contrary, DAE handles these as soft constraints, and
KW rates each operating points by a weighted sum of its power
consumption and throughput.

Fig. 5 summarizes the results of 100 experiments and 20
applications. The left side shows the number of applications
achieving at least 66% (for KW and DAE) and 100% of
the specified throughput. Our proposed approaches enable the
execution of significantly more applications in almost all ex-
periments, where CAE achieves the best results. Fig. 5 (right)
shows the power consumptions achieved in the experiments
relative to the value of CAE. KS achieves the best results in
a significant amount of experiments but due to the fact, that
only a fraction of the 20 applications are actually executed
(not more than 1 application in 50% of the test cases, and not
more than 5 out of 20 in 90% of the test cases), constituting
a bad trade-off compared to CAE and DAE. Note that the
power consumption of KS (and KW) even is over 7 times
higher than that of CAE in one case. KW is able to execute
more applications which fulfill their throughput requirements
compared to KS, and also applications which fulfill at least
66.6% of their throughput requirements. However, results of
KW for power consumption have an immense variance. Due to
the variance and the fact that still significantly less applications
are executed, KW’s results constitute bad trade-offs compared
to results of CAE and DAE.

Finally, as DAE does not consider the throughput require-
ments as strict, it has more freedom in trading off between
throughput and power consumption. As a result, it can sig-
nificantly reduce the main optimization goal compared to
CAE – of course, at the expense of reducing the number of
applications reaching their target values.

B. Execution Time
For evaluating the execution times of the RRM approaches,

we execute the performance maximization test cases from
Sec. V-A1 on an i7 Quad-Core. Note that the negotiation phase
can be executed distributively for both CAE and DAE. We
measure the execution times for centralized and distributed
negotiation, both also applicable for CAE, while application
embedding takes less than a millisecond. In the distributed
case, we generate four cluster managers which are executed as
separate threads. Application subproblems are evenly assigned



KS

KW
≥6

6%

KW
≥1

00
%

CAE

DAE
≥6

6%

DAE
≥1

00
%

0

5

10

15

20
#a

pp
lic

at
io

ns

KS
KW

DAE
0
1
2
3
4
5
6
7

po
w

er
co

ns
um

pt
io

n
re

la
tiv

e
to

C
A

E

Fig. 5. Boxplots for power consumption minimization under performance
requirements.

10 applications 20 applications 35 applications
0

5

10

15

m
s

knapsack
central negotiation

distributed negotiation

Fig. 6. Average execution times and standard deviation of RRM approaches
for 100 experiments per setup.

to them. The centralized negotiation is executed sequentially.
Fig. 6 depicts the average results which show that the execu-
tion time of the proposed negotiation increases faster than for
the knapsack heuristic as the number of negotiation rounds has
to be modified when dealing with more applications. However,
the overhead can be significantly reduced when exploiting
the parallelism obtained by decomposing the problem. While
for the small test case (10 applications), the synchronization
overhead of the distributed RRM imposes an overhead, it
scales much better than both centralized approaches when
increasing the number of applications.

C. Case Study
For evaluating the applicability of our RRM for embedded

systems, we use the E3S benchmark [16]. First, we derive
operating points for each of the benchmark’s five applica-
tions (consumer, auto, office, network, telecom) by performing
design space exploration using an optimization framework
[17] with the objectives of minimizing resource usage and
power consumption, and maximizing speedup (compared to
the operating point with highest latency). We then test the
RRM approaches for the goal of maximizing the average
speedup with power budget set to 1 W and 10 W, respectively,
on a heterogeneous 48-core system with three types of proces-
sors. Table I shows the average speedups (S) and the power
consumption (P) for the cases of instantiating each of the five
application one, five, and ten times (i. e., 5, 25, and 50 apps).
It shows that CAE is able to find better allocations than KS for
most cases. DAE is able to determine a good trade-off between
objective and soft constraints when many applications have to
be managed and constraints are not tight (particularly 50 apps
and 10 W power budget). In cases of strict or tight constraints
however (1 W power budget), CAE should be applied.

VI. CONCLUSION

This paper presents an RRM technique based on Lagrangian
relaxation: a distributed version that can deal with soft system-
wide constraints and a centralized version for strict constraints.
The results show that these techniques achieve significantly
better results in trading off multiple objectives than their
respective counterparts known from existing work. This shows

TABLE I
AVERAGE SPEEDUP (S) AND THE POWER CONSUMPTION (P) FOR CASE
STUDY (BOLD: BEST RESULTS, GREEN: TRADEOFF BETWEEN SPEEDUP

MAXIMIZATION AND POWER BUDGET EXCEEDANCE BY DAE).

1W 10W
S P [W] S P [W]

5 apps KS 7.63 0.88 8.72 3.31
CAE 6.86 0.72 10.53 3.60
DAE 8.59 1.38 10.53 3.60

25 apps KS 1.50 0.77 2.00 1.02
CAE 2.02 1.00 4.38 9.92
DAE 2.90 1.53 4.42 11.08

50 apps KS 0.75 0.77 1.00 1.02
CAE 0.89 0.88 1.11 9.97
DAE 1.59 1.58 2.00 10.85

that it is promising to further improve the convergence criteria
of the proposed RRM approaches. Future work therefore
aims at analyzing different options of clustering applications
together and decentralizing the master problem, which is
alleviated by the convexity of the problem, as well as methods
for distributing the solving of strict constraints.

Acknowledgement
This work was partly supported by the German Research

Foundation (DFG) as part of the Transregional Collaborative
Research Centre ”Invasive Computing” (SFB/TR 89).

REFERENCES

[1] S.-H. Kang et al., “Multi-objective mapping optimization via problem
decomposition for many-core systems,” in ESTIMedia, 2012, pp. 28–37.

[2] P. Bellasi et al., “A RTRM proposal for multi/many-core platforms and
reconfigurable applications,” in Proc. of ReCoSoC, july 2012, pp. 1–8.

[3] P. Zipf et al., “A decentralised task mapping approach for homogeneous
multiprocessor network-on-chips,” Int. J. Reconfig. Comput., vol. 2009,
pp. 3:1–3:14, Jan. 2009.

[4] A. K. Singh et al., “Accelerating throughput-aware runtime mapping for
heterogeneous mpsocs,” ACM TODAES, vol. 18, no. 1, pp. 9:1–9:29, Jan.
2013.

[5] C. Ykman-Couvreur et al., “Fast multi-dimension multi-choice knapsack
heuristic for MP-SoC run-time management,” in Proc. of SOC, nov.
2006, pp. 1 –4.

[6] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time CPU schedul-
ing for mobile multimedia systems,” in Proceedings of SOPS, 2003, pp.
149–163.

[7] A. K. Singh et al., “Mapping on multi/many-core systems: survey of
current and emerging trends,” in Proceedings of DAC. ACM, 2013, pp.
1:1–1:10.

[8] M. Al Faruque et al., “ADAM: Run-time agent-based distributed appli-
cation mapping for on-chip communication,” in Proceedings of DAC,
2008, pp. 760–765.

[9] S. Kobbe et al., “DistRM: distributed resource management for on-chip
many-core systems,” in Proceedings of CODES+ISSS, 2011, pp. 119–
128.

[10] S. Wildermann et al., “Game-theoretic analysis of decentralized core
allocation schemes on many-core systems,” in Proc. of DATE, 2013, pp.
1498–1503.

[11] G. Marianik et al., “Using multi-objective design space exploration to
enable run-time resource management for reconfigurable architectures,”
in Proc. of DATE, 2012, pp. 1379–1384.

[12] C. Ykman-Couvreur et al., “Pareto-based application specification for
MP-SoC customized run-time management,” in Proceedings of IC-
SAMOS, 2006, pp. 78–84.

[13] C. W. Tan et al., “Distributed optimization of coupled systems with ap-
plications to network utility maximization,” in Procceedings of ICASSP,
vol. 5, 2006, pp. 981–984.

[14] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Athena Scientific,
Sep. 1999.

[15] J. Teich et al., “Invasive computing: An overview,” in Multiprocessor
System-on-Chip – Hardware Design and Tool Integration, M. Hübner
and J. Becker, Eds. Springer, Berlin, Heidelberg, 2011, pp. 241–268.

[16] R. Dick, “Embedded system synthesis benchmarks suite (E3S),” 2010,
http://ziyang.eecs.umich.edu/dickrp/e3s/.

[17] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich, “Opt4J – a modular
framework for meta-heuristic optimization,” in Proc. of GECCO, Dublin,
Ireland, 2011, pp. 1723–1730.


