
978-3-9815370-2-4/DATE14/©2014 EDAA

Software Architecture of High Efficiency Video Coding for

Many-Core Systems with Power-Efficient Workload Balancing
Muhammad Usman Karim Khan, Muhammad Shafique, Jörg Henkel

Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), Germany

{muhammad.khan, muhammad.shafique, henkel} @ kit.edu

Abstract—The High Efficiency Video Coding (HEVC) standard

aims at providing ~50% better compression compared to its

predecessor (H.264) at the cost of high computational complexity.

To enable HEVC video encoding in real-time scenarios, special

coding support for parallelization is provided in HEVC that can

be exploited by many-core systems. In this work, we present a

HEVC software architecture where a video frame is adaptively

divided into independent video frame regions (i.e. so-called video

tiles) which are processed concurrently on multiple cores. By

balancing the workload of each video tile mapped to a particular

core, the total power consumption of a system is reduced

(through dynamically scaling the operating frequency) under a

given frame-rate constraint. We also exploit user tolerance to

further curtail the HEVC workload with insignificant video

quality degradation. Experimental results illustrate that the

proposed approach results in ~43% power savings on a many-

core system.

I. INTRODUCTION AND OUR NOVEL CONTRIBUTIONS

The growth of sub-micron fabrication technologies has led to

significant increase of video devices in the consumer market. With

the introduction of high-quality cameras and video recorders, and

demands of high quality video transmission, the essential necessity of

efficient video compression has commenced a competition among

different video encoding standards. For example, VP9 [1] available

since June 17th 2013, Daala [2] available since May 30th 2013 and

High Efficiency Video Coding (HEVC) [3] available since June 7th

2013, are the newest video coding standards. These encoders aim to

reduce the bit-rate by ~50% as compared to the current video

encoding standards while maintaining the same video quality.

HEVC is a successor of the industry’s current video coding

standard, H.264 or Advanced Video Coding (AVC) [4]. The growth

in digital entertainment, security and video communication industry

has led the HEVC standard developers to provide efficient

compression means to encode large video content (e.g., Ultra HD

7680×4320 pixels at 120 frames per second). Furthermore, due to an

anticipated increase in HEVC employment, electronic vendors have

already started shipping HEVC compatible decoders in the market

(Samsung’s F8500 plasma TVs [7] and S4 smart phones [8]), but

there is a long way to go for power-efficient HEVC encoders (HEVC

reference encoder is ~100x more complex compared to the reference

decoder [9]).

Problem Statement: By aiming at 50% bit-rate reduction and

preserving the same subjective video quality as H.264, HEVC has

become a prime candidate to replace H.264 encoders [5][6].

Conversely, this gain in compression efficiency comes at a high cost

of computational complexity due to the inclusion of numerous

additional encoding tools (e.g. coded tree block, numerous new intra

prediction modes, see details in Section III.A). However, in real-

world video encoding systems, the video must be compressed under

tight constraints of time budget [10] and output bit-rate. This

requirement gathers more ground for HEVC as compared to H.264,

due to its heavy workload, large data-structures and limitations in

high processing power available to support real-time HEVC encoding

[11]. The additional tools and timing-constraints give rise to several

challenges for implementing a HEVC system on a hardware platform

[12]. Our simulations with reference software have shown that HEVC

encoding is ~1.7× more complex, providing a 33% increase in the

compression efficiency compared to H.264. Moreover, one CIF frame

(352×288) for HEVC intra encoding takes about 1.5 seconds and 6.94

Joules on an x86 core running at 2.66 GHz. Therefore, workload

balancing and power reduction is a fundamental requisite of HEVC.

In the current many-core era (where multiple cores are even

available in the smart phones), it is beneficial to utilize the inherent

parallelism offered by HEVC. By distributing the workload of HEVC

encoder on multiple cores, the total encoding time can be reduced that

may potentially improve the overall energy efficiency. HEVC

standard allows exploiting parallel encoding tools, like slices and

video tiles1 to fulfill these requirements [13]. A tile (rectangular part

of a video frame) is treated as an autonomous entity and can be

encoded independently of other tiles within the same video frame.

However, ignoring the encoding hardware characteristics during

HEVC parallelization may lead to high power consumption, deadline

misses, and video quality loss. System parameters like total number

of cores and maximum operating frequency along with the video

characteristics determine the maximum sustainable workload.

Additionally, workload of each tile differs from that of the other tiles

and even for one video tile it varies at run-time due to the varying

video-properties (see our analysis in Section III). Thus, the challenge

is to distribute the workload of HEVC selectively and adaptively on

multiple cores. Moreover, HEVC video encoder on a many-core

system must exploit the changing workload to reduce the total power

consumption while meeting the quality of service demands. The

power consumption can be dynamically reduced by using a workload-

driven operating frequency adaptation scheme. Also, the user’s

tolerance to the output bit-rate can be exploited to adapt the

workload, by reducing the coding complexity.

A. Our Novel Contributions

To enable power-efficient real-time HEVC video encoding on

many-core systems with minimum video quality degradation, we

propose a novel software architecture to adaptively select the tile

structure and consider user tolerance for run-time workload

management of each core. We account for the HEVC workload and

the hardware platform properties (like maximum operating frequency

and total number of cores) of the many-core system. Our software

architecture employs:

 A tile-generator to select the tile structure and the maximum

workload of each core under constraints of quality of service

(frame-rate) and available system resources.

 An online workload allocator to curtail workloads (with

minimal video quality distortion) of different cores at run-time,

by considering user tolerance.

 A tile-based workload manager to manage the operating

frequency of the underlying core (associated with an independent

1 Throughout the text, a tile refers to a video tile.

tile), in order to fulfill the workload and encoding time

requirements while minimizing the power consumption.

Our system overview outlining the above-mentioned novel

contributions is shown in Fig. 1. Each tile is processing on a

dedicated core. To the best of the authors’ knowledge, this is the first

software architecture which provides power-efficient workload

balancing of HEVC encoding on many-core platform.

Paper Organization: State-of-the-art schemes in HEVC workload

balancing and complexity/power reduction are discussed in Section

II. Section III briefly discusses HEVC background and outlines our

motivational analysis. In Section IV, the proposed scheme is

discussed in detail. Experimental results are presented in Section V.

We conclude the paper in Section VI.

Tile 0
core

Tile K-1
core

W
K

-1

F0 FK-1

W
0

Workload ManagerWorkload Allocator

Monitoring Unit

Output

W = HEVC Workload

Video
Input

F = Core Frequency

Tile
Generator

Constraints:
Video frame-rate

Core max. frequency

Exploits:
Temporal correlations
User bit-rate tolerance

Fig. 1: Overview diagram of our novel contributions

II. RELATED WORK

As pointed out in the previous section, real-time encoding via

HEVC is difficult to achieve. Therefore, efficient algorithms and

architectures are required for processing HEVC workload. Usually,

coding efficiency is compromised, HEVC specific ASICs are

proposed or large silicon area is consumed for gains in computational

complexity. In addition, due to the high workload of HEVC, high

power consumption and the elevated temperatures of the underlying

hardware platform are expected for HEVC. A comprehensive analysis

of these and additional issues with HEVC encoding is detailed in

[12]. General categorization of workload mapping techniques on

many-core systems is presented in [14]. Unlike general purpose

techniques, our approach exploits the application-specific properties

of HEVC for workload mapping and improved power efficiency. In

addition, a number of schemes regarding the workload management

of video encoders have been proposed in the literature [15]. However,

they do not exploit the advantages offered by many-core systems for

video encoding. For example, in [16], authors have proposed to limit

search comparisons of the best coding configuration in HEVC,

depending upon the encoding history. In [17], the workload of H.264

encoder on a single core processor is controlled by analyzing the

Motion Estimation (ME) process. In [18], a joined distortion-

complexity scheme is proposed for H.264, by configuring ME and

mode decision. The above mentioned works focus only on single core

implementation, and do not consider the underlying hardware

properties. A SIMD implementation of H.264 on many-core

processor is given in [19], but it does not consider workload mapping

and balancing. Additionally, a multitude of works in the direction of

reducing the complexity of HEVC encoding also exist. [20]

implements early skip approaches to reduce HEVC configuration

searches. Software and hardware collaboration is exploited in [11] to

reduce the total time complexity and energy consumption of HEVC

Intra encoder, by mapping the compute intensive part of the encoder

to hardware. [21] and [22] configure the total Intra modes tested for

the HEVC encoding process and reduce the time complexity. VLSI

architecture for efficient Intra prediction is given in [23]. In short,

state-of-the-art complexity reduction and workload balancing

schemes of HEVC do not consider workload balancing on multiple

cores to exploit the inherent parallelism offered by the HEVC

standard.

III. OUR ANALYSIS OF HEVC ENCODER

A. Brief Background of HEVC

Compared to H.264, additional compression tools are added to

HEVC encoding engine to boost its compression efficiency. In Fig. 2,

the video partition hierarchy of HEVC encoder is shown. The frames

to be encoded are grouped in Group of Pictures (GOP). Each GOP

contains M video frames and there are K tiles (T) in each frame,

where K ≥ 1. A frame can also be divided into independent slices.

In HEVC, each tile is divided into a Coding Tree Units (CTU) of size

64×64 pixels or smaller. A CTU is recursively subdivided into

smaller, square sized blocks called Coding Units (CU). Maximum CU

size can be equal to the CTU size and minimum CU size is 8×8

pixels. CU is the basic entity of compression in HEVC. Intra mode

predictions and motion estimation is performed for individual CUs.

Core0

f0

F0 FM-1

T0 T1 TK-1

Core1

f1

CoreK-1

fK-1

TK-1

T0 T1

GOP0 F0GOP0

HEVC Parallel
Encoding

Fig. 2: HEVC video partition hierarchy

Similar to H.264, CU encoding has sequential dependencies with

its neighboring CUs, and hence forbids parallel encoding of CUs. On

the other hand, a tile encompasses a set of CTUs for HEVC encoding,

and CUs in one tile are independent of CUs in the other tiles. Same is

true for slices. However, note that each slice is treated as an

independent entry in the bitstream, thus requiring addition bits to

present the slice-headers.

B. HEVC Analysis

From the discussion in Section III.A, it is evident that tiles can be

processed via independent encoding threads. Although GOP, frame

and slice [13] level parallelism can also be exploited in place of tiles,

but tiles are preferred for 2 reasons:

1- Tiles are at the lowest level of coding hierarchy. Therefore, they

will consume least system memory, and hence, will be fastest

among other parallelisms.

2- Unlike slices, tiles do not have their associated headers. Thus,

tiles exhibit the potential to provide relatively better output video

quality compared to slices.

Therefore, in order to achieve fast encoding at minimal video

quality loss, we propose utilizing HEVC parallelism at tile-level.

Fig. 3 shows the histogram of percentage difference in time

complexity and output compressed bytes generated between

collocated tiles within consecutive frames of a video sequence (see

Fig. 9). For Fig. 3(a), the horizontal axis presents the percentage time

difference, β, between collocated tile number 0 of consecutive video

frames. β is given by the following formula:

0 0

0

(,) (, 1)
100

(,)

 
 

T t i T t i

T t i
 (1)

Here, T0(t,i) presents the time taken to encode the 0th tile (first

tile) of frame i. As seen, the time complexity for collocated tile is

highly correlated. Identical formula is used for Fig. 3(b) by replacing

time with total bytes. Similar to the time complexity, the number of

compressed bytes generated by collocated tiles is well correlated.

Moreover, these curves can be estimated via a Normal (Gaussian)

distribution. Thus, the correlation between collocated tiles can be

exploited to determine the estimated bit-rate and time complexity of

the current tile, which can be translated to determine the workload.

0

10

20

30

40

50

60

-50 -40 -30 -20 -10 0 10 20 30 40 50

0

10

20

30

40

50

60

-20 -16 -12 -8 -4 0 4 8 12 16 20

(a) (b)

Fig. 3: Difference histogram of (a) Time and (b) Bytes for collocated tile

number 0 of Foreman sequence (352×288) for 300 frames

In Fig. 4, time complexities of individual tiles per frame are

plotted for Keiba sequence (832×480). A total of 4 tiles are used with

2 tile rows and 2 tile columns per video frame. We notice that the

complexity of each tile not only differs from the other tiles, it also

varies at run-time. Hence, the power consumption and idle times of

each core may fluctuate over time owing to the changing workload.

Therefore, the complexity of each tile is different and must be

separately adapted to balance workload among multiple cores. This

adaption must consider the frame-rate requirement and compute

constraints. Further, number of tiles must not be unnecessarily

increased as it will increase the power consumption of the system.

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Tile 0 Tile 1

Tile 3 Tile 4

Ti
m

e
 [

m
se

c]

Frame

Workload is not
equal for tiles

Fig. 4: Time consumption of each tile (4 tiles per frame, of 2×2 tile structure)

of first 50 frames of Keiba sequence (832×480)

In Fig. 5, the average time complexity and video quality curves

for different tile structures for Foreman sequence (352×288) is

plotted. We notice that increasing the number of tiles results in time

complexity improvement (Fig. 5(a)). However, at the same time it

results in small quality degradation as shown in Fig. 5(b). In fact, a

single tile per frame generates the best quality. For T2 tiles per frame,

T×T tile structure (i.e. T tile rows and T tile columns per slice) results

in the best video quality [24]. Therefore, if possible, the total number

of tiles within a slice must be minimized and the total tile-rows and

tile-columns within a slice must be equal, in order to increase the

video quality.

P
SN

R
 [

d
B

]

Rate [KBps]

0

50

100

150

200

250

300

350

0 2 4 6 8 10

Ti
m

e
 [

m
se

c]

Tiles

34

36

38

40

42

44

75 175 275 375

Tiles=1x1

Tiles=2x1

Tiles=2x2

Tiles=3x3

(a) (b)

Fig. 5: (a) Average time per frame and (b) rate-distortion curves for Foreman

sequence (352×288) with different tile structures

IV. HEVC TILE-BASED WORKLOAD BALANCING

The proposed software architecture for tile-based workload

balancing of HEVC-Intra is shown in Fig. 6. The software is

responsible for:

1- Setting up the tile structure by considering hardware resources

(operating frequency, total number of cores) and quality of

service demands (frames per second).

2- Allocating workload to each core by utilizing user’s tolerance of

the output bit-rate.

3- Managing the workload by adapting the operating frequency of

each core in order to reduce power consumption.

Before start of encoding, the total number of tiles required and the

maximum workload of the cores is determined. While encoding, the

input video is converted into tiles and forwarded to the respective

cores. Cores process each tile individually and generate the

compressed output, as well as the statistics required for workload

balancing. These statistics are provided to the workload allocator. The

workload allocator adaptively curtails or increases the computational

workload of each tile, within the user’s tolerance of the bit-rate. The

allocator’s output is passed to the workload manager, which

dynamically scales the operating frequency of the cores, depending

upon the estimated workload. In short, the software adapts the

operating frequency and thus, controls the power consumption of the

many-core system.

Output

Tile Formation and Maximum
Workload Estimator

Workload
(per core)

Frequency
(per CPU)

Offline
Tuning

Video
Input

Cores Frame Rate fpCPUs Max freq. fmax

Core0

User bit-rate tolerance n

Workload Manager

Intra Mode Prediction

Core Frequency Selector

Workload Allocator

Monitoring
Unit

Threshold
Generator

Workload Adaptation

Total Intra Angles (θ)

Core1

Core2 Core3

CoreK-2 CoreK-1

...

Fig. 6: Tile-based workload balancing for HEVC on many-core systems

A. Tile Formation and Maximum Workload Estimation

Before running HEVC-Intra encoding, the proposed scheme

interacts with the hardware to determine workload mapping policy.

Workload balancing of HEVC-Intra proposed in this work is a two

step approach. First, the number of cores is determined to distribute

the HEVC-Intra application’s workload. If cores are insufficient, the

complexity of the HEVC-Intra encoder is curtailed itself, effectively

curtailing the total workload.

There are multiple complexity knobs in HEVC-Intra encoder which

can be adjusted to reduce the total workload at the cost of increased

output bit-rate. In this work, we propose to adjust the number of Intra

predictions (or directions, given by θ) to curtail the computational

complexity (these predictors are shown on the left side of Fig. 10).

For HEVC-Intra, a set of angular predictors is searched to select only

one prediction out of θ which results in the best rate-distortion metric.

Note that θ can reach 35, and is a major bottleneck for HEVC-Intra

encoders.

The workload, ρk, of tile number k, with a frame-rate demand of fp

frames per second is given by:

  , , ,,   k CTU k QP K pQP N C f  (2)

Here, Cθ,QP,K is the number of cycles consumed by a CTU of a

frame with K tiles, with the given θ and QP values. NCTU,k is the total

number of CTUs of tile k. Note that ρk actually denotes the total

number of cycles consumed per second for the given tile.

TileInitialize ():
Input: Maximum number of cores K; Maximum frequency of a core
fmax; Image dimensions W×H; Quantization Parameter QP; Frame rate
in frames per second fp;
Output: Total tiles Ttot and initial θinit per tile

1. CTU,1 35,QP,1 pN C f ;   //Equation 2

2. max tot init,1if(f){T 1; 35;}    

//Best RD configuration

3. else{

4.

t AvailT 1;x ;Core true;  

5. mi {1 to K cor ax t t maxes} if (x f){T T 1;x x f ;{ }}     

6. Availwhile(Core){ //Some cores still available

7. tot tT TileMap[T]; //Actual number of tiles

8. totwhile(T K){

9. t t tot tT T 1;T TileMap[T];}  

10. totk {1 to T }{
 //Test every core

11. totk CTU,k 35,QP,T pN C f ; 35;    

12. k maxif (f){  //Curtail workload (reduce θinit)

13.

while(5){ 

14.

5;

15.
 totk CTU,k ,QP,T pN C f ;   

16.

k maxif (f) break;  }

17. Availif (5 and Core false){ErrorAndExit();}} 

18.

init,k ;} 

19. totk {1 to T } init,kif (, 35){break;}  

20. tot Avail t totif (T K){Core false;} else{T T 1;}   

21. }

Fig. 7: Total tiles and θ initialization

To initialize the total number of tiles (cores) and maximum possible θ

(θinit,k) of tile k of the encoder, we use an algorithm as outlined in Fig.

7. Initially, we test if it is possible to support 1 tile per frame with

θ=35 using the maximum operating frequency, fmax (line 2), to

support best video quality (see Fig. 5). If not, we adaptively increase

the number of tiles (line 4) and hence involve more cores in encoding.

This reduces the encoding pressure on cores. However, only a

specific number of cores (K) can be used for HEVC encoding which

is allotted by the user of the many-core system. The total number of

tiles is adjusted for a better tile arrangement by reading a lookup table

(lines 7-9). For example, higher video quality is obtained by having

4×3=12 tiles instead of 1×11=11 tiles. Afterwards, we individually

test the cores if they can fulfill their allotted workload (lines 11-12).

If the workload is still not supportable, we start reducing maximum θ

(lines 12 to 16) till a minimum possible value (5 in our case).

For best compression efficiency, we try to utilize all the available

cores with maximum θ (lines 6 and 20). We exit the program if

minimum θ is not satisfied while using all cores (line 17), as it is

impossible to sustain the current frame-rate. If the current cores

support the workload, the function returns (line 19) and the HEVC-

Intra encoding can start.

B. Workload Allocator

The workload allocator engine is responsible for power-efficient

workload adjustment of each tile by tuning the complexity knobs of

HEVC-Intra encoder.

For workload balancing, an adaptation interval is defined (see

Fig. 8). The starting tile of this interval is always a fully searched (θ

= θinit,k) tile to achieve best compression. This tile is known as the

Key-Tile (KT). Workload of the same collocated tile in the future

frames is gradually adjusted down (θ ≤ θinit,k) to reduce the tile-

workload and power consumption. These tiles are termed as Non-

Key-Tiles (NKT). However, if the total number of compressed bytes

(B) for the current NKT increases beyond a certain threshold, τ, we

increase θ, thereby increasing the workload (see Fig. 9(b)). The

threshold is set statistically using the following equation:

   
 RI RI   

 
NKTs NKTs

B B   (3)

In this equation, µ is the average bit-rate and υ is the variance of

B, for all the NKTs in RI. For on-the-fly calculation of mean and

variance of B, Knuth’s formula is used [25]. If a certain number of

frames have been processed or B exceeds a threshold (τinit), adaptation

and KT insertion is required. Mathematically, adaptation is done if:

 1  initB n  (4)

Initial τ of a RI, τinit, equals the bit-rate of KT. Here, n is a user-

defined parameter for tolerance in the bit-rate parameter. Higher

tolerance will result in reduced workload and vice versa. For

example, if the bit-rate of NKT is 25% more (n=0.25) than nearest

KT’s bit-rate, KT is reinserted.

For every CTU, if threshold in equation 4 is satisfied, θ is

adjusted as:

   

 

 RI

/ 2 if 0

if 0

 
    

 
 

 

init
NKTs

B

u x
x

u x


    



 (5)

Here, u is a user defined parameter. Note that while employing

equation 5, θinit,k also saturates θ as it is the maximum number of

modes tested for the maximum operating frequency of the core for the

tile k.

The impact of θ on bit-rate and time complexity is shown in Fig.

9. Extensive offline analysis is performed for different HEVC-Intra

settings to predict the workload (given in equation 2), depending

upon θ size. We can estimate the total cycles consumed per CTU,

Cθ,QP,K using a regression fit of Fig. 9(a) and this is given by:

5

, , 2

32.39 0.32 2.20
10

0.085 0.12

  
  

  
QP K

QP
C

K K


 (6)

KT
Adaptation Interval

NKT NKT KT

Fig. 8: Example adaptation interval for sequence frames with 4 tiles

40

140

240

340

440

35 30 25 20 15 10 5

QP=22
QP=27
QP=32
QP=37

0

80

160

240

320

400

35 30 25 20 15 10 5

Tiles=1x1

Tiles=2x1

Tiles=2x2(a) (b)

θθ

Ti
m

e
 [

m
se

c]

B
it

ra
te

[K
B

p
s]

Fig. 9: Impact of θ on (a) time per frame and (b) bit-rate for different tile

settings and QPs using the Foreman sequence (352×288)

C. Workload Manager

The workload manager adapts the operating frequency of each

core, depending upon the workload of the core. From the discussion

in Section IV.A, it is clear that the operating frequency of the core for

tile k should be at least ρk(θ,QP,K). Given the user-defined threshold

and θ adjustment, we can reduce the operating frequency even

further, thus reducing the power consumption.

Intra Mode Prediction: Adjusting θ will increase or decrease the

workload. However, notice that the most probable best

prediction/direction must be intelligently included in θ to achieve the

best RD metric. Usually, the intra prediction mode selected

Table I: Runtime dynamic power and power savings for different sequences

with and without workload adaptation on Sniper x86 simulator

Sequence Dimensions
Cores

Used

Power [W] Power

Savings Adaptive Non Adaptive

Foreman 352×288 8 53.0985 121.306 53.23%

Flower 352×288 8 61.4772 112.62 45.41%

Coastguard 352×288 8 75.2263 126.032 40.31%

Vassar 640×480 24 271.1 440.523 38.46%

Ballroom 640×480 24 249.685 437.067 42.87%

Flamenco 640×480 24 252.813 418.359 39.57%

Table II: Average quality PSNR [dB], Rate [KBps] and time per frame [msec]

on a real-world core i7 processor (n=0.2, QP=22 till 37, fp=23, 4 threads)

Sequence
Adaptive θ Non Adaptive θ

PSNR Rate Time PSNR Rate Time

Ballroom 38.35 542.1 138 38.39 517.4 181

Exit 39.67 350.4 94 39.87 300.0 138

Flamenco 39.66 388.1 102 39.68 379.7 133

Vassar 38.35 479.4 100 38.40 447.1 157

Keiba 39.22 624.4 127 39.32 555.3 168

corresponds to the direction of texture flow. Therefore, we also

determine the most probable prediction and θ is centered on this

prediction. This prediction/direction is obtained by sorting a

histogram created by gradients of each individual pixel [22][26]. The

gradient computation involves overhead as each individual CU pixel

needs to be processed. However, we propose a much simpler solution,

similar to the one presented in [27], as demonstrated in Fig. 10.

Computing running differences over the boundary of current CU

under test can give a good estimate of the location of a line passing

through the CU, and thus, the texture flow or edge direction is

obtained, as shown in the figure. This flow direction is translated into

intra prediction mode. Only the predictors in the vicinity of this

direction are tested, where the size of the neighborhood, θ, is

adjustable.

CU Under Test

Edge

θ

0 ≤ θ < 35

CU Under Test

Edge

θ

Fig. 10: Intra mode prediction via edge extraction for HEVC

V. EXPERIMENTAL SETUP AND RESULTS

A. Software Architecture and Simulation Setup

HEVC reference encoding software (latest: HM-12.1) is provided

by Fraunhofer institute on their website [28]. However, the reference

software is not optimized for any specific processor. There are no

threading capabilities available and it is very difficult to map the

source code to include tile-based threading. Additionally, the times

consumed by setup and irrelevant test conditions are too large and

needlessly intrude into the coding complexity. There are other open-

source encoders available (e.g. x265 [29]), however, these encoders

do not include the workload balancing and adaptations required by

this work.

Fig. 11: (Top) Proposed HEVC-Intra encoder and (Bottom) simulation setup

Therefore, we have developed a C++ based multi-threaded HEVC

Intra-encoder in our lab. It is open source and available for

download
2. With 1-tile (single thread) configuration, our software is

~13× faster than HM-9.2 reference software for full-HD (1920×1080)

video sequences. Thus, it facilitates the embedded systems,

architecture, and video coding communities to perform (1) research,

development, and testing of various video related concepts at both

hardware and software levels, (2) fast simulation and evaluation, (3)

accurate complexity analysis. Source can be compiled on Windows

and Linux-based operating systems. The parallelization schemes and

tile formation can be configured by the user during start-up. Tile jobs

are pushed to a work queue and the available cores pop the encoding

jobs from this queue. Currently, we only utilized tile-level parallelism

Inter-encoding and further extensions for inter-prediction part and

advanced management and adaptations are currently under

development.

Hardware platform simulation is performed via the Sniper many-

core simulator [30]. Sniper simulates x86 instruction set and supports

DVFS. Only frequency scaling is considered, with a step size of

±133MHz. Power numbers are generated via McPAT [31].

B. Results and Discussion

Table I shows the total power consumption for the supported

frame-rate fp=23, with n=0.2 (equation 4) and fmax=5GHz, for multiple

sequences. For comparison, we have also shown power consumption

on a baseline implementation without workload adaptation (no

workload allocator and manager). We notice that the workload

allocator and manager contribute significantly to power reduction.

The power savings are given by:

 Power Saving (%) 1 100  Adaptive NonAdaptiveP P (6)

Although these results are demonstrated for up to VGA

(640×480) resolutions for a reasonable simulation time, similar

results in power savings are expected for HD (1920×1080)

resolutions and above. A detailed analysis of core frequencies and θ

for the Foreman and Ballroom sequence is shown in Fig. 12 for

different tiles. For the Foreman sequence, proposed HEVC-Intra

software is given a total of 8 cores. The tile generator algorithm (see

Fig. 7) chooses 6 out of the 8 cores with maximum coding efficiency

(θinit=35) to support given fp. Thus, 2 cores are not utilized (only 6 tile

compressor threads are created) and they can be shut-down or used by

other applications. Ballroom sequence is provided with 24 cores.

Algorithm in Fig. 7 selects all 24 cores and creates 24 instances of the

tile compressor. Moreover, θinit for half of the cores is set to 25

instead of 35, due to high workload. Notice how the workload

allocator of each tile adapts θ with each frame by testing equation 3

2 http://sourceforge.net/projects/ces265

HEVC-Intra Encoder’s Top

Workload Allocator

GOP Compressor

Tile Compressor
Threads

Slice Compressor

Workload
Queue

Tile Formation
and Workload

Curtailing

YUV
Read
Write

CTU Compressor

Workload Manager

Encoder
Statistics

Sniper many-core
x86 simulator

Simulator statistics McPAT power simulator Power statistics

Proposed HEVC
Intra Encoder

System
Configuration

and 4. For tile 0 of Foreman sequence and Tile 14 of Ballroom

sequence (Fig. 12(a) and (d)), the bit-rate smoothly decreases, thus

the reduction in θ by the workload allocator and the operating

frequency by the manager. We notice that with every frame, θ and the

operating frequency of the core increases or decreases, depending

upon the bytes threshold.

The proposed software architecture is also run on a real-world

core i7 computer, running Ubuntu, without operating frequency

scaling, using only 4 static threads. Average video quality, bit-rate

and time complexity for various sequences is tabulated in Table II.

Notice that even on the above real-world platform (without SIMD or

vector instructions), our software architecture produces high

throughput (6-8 frames per second). Fig. 13 shows the video quality

and time relationship with the bit-rate. We achieve performance

improvement of ~1.3-1.57× with small video quality degradation.

0

5

10

15

20

25

30

35

40

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45

Bytes
Freq
Theta

(a)

θG
H

z
K

b
yt

e
s

0

5

10

15

20

25

30

35

40

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30 35 40 45

Bytes
Freq
Theta

θG
H

z
K

b
yt

e
s

(b)

Frame Frame

0

5

10

15

20

25

30

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 5 10 15 20 25 30 35 40 45

Bytes
Freq
Theta

0

5

10

15

20

25

30

35

40

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40 45

Bytes
Freq
Theta

θG
H

z
K

b
yt

e
s θG

H
z

K
b

yt
e

s

Frame Frame

(c) (d)

Fig. 12: Bit-rate, frequency and θ adaptation of (a) tile 0, (b) tile 4 for

Foreman sequence and (c) tile 0, and (d) tile 14 of Ballroom sequence

125

145

165

185

205

225

245

22

27

32

37

42

47

0 200 400 600 800 1000

Adapt_Qualt
NonAdapt_Qualt
Adapt_Time
NonAdapt_Time

(a)

P
SN

R
 [

d
B

]

Bitrate [KBps]

90

115

140

165

190

215

240

28

32

36

40

44

0 200 400 600 800 1000

Adapt_Qualt
NonAdapt_Qualt
Adapt_Time
NonAdapt_Time

P
SN

R
 [

d
B

]

Bitrate [KBps]

[m
se

c]

[m
se

c]

(b)

Fig. 13: Impact of θ adaptation on video quality and average time per frame

for (a) Ballroom (VGA: 640×480) (b) Vassar (VGA: 640×480)

VI. CONCLUSION

In this work, a novel software architecture of HEVC-Intra

encoding with run-time power-efficient workload balancing on many-

core systems is presented. A video frame is adaptively divided into

tiles. This division aims at distributing the workload on multiple

cores, based upon the frame-rate requirement as well as the maximum

operating frequency constraint of the underlying encoding hardware.

Afterwards, power savings are obtained by exploiting user’s tolerance

to the bit-rate increase. Workload of the cores is curtailed or

increased with every frame at run-time by adjusting the total intra

modes tested. This adjusted workload is used to adapt operating

frequency, thereby reducing the power consumption of the many-core

system. Also, to reduce the video quality degradation, the set of

predictors is intelligently selected by edge extraction. Other HEVC

complexity reduction scheme can be used in conjunction with the

proposed approach, as long as the proper workload adjustment knobs

are identified, allowing for more workload and frequency settings.

ACKNOWLEDGEMENT

This work was partly supported by the German Research Foundation

(DFG) as part of the Transregional Collaborative Research Centre

"Invasive Computing" (SFB/TR 89); http://invasic.de.

REFERENCES

[1] http://www.webmproject.org/vp9/. WebM VP9 project, accessed on 28.08.2013

[2] http://people.xiph.org/~xiphmont/demo/daala/demo1.shtml. Xiph.Org Foundation’s

Daala Video Encoder, accessed on 28.08.2013

[3] G. J. Sullivan, J. Ohm, W. Han, T. Wiegand, “Overview of the High Efficiency

Video Coding,” in IEEE TCSVT, vol. 22, no. 12, pp. 1649–1668, 2012.

[4] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T.

Stockhammer, T. Wedi, “Video coding with H.264/AVC: tools, performance, and

complexity,” in IEEE Circuits and Systems Magazine, vol. 4, no. 1, pp. 7–28, 2004.

[5] B. M. T. Pourazad, C. Doutre, M. Azimi, P. Nasiopoulos, “HEVC: The New Gold

Standard for Video Compression: How Does HEVC Compare with H.264/AVC?”

in IEEE Consumer Electronics Magazine, pp. 36–46, 2012.

[6] T. Nguyen, D. Marpe, “Performance analysis of HEVC-based intra coding for still

image compression,” in PCS, pp.233–236, 2012.

[7] Ben Drawbaugh, “Samsung 2013 LCDs and plasmas revealed: quad core CPU,

new menus and more,” Engadget. accessed on 28.08.2013.

[8] Campbell Simpson, “Samsung’s Galaxy S4 has a next-gen video codec,” Pcworld,

accessed on 28.08.2013.

[9] F. Bossen, B. Bross, K. Suhring, D. Flynn, “HEVC Complexity and

Implementation Analysis,” in IEEE TCSVT, vol.22, no.12, pp.1685–1696, 2012.

[10] C. J. Lian, S. Y. Chien, C. P. Lin, P. C. Tseng, L. G. Chen, “Power-aware

multimedia: concepts and design perspectives,” in IEEE Circuits and Systems
Magazine, vol. 7, pp. 26–34, 2007.

[11] M. U. K. Khan, M. Shafique, M. G. da Silva, J. Henkel, “Hardware-Software

Collaborative Complexity Reduction Scheme for the Emerging HEVC Intra

Encoder,” in DATE, pp. 125–128, 2013.

[12] M. Shafique, J. Henkel, “Low Power Design of the Next-Generation High

Efficiency Video Coding,” in ASP-DAC, 2014.

[13] B. Bross et al., “High Efficiency Video Coding (HEVC) text specification draft

10,” 2013.

[14] A. Singh, M. Shafique, A. Kumar, J. Henkel, “Mapping on Multi/Many-Core

Systems: Survey of Current and Emerging Trends,” in DAC, pp.1–10, 2013.

[15] M. Shafique, L. Bauer, J. Henkel, “ enBudget: A Run-Time Adaptive Predictive

Energy-Budgeting Scheme for Energy-Aware Motion Estimation in H.264/MPEG-

4 AVC Video Encode,” in DATE, pp. 1726–1730, 2010.

[16] G. Corrêa, P. Assuncao, L. Agostini, L. A. S. Cruz, “Complexity control of high

efficiency video encoders for power-constrained devices,” in IEEE Transactions on
Consumer Electronics, vol. 57, no. 4, pp. 1866–1874, 2011.

[17] W. Kim, J. You, J. Jeong, “Complexity control strategy for real-time H.264/AVC

encoder,” in IEEE Transactions on Consumer Electronics, vol.56, no.2, pp.1137–

1143, 2010.

[18] L. Su, Y. Lu, F. Wu, S. Li, W. Gao, “Complexity-Constrained H.264 Video

Encoding,” in IEEE TCSVT, vol.19, no.4, pp.477–490, 2009.

[19] M. Bariani, P. Lambruschini, M. Raggio, “An Efficient Multi-Core SIMD

Implementation for H.264/AVC Encoder,” in VLSI Design, pp. 1–14, 2012.

[20] M. B. Cassa, M. Naccari, F. Pereira, “Fast Rate Distortion Optimization for the

Emerging HEVC Standard,” in PCS, pp. 493–496, 2012.

[21] H. Zhang, Z. Ma, “Fast Intra Prediction for High Efficiency Video Coding,” in

PCM, vol. 7674, pp. 568–577, 2012.

[22] W. Jiang, H. Ma, Y. Chen, “Gradient based fast mode decision algorithm for intra

prediction in HEVC,” in CECNet, pp. 1836–1840, 2012.

[23] F. Li, G. Shi, F. Wu, “An efficient VLSI architecture for 4×4 intra prediction in the

High Efficiency Video Coding (HEVC) standard,” in ICIP, pp. 373–376, 2011.

[24] C. Chi et al., “Improving the parallelization efficiency of HEVC decoding,” in
ICIP, pp. 213–216, 2012.

[25] D. E. Knuth, “The Art of Computer Programming,” Addison-Wesley, pp. 232,

1998.

[26] M. Shafique, B. Molkenthin, J. Henkel, “An HVS-based Adaptive Computational

Complexity Reduction Scheme for H.264/AVC video encoder using Prognostic

Early Mode Exclusion,” in DATE, pp.1713–1718, 2010.

[27] M. U. K. Khan, J. M. Borrmann, L. Bauer, M. Shafique, J. Henkel, “An H.264

Quad-FullHD low-latency intra video encoder,” in DATE, pp.115–120, 2013.

[28] https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/. HEVC reference software,

Fraunhofer Institute, accessed on 29.08.2013.

[29] https://code.google.com/p/x265/. HEVC x265 encoder, Google code, accessed on

29.08.2013.

[30] T.E. Carlson, W. Heirman, L. Eeckhout, “Sniper: Exploring the level of abstraction

for scalable and accurate parallel multi-core simulation,” in SC, pp. 1–12, 2011.

[31] S. Li, J. H. Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, N.P. Jouppi, “McPAT:

An integrated power, area, and timing modeling framework for multicore and

manycore architectures,” in MICRO, pp.469–480, 2009.

http://www.engadget.com/about/editors/ben-drawbaugh/
http://www.pcworld.idg.com.au/author/101549167/campbell-simpson/articles
http://en.wikipedia.org/wiki/Donald_E._Knuth
http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming

