
GPU-EvR: Run-time Event Based Real-time
Scheduling Framework on GPGPU Platform

Haeseung Lee, Mohammad Abdullah Al Faruque
Department of Electrical Engineering and Computer Science

University of California Irvine, Irvine, CA, USA
E-mail: {haeseunl, alfaruqu}@uci.edu

Abstract—GPU architecture has traditionally been used in
graphics application because of its enormous computing ca-
pability. Moreover, GPU architecture has also been used for
general purpose computing in these days. Most of the current
scheduling frameworks that are developed to handle GPGPU
workload operate sequentially. This is problematic since this
sequential approach may not be scalable for real-time systems,
which is a consequence of the approach’s inability to support
preemption. We propose a novel scheduling framework that
provides real-time support for the GPGPU platform. In
contrast to existing frameworks, our proposed framework
considers both concurrent execution of applications on the
GPU and mapping between streaming multiprocessors and
thread blocks. By considering both concurrent execution and
mapping, our framework is able to guarantee timing up to 6.4
times as many applications compared to TimeGraph [9] and
Global EDF [5]. In addition, our experimental applications
use up to 20% less power under our scheduling framework
compared to [5], [9].

I. Introduction and Related Work
The demand for powerful processing element derives the

advance of hardware architecture. Numerous multi-core
architectures are developed to comply with the demand.
One of the most powerful architectures is GPU. GPU
architectures have multiple compute intensive processors
which are specialized to perform SIMT (Single Instruc-
tion Multiple Thread) operations [14]. The performance of
this powerful processing unit is at least six times faster
compared to a general purpose CPU architecture [17]. In
order to maximize the utilization of a GPU, a platform
which is called general-purpose computing on graphics
processing units (GPGPU) has emerged [16]. In general,
GPGPU programs are composed of two parts: host code and
kernel code [14]. Host code is executed on the CPU and
mainly includes data transfer between the host and the GPU,
the preparation process for the GPU device, and launches
kernels with configuration. On the other hand, kernel code
is executed on multiple GPU cores with the configuration.

In order to use the GPUs in real-time systems, research
has been conducted. Elliott et al. [7] discussed the types
of applications that may use GPUs in real-time systems
and the limitation of GPU support for real-time systems.
Liang et al. [10] addressed GPU based real-time imple-
mentation of 3D sound localization platform. Kato et al.
[8] proposed a technique to reduce the delay which is
caused by memory transfer between the I/O device and
GPUs. The proposed technique creates the direct mapping
between the I/O device and GPUs to reduce memory
transfer delay. Mu et al. [12] proposed GPU implementation

of High Performance Embedded Computing benchmark
suites (HPEC) which includes several signal processing
applications. Zhu et al. [19] proposed CPU/GPU integrated
micro-architecture which improves QoS for IP routing. The
suggested micro-architecture improves performance by us-
ing GPU for IP packet processing. These works focused on
powerful computing capability of the GPUs. GPU performs
computational part of the real-time applications to satisfy
the timing requirements. These works did not consider the
multi-tasking environment that GPU likely needs to handle
multiple applications at the same time.

However, there is a problem in the traditional GPGPU
programming model to handle multiple applications con-
currently. By default, GPU executes kernels sequentially;
one kernel at a time. Recent CUDA and NVIDIAs GPU
architectures may execute multiple different kernels if there
are available resources [13]. If the resources are not enough,
the GPU executes kernels sequentially. Sequential kernel
execution could provide enough performance in most of
the general purpose computing. However, in the real-time
domain, sequential execution may cause problems because
there is a possibility for priority inversion [9].

Many techniques have been developed to overcome this
problem. Elliott et al. [6] proposed a locking protocol for
globally-scheduled Job-Level Static-Priority (JLSP) real-
time systems which use GPUs as shared resources. Ward et
al. [18] proposed priority donation based locking protocols
for globally-scheduled multi-processor real-time systems.
Membarth et al. [11] proposed a dynamic task-scheduling
and resource management mechanism in medical imaging.
Basaran et al. [2] addressed a task preemption technique
for real-time systems by dividing a large kernel into small
sub-kernels. These works uses a locking protocol or divide
workload into small piece to support preemption. Kato et al.
[9] proposed GPU scheduler which is called TimeGraph for
periodic workload. TimeGraph assigns different scheduling
properties to applications based on the nature of the appli-
cations. From both the scheduling property and the priority
of the application, TimeGraph selects the application and
submits the application to the GPU. However, TimeGraph
considers a small number of combinations of applications.
Elliott et al. [5] discussed real-time scheduling algorithm
for multiple CPU single GPU system. The proposed ap-
proach treats the GPU as a shared resource and implements
Global Earliest-Deadline-First [4] based locking protocol
to improve overall system efficiency. But, only periodic
applications are considered as the target applications.

The problem of previous research is that concurrent
execution of applications on the GPU and mapping be-

978-3-9815370-2-4/DATE14/ c©2014 EDAA

Fig. 1: Scheduling example of our proposed execution
model

tween streaming multiprocessors and thread blocks are not
considered. In order to solve this problem, we propose
a novel scheduling framework (GPU-EvR). Our proposed
GPU-EvR framework provides application-specific timing
guarantees by using a two-level preemption support.

The rest of this paper is organized as follows: Section II
discusses our contributions and problem description. Sec-
tion III describes our execution and timing model. Section
IV explains the proposed GPU-EvR framework. Section V
provides experimental results and Section VI concludes the
paper.

II. Contributions and Problem Description
The novel contributions of this work are:
• A run-time event based scheduling framework

(GPU-EvR) for the GPU-based real-time embedded
systems. The execution model of the GPU-EvR cre-
ates mapping for concurrent execution of multiple
applications and the timing model of GPGPU work-
load predicts the current status of the applications.

• A two-level GPU resource management algorithm
to provide fine-grained GPU resource management
to ensure application-specific timing guarantees are
met.

• Our proposed GPU-EvR is evaluated by comparing
with TimeGraph [9] and Global-EDF [5] schedul-
ing framework. The number of applications which
may meet the timing requirement is up to 6.4 times
as many compared to both TimeGraph and Global-
EDF scheduling frameworks. Moreover, GPU-EvR
framework works well with constrained power bud-
gets, since applications running through GPU-EvR
consume less power than other frameworks.

A. Problem description
We consider a GPU-based real-time embedded systems

as our target platform. The GPU has a total Ptot stream-
ing multiprocessors. A set of random application S =
{<A1, T

req
1 >, ..., <Ai, T

req
i >} is executed by the user and

submitted to the GPU. Ai represents the application and
T req
i represents the timing requirement. During the system

operation, S′ ⊂ S represents the set of applications which is
executed on the GPU at the same time. In addition, response
time requirement T resp

i is obtained by using T req
i when

the application Ai is dispatched by the user. Pi denotes the
GPU resources for Ai ∈ S′. Res(Ai) and E(Ai) represent
response time and execution time of the Ai, respectively.

For a given profiling data for the application Ai and the
response time requirement T resp

i , our scheduling framework
generates a schedule that maps the GPU resource to Ai such

that Ptot ≥
∑
∀j Pi and Res(Ai) ≤ T resp

i .

III. GPGPU Model for Real-time Systems
For our scheduler framework, we characterize the behavior

of the applications and create execution and timing models.
We also make several assumptions for the target systems
and the applications.
• Applications have at least one compute intensive

kernel function. The kernel function handles most
of the computational part of the application and is
executed on the GPU.

• High and medium priority applications may have
both short and long timing requirements. However,
low priority applications may have only long timing
requirements.

• Because of the limitation of the current GPU ex-
ecution model, applications may not be suspended
after starting their execution on the GPU.

A. Execution Model for GPGPU workload
In the GPGPU programming model, when the GPU ex-

ecutes a kernel function, the mapping between Streaming
Multiprocessors (SMs) and thread blocks is created [14].
A single thread block is processed by a single SM. Our
scheduler creates the mapping between thread blocks and
SMs based on application priority. When a higher priority
application is submitted to a GPU, the scheduler allocates
GPU resources following the order of the priority.

Figure 1 gives a simple example of our execution model.
In this example, we assume our GPU has four streaming
multiprocessors and two applications (A and B) are injected
at time t and (t + τ), respectively. At time t, scheduler
allocates three streaming multiprocessors for application A.
After time τ , the higher priority application B is submitted
to the system. At (t+τ), only one streaming multiprocessor
is available. Therefore, application B starts its operation
with a single streaming multiprocessor. The scheduler al-
locates two more streaming multiprocessors to application
B after the first three thread blocks of application A are
completed. After completion of application B, application
A uses the entire GPU to meet the deadline.
B. Timing Model for GPGPU workload

The timing model aims to provide enough information
to the scheduler to obtain the needed amount of GPU
resources in order to guarantee the timing. In addition to
the variables defined in Section II-A, R(Ai, Pi) depicts a
remaining execution time of Ai with GPU resource Pi,
Ki,k describes the kth kernel of the application Ai, and
Ni,k represents the number of thread blocks for the kernel
Ki,k. Total execution time of an application E(Ai) is a
summation of the individual kernel execution time Ki,k and
the memory transfer delay (Equation 1).

E(Ai) =

|Ki|−1∑
k=0

E(Ki,k) +Dmemcopy (1)

Since target applications are compute intensive applica-
tions, we may neglect memory transfer delay Dmemcopy

and therefore the execution time of an individual kernel
E(Ki,k) depends on GPU resource. Since kernel functions
may be executed with different amount of resources, kernel
execution time depends on currently assigned GPU resource

Fig. 2: Overview of proposed GPU-EvR framework

Pi for the application Ai. Thus, execution time of kth kernel
E(Ki,k) can be re-written to E(Ki,k, Pi). Therefore, total
execution time of an application may be re-written as:

E(Ai) =

|Ki|−1∑
k=0

E(Ki,k, Pi) (2)

T resp
i = T init

i + T req
i (3)

In order to meet the timing requirement, the total re-
sponse time of an application must be smaller than the
application-specific timing requirement. Total response time
requirement T resp

i is a summation of application dispatch
time T init

j and timing requirement T req
i (Equation 3).

Therefore, when GPU is not fully occupied, we may write
the acceptable condition as:

T resp
i ≥ Res(Ai) =

|Ki|−1∑
k=0

E(Ki,k, Pi) (4)

If the GPU is fully occupied, the total response time
of the application also includes the waiting delay. The
waiting delay is the minimum value among the remaining
execution time of currently executing applications on the
GPU. Therefore, updated response time of the application
Res(Ai) is:

Res(Ai) = min(RAj∈S′(Aj , Pj)) +

|Ki|−1∑
k=0

E(Ki,k, Pj)

(5)
The remaining execution time of the application
R(Aj , Pj) is the summation of remaining execution time
of the currently executing kernel and the execution time
of the remaining kernels. Let k′ represents the index of
the currently executing kernel. We can then describe the
remaining execution time of the applications for given GPU
resource Pj by using the following equation.

R(Aj , Pj) = R(Kj,k′ , Pj) +

|Ki|−1∑
k=k′+1

E(Kj,k, Pj) (6)

The remaining execution time of the kernel is a function of
the number of processed thread blocks N ′ and total number
of thread blocks Nk′ . Thus, the remaining execution time
for a kernel may be obtained by the following equation.

R(Kj,k′ , Pj) =
Nj,k′ −N ′j,k′

Nj,k′
× E(Kj,k′ , Pj) (7)

Whenever there is a change in S′, the scheduler will reallo-
cate GPU resources if there are higher priority applications
which do not have enough GPU resources.

Algorithm 1: Workload manager algorithm of GPU-
EvR
1 while true do
2 UrgentApp = NULL; // Urgent application
3 NextApp = NULL; // application submitted to

the GPU
4 AvailSM = 0; // available GPU resource
5 RequiredSM = 0; // required SMs
6 UsedSM = 0; // actually assigned SMs
7 UrgentApp = CheckAndUpdateAppInfo();
8 if UrgentApp != NULL then
9 UrgentQueue.push(UrgentApp);

10 AvailSM = GPU.availSM();
11 if NumWaitingApp() > 0 and AvailSM > 0 then
12 NextApp = SelectNextApp();
13 RequiredSM = GetRequiredResource(NextApp);
14 if AvailSM ≥ RequiredSM then
15 NextApp.HasEnoughRes(true);
16 UsedSM = RequiredSM;

17 else
18 NextApp.HasEnoughRes(false);
19 UsedSM = AvailSM;
20 GPU.SetReallocFlag(true);

21 GPU.SubmitApp(NextApp, UsedSM);

T resp
i ≥ Tcurrent +R(Aj , Pj) (8)

By using the application start time T init
j and the current

time stamp Tcurrent, our scheduler finds the amount of
resources that satisfies Equation 8.

IV. Real-time GPGPU Scheduling Frame-
work

Our scheduler framework consists of two levels: workload
manager and GPU manager. Figure 2 describes the overview
of our framework. After applications have been initiated by
the user, the workload manager decides which application
will be submitted to GPU based on their priorities. At run-
time, the GPU manager keeps tracking the status of the
GPU resources and (re-)allocates GPU resources based on
the priority and the timing requirements of the applications.

A. Workload Manager
An application is started with the following information:

timing requirement, profiling data, priority, and so on. The
application is directly submitted to the GPU if there are no
waiting applications and the GPU has available resources.
Otherwise, the workload manager classifies the application
based on its priority and pushes it into a corresponding
queue. Whenever there are available resources in the GPU,
the workload manager selects an application from any non-
empty waiting queues based on the priority.

However, a starvation problem may occur with this ap-
proach. Since a higher priority application is selected, there
is a possibility that lower priority applications never use
GPU resources. In order to prevent the starvation problem,
the workload manager has a special type of application
queue which is called the urgent queue. During run-time,
the workload manager keeps track of the current system
time Tcurrent, and the response time requirement of the
application T resp

i .

Tmargin
i = T resp

i − E(Ai) (9)

Algorithm 2: GPU manager algorithm of GPU-EvR
1 while true do
2 ForceLowerApp = false; // flag to include lower

priority apps
3 RequiredSM = 0; // reallocatable SMs
4 UsingSM = 0; // actually assigned SMs

/* resource reallocation variable
initialization */

5 SMForRealloc = false;
6 ReAllocIdx = 0;
7 ReallocList.clear();
8 GPU.ExecuteApp();
9 if GPU.GetReallocFlag() then

10 [ReallocList, SMForRealloc] = CreateReallocList();
11 while ReallocList.size() > 0 and SMForRealloc > 0 do
12 RequiredSM =

GetNewResource(ReallocList[ReallocIdx]);
13 if SMForRealloc ≥ RequiredSM then
14 UsingSM = RequiredSM;

ReallocList[ReAllocIdx].HasEnoughRes(true);
15 SMForRealloc = SMForRealloc - RequiredSM;

16 else
17 UsingSM = SMForRealloc;

ReallocList[ReAllocIdx].HasEnoughRes(false);

18 SMForRealloc = 0;

19 ReallocList[ReAllocIdx].Realloc(UsingSM);
20 ReallocList.pop(); ReAllocIdx++;

21 if GPU.availSM() > 0 then
22 NotifyToWorkManager();

By using Equation 9, the workload manager may obtain
timing margin of the application Tmargin

i . Therefore, the
application has to start its execution on a GPU before
Tmargin
i in order to meet the timing requirement. The

workload manager compares current system time Tcurrent
and Tmargin

i of the medium and low priority applications. If
current system time is close to Tmargin

i of the application,
then the workload manager classifies the application as
an urgent application and pushes the application onto the
urgent queue.

Algorithm 1 describes the pseudo code of the workload
manager of GPU-EvR. After the system starts, variables
are initialized in Line 2-6. In Line 7, urgent applications
are selected from the waiting queues. If there are urgent
applications, the workload manager pushes those applica-
tions onto the urgent queue in Line 8-9. Current resource
status of the GPU is obtained in Line 10. If there are
available GPU resources, the workload manager obtains the
application from waiting queues in Line 12 and calculates
amount of resources which are required to meet the timing
requirement in Line 13. In Line 14-16, if currently available
GPU resources are greater than or equal to required amount
of resources, then the workload manager assigns required
amount of resources to the application. However, in Line
18-19, the application will use currently available resources
when the GPU does not have enough resources. After that,
the workload manager requests resource reallocation to the
GPU manager in Line 20. In Line 21, the workload manager
submits the application to the GPU.

The functions CheckAndUpdateAppInfo() has a com-
plexity of O(|A′|). SelectNextApp() has a complexity
of O(4) and GetRequiredResource() has a complexity

of O(|Ptot|). Consequently the overall complexity of the
workload manager algorithm is given by O(|A′| + 4 +
|Ptot|) = O(n).

B. GPU Manager
As mentioned in Section III-A, our scheduler creates and

modifies mapping between the streaming multiprocessors
and the thread blocks of applications. As the GPU resource
is occupied or released by the applications, the status of
the GPU resources keeps changing at run-time. Based on
our execution model (Section III-A), we can derive the
following two cases for resource reallocation:

• Higher priority applications are not submitted
with enough resources: In this case, resource
reallocation is required to allocate enough GPU
resources to higher priority applications.

• The application completes its operation on the
GPU: After the application completes its work,
GPU resources are released and made available to
other applications. Therefore, currently executing
applications are able to use more GPU resources
through resource reallocation.

At the first stage of resource reallocation, the GPU man-
ager creates a resource reallocation list and obtains the
GPU resources for resource reallocation. While creating
the resource reallocation list, the GPU manager checks the
resource status of the application in a priority order. If the
application has enough GPU resources to meet the timing
requirement, the GPU manager keeps the current status.
However, if the application does not have enough GPU
resources, all the lower priority applications are included
on the resource reallocation list. After creating a resource
reallocation list, the GPU manager estimates the amount of
resources to meet the timing requirement in a priority order
with Equation 6.

Algorithm 2 describes the pseudo code of the GPU man-
ager of GPU-EvR. In Line 1-7, variables are initialized.
After that, the GPU executes the applications in Line 8. In
Line 9, if resource reallocation flag is set, the GPU manager
starts GPU resource reallocation. In Line 10, the resource
reallocation list and the reallocatable GPU resources are
obtained. By using Equation 6, the GPU manager obtains
the amount of resources to meet the timing requirement in
Line 12. If the required amount of resources is less than or
equal to the reallocatable resources, the GPU manager as-
signs required resources and updates reallocatable resources
in Line 14-15. However, in Line 16-18, if reallocatable
resources are smaller than the required amount, current
reallocatable resources are assigned to current application
in resource reallocation list. In Line 19-20, the GPU man-
ager reallocates GPU resources and updates the resource
reallocation list. This process will be repeated until all
applications in the resource reallocation list are processed
or there are no more resources for reallocation.

The functions CreateReallocList() has a complexity of
O(|A′|). The while-loop in Line 11-20 has a complex-
ity of O(|ReallocList|) and GetNewResource() has a
complexity of O(|Ptot|). Therefore, the overall complexity
of the GPU manager algorithm is given by O(|A′| +
|ReallocList| ∗ |Ptot|) = O(n2).

Application Name Dwarves Domains
Leukocyte Structured Grid Medical Imaging
Heart Wall Structured Grid Medical Imaging
CFD Solver Unstructured Grid Fluid Dynamics

LU Decomposition Dense Linear Algebra Linear Algebra
HotSpot Structured Grid Physics Simulation

Back Propagation Unstructured Grid Pattern Recognition
Kmeans Dense Linear Algebra Data Mining

Breadth-First Search Graph Traversal Graph Algorithms
SRAD Structured Grid Image Processing

Streamcluster Dense Linear Algebra Data Mining
PathFinder Dynamic Programming Grid Traversal

Gaussian Elimination Dense Linear Algebra Linear Algebra
B+ Tree Graph Traversal Search

TABLE I: Rodinia benchmark Suite [3]

Fig. 3: Overall performance comparison

V. Experimental Results
We have extensively evaluated our framework by compar-

ing it to several existing frameworks. In our experiments,
we have used Nvidia’s Tesla K20m graphic card that
has a Kepler GK110 GPU (TSMCs 28nm manufacturing
process).

In order to evaluate our framework with realistic work-
loads, we classify the application type based on application
domain and dwarves [1]. Dwarves are common computation
and communication pattern of the high performance parallel
applications. Table I describes dwarves and application
domains of Rodinia benchmark suite. We classify priority
of the Rodinia benchmark Suite [3] based on application
domains and dwarves. For high priority application, since
most of image processing requires real-time behaviour,
image processing benchmark applications are classified
as high priority application. The benchmark applications
which have simple behaviour (i.e. graph traversal, vec-
tor computation) are classified as low priority. Remaining
benchmark applications are classified as medium priority.
The classification results are as follows:
• High priority: Leukocyte, Heart Wall, HotSpot,

SRAD;
• Medium priority: Back Propagation, PathFinder,

Kmeans, Streamcluster;
• Low priority: Breadth-First Search, B+ Tree, Gaus-

sian Elimination, LU Decomposition, CFD Solver;
A. Random injection of applications

GPU-EvR is compared to TimeGraph [9] and Global-
EDF [5] scheduling frameworks. Figure 3 describes overall
performance of the timing guarantee. During simulation,
applications are randomly selected and injected into our
experimental platform. Delays between applications are also
randomly selected within 0.5 second window. We observe
that more applications may meet timing requirement with

Fig. 4: Average of total timing violation

our framework. The major reason for the improvement is
the execution mechanism of the applications. Both Time-
Graph and Global EDF scheduling frameworks handle
one application at a time. However, our framework may
handle multiple applications at the same time. Also, our
framework can allocate more GPU resources to higher
priority applications. Additionally, we see that there are
applications which may not meet timing requirement with
our framework. Since on-going applications may not be
suspended, the scheduler may not allocate enough GPU
resources to the higher priority applications.

Figure 4 shows the total timing violation. In our frame-
work, we observe that the average timing violation of the
injected applications is increased as the number of appli-
cations is increased. However, total timing violation of our
framework is much less than TimeGraph and Global EDF.
It is observed from the figure that our framework has better
control of timing. Since our framework allows concurrent
execution of applications and allocates more GPU resources
to higher priority applications, our framework is able to
minimize timing violation.

Figure 5 shows the resource utilization and the average
power per application. During the experiment, power is
measured by using Nvidia’s NVML library [15]. In Figure
5, lines represent the average power per application and
bars represent the GPU resource utilization. As can be seen
from the figure, our framework uses less GPU resources
and power per application in 28nm technology. The reason
for the efficiency is that our framework tries to find and
allocate minimum amount of GPU resources to meet the
timing requirement.

B. Scalability of the scheduling platform
We have also evaluated scalability of our GPU-EvR com-

pared to [5], [9]. During our experiment, the number of
injected applications in one period is varied from one to
fifteen. Figure 6 shows the average number of applications
which can meet the timing requirement. When the number
of the injected applications is scaled from one to three,
all the applications may meet timing requirement with our
framework. After that, until the number of the injected ap-
plications is increased to seven, our framework can guaran-
tee timing requirement for 2.5 applications. As the injected
number of applications is greater than seven, applications
are congested and performance of our framework is affected
by the congested applications. However, from the figure,

Fig. 5: GPU resource utilization and average power per
application in 28nm technology

we observe that more applications are able to meet their
timing requirement with our framework. This is because
our framework provides more fine-grained control of GPU
resources management by actively involving in mapping
between thread blocks of the applications and the streaming
multiprocessors.

VI. Conclusion
In this paper, we addressed a novel GPU scheduling

framework for the event based real-time embedded systems
(GPU-EvR). The presented scheduling framework consists
of two levels which are the workload manager and the GPU
manager. The workload manager selects the application
from waiting queues based on application’s priority and the
GPU manager supports preemption by a run-time resource
management algorithm. By using our execution and timing
model, GPU-EvR may allocate more GPU resources to
higher priority applications and estimate the amount of
resources to meet the timing requirement. We have eval-
uated our framework by comparing the performance of
our solution with TimeGraph and Global EDF scheduling
frameworks. The results show that GPU-EvR is able to
guarantee up to 6.4 times as many applications and a better
control of timing violation. Applications use up to 20%
less power under GPU-EvR. In addition, compared to other
frameworks, the results clearly show that our framework
may manage concurrent execution of multiple applications
very efficiently.

References
[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,

K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W.
Williams, and K. A. Yelick. “The Landscape of Parallel Computing
Research: A View from Berkeley”. EECS Department, University
of California, Berkeley, 2006.

[2] C. Basaran and K.-D. Kang. “Supporting Preemptive Task Execu-
tions and Memory Copies in GPGPUs”. Euromicro Conference on
Real-Time Systems (ECRTS’12), 2012.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. “Rodinia: A benchmark suite for heterogeneous com-
puting”. Proceedings of the 2009 IEEE International Symposium
on Workload Characterization (IISWC’09), pages 44–54, 2009.

[4] U. Devi and J. Anderson. “Tardiness bounds under global EDF
scheduling on a multiprocessor”. Real-Time Systems Symposium
(RTSS’2005), 2005.

Fig. 6: Scalability comparison of GPU-EvR compared to
[5], [9]

[5] G. A. Elliott and J. H. Anderson. “Globally scheduled real-time
multiprocessor systems with GPUs”. International Conference on
Real-Time and Network Systems (RTNS’10), 2010.

[6] G. A. Elliott and J. H. Anderson. “An optimal k-exclusion real-time
locking protocol motivated by multi-GPU systems”. International
Conference on Real-Time Networks and Systems (RTNS’11), pages
15–24, 2011.

[7] G. A. Elliott and J. H. Anderson. “Real-World Constraints of GPUs
in Real-Time Systems”. International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA’11), 2011.

[8] S. Kato, J. Aumiller, and S. Brandt. “Zero-copy I/O processing for
low-latency GPU computing”. International Conference on Cyber-
Physical Systems (ICCPS’13), 2013.

[9] S. Kato, K. Lakshmanan, R. R. Rajkumar, and Y. Ishikawa. “Time-
Graph: GPU scheduling for real-time multi-tasking environments”.
USENIX Annual Technical Conference (USENIX ATC’11), 2011.

[10] Y. Liang, Z. Cui, S. Zhao, K. Rupnow, Y. Zhang, D. Jones, and
D. Chen. Real-time implementation and performance optimization
of 3d sound localization on gpus. Design, Automation Test in Europe
Conference Exhibition (DATE’12), pages 832–835, 2012.

[11] R. Membarth, J.-H. Lupp, F. Hannig, J. Teich, M. Körner, and
W. Eckert. “Dynamic task-scheduling and resource management
for GPU accelerators in medical imaging”. International Conference
on Architecture of Computing Systems (ARCS’12), pages 147–159,
2012.

[12] S. Mu, C. Wang, M. Liu, D. Li, M. Zhu, X. Chen, X. Xie, and
Y. Deng. “Evaluating the potential of graphics processors for high
performance embedded computing”. Design, Automation Test in
Europe Conference Exhibition (DATE’11), pages 1–6, 2011.

[13] NVIDA. “CUDA C/C++ Streams and Concurrency”. 2011.
[14] NVIDIA. “CUDA C Programming Guide”, 2012.
[15] NVIDIA. “NVML API REFERENCE MANUAL”, 2012.
[16] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger,

A. Lefohn, and T. J. Purcell. “A Survey of GeneralPurpose
Computation on Graphics Hardware”. Computer Graphics Forum,
2005.

[17] C. Thompson, S. Hahn, and M. Oskin. “Using modern graphics
architectures for general-purpose computing: a framework and anal-
ysis”. International Symposium on Microarchitecture (MICRO-35),
pages 306–317, 2002.

[18] B. C. Ward, G. A. Elliott, and J. H. Anderson. “Replica-Request
Priority Donation: A Real-Time Progress Mechanism for Global
Locking Protocols”. International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA’12), pages
280–289, 2012.

[19] Y. Zhu, Y. Deng, and Y. Chen. “Hermes: An integrated CPU/GPU
microarchitecture for IP routing”. Design Automation Conference
(DAC’11), pages 1044–1049, 2011.

