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Abstract—The High Efficiency Video Coding (HEVC) standard 

aims at providing ~50% better compression compared to its 

predecessor (H.264) at the cost of high computational complexity. 

To enable HEVC video encoding in real-time scenarios, special 

coding support for parallelization is provided in HEVC that can 

be exploited by many-core systems. In this work, we present a 

HEVC software architecture where a video frame is adaptively 

divided into independent video frame regions (i.e. so-called video 

tiles) which are processed concurrently on multiple cores. By 

balancing the workload of each video tile mapped to a particular 

core, the total power consumption of a system is reduced 

(through dynamically scaling the operating frequency) under a 

given frame-rate constraint. We also exploit user tolerance to 

further curtail the HEVC workload with insignificant video 

quality degradation. Experimental results illustrate that the 

proposed approach results in ~43% power savings on a many-

core system. 

I. INTRODUCTION AND OUR NOVEL CONTRIBUTIONS 

The growth of sub-micron fabrication technologies has led to 

significant increase of video devices in the consumer market. With 

the introduction of high-quality cameras and video recorders, and 

demands of high quality video transmission, the essential necessity of 

efficient video compression has commenced a competition among 

different video encoding standards. For example, VP9 [1] available 

since June 17th 2013, Daala [2] available since May 30th 2013 and 

High Efficiency Video Coding (HEVC) [3] available since June 7th 

2013, are the newest video coding standards. These encoders aim to 

reduce the bit-rate by ~50% as compared to the current video 

encoding standards while maintaining the same video quality. 

HEVC is a successor of the industry’s current video coding 

standard, H.264 or Advanced Video Coding (AVC) [4]. The growth 

in digital entertainment, security and video communication industry 

has led the HEVC standard developers to provide efficient 

compression means to encode large video content (e.g., Ultra HD 

7680×4320 pixels at 120 frames per second). Furthermore, due to an 

anticipated increase in HEVC employment, electronic vendors have 

already started shipping HEVC compatible decoders in the market 

(Samsung’s F8500 plasma TVs [7] and S4 smart phones [8]), but 

there is a long way to go for power-efficient HEVC encoders (HEVC 

reference encoder is ~100x more complex compared to the reference 

decoder [9]).  

Problem Statement: By aiming at 50% bit-rate reduction and 

preserving the same subjective video quality as H.264, HEVC has 

become a prime candidate to replace H.264 encoders [5][6]. 

Conversely, this gain in compression efficiency comes at a high cost 

of computational complexity due to the inclusion of numerous 

additional encoding tools (e.g. coded tree block, numerous new intra 

prediction modes, see details in Section III.A). However, in real-

world video encoding systems, the video must be compressed under 

tight constraints of time budget [10] and output bit-rate. This 

requirement gathers more ground for HEVC as compared to H.264, 

due to its heavy workload, large data-structures and limitations in 

high processing power available to support real-time HEVC encoding 

[11]. The additional tools and timing-constraints give rise to several 

challenges for implementing a HEVC system on a hardware platform 

[12]. Our simulations with reference software have shown that HEVC 

encoding is ~1.7× more complex, providing a 33% increase in the 

compression efficiency compared to H.264. Moreover, one CIF frame 

(352×288) for HEVC intra encoding takes about 1.5 seconds and 6.94 

Joules on an x86 core running at 2.66 GHz. Therefore, workload 

balancing and power reduction is a fundamental requisite of HEVC. 

In the current many-core era (where multiple cores are even 

available in the smart phones), it is beneficial to utilize the inherent 

parallelism offered by HEVC. By distributing the workload of HEVC 

encoder on multiple cores, the total encoding time can be reduced that 

may potentially improve the overall energy efficiency. HEVC 

standard allows exploiting parallel encoding tools, like slices and 

video tiles1 to fulfill these requirements [13]. A tile (rectangular part 

of a video frame) is treated as an autonomous entity and can be 

encoded independently of other tiles within the same video frame. 

However, ignoring the encoding hardware characteristics during 

HEVC parallelization may lead to high power consumption, deadline 

misses, and video quality loss. System parameters like total number 

of cores and maximum operating frequency along with the video 

characteristics determine the maximum sustainable workload. 

Additionally, workload of each tile differs from that of the other tiles 

and even for one video tile it varies at run-time due to the varying 

video-properties (see our analysis in Section III). Thus, the challenge 

is to distribute the workload of HEVC selectively and adaptively on 

multiple cores. Moreover, HEVC video encoder on a many-core 

system must exploit the changing workload to reduce the total power 

consumption while meeting the quality of service demands. The 

power consumption can be dynamically reduced by using a workload-

driven operating frequency adaptation scheme. Also, the user’s 

tolerance to the output bit-rate can be exploited to adapt the 

workload, by reducing the coding complexity. 

A. Our Novel Contributions 

To enable power-efficient real-time HEVC video encoding on 

many-core systems with minimum video quality degradation, we 

propose a novel software architecture to adaptively select the tile 

structure and consider user tolerance for run-time workload 

management of each core. We account for the HEVC workload and 

the hardware platform properties (like maximum operating frequency 

and total number of cores) of the many-core system. Our software 

architecture employs: 

 A tile-generator to select the tile structure and the maximum 

workload of each core under constraints of quality of service 

(frame-rate) and available system resources. 

 An online workload allocator to curtail workloads (with 

minimal video quality distortion) of different cores at run-time, 

by considering user tolerance. 

 A tile-based workload manager to manage the operating 

frequency of the underlying core (associated with an independent 

                                                           
1 Throughout the text, a tile refers to a video tile. 



tile), in order to fulfill the workload and encoding time 

requirements while minimizing the power consumption. 

Our system overview outlining the above-mentioned novel 

contributions is shown in Fig. 1. Each tile is processing on a 

dedicated core. To the best of the authors’ knowledge, this is the first 

software architecture which provides power-efficient workload 

balancing of HEVC encoding on many-core platform.  

Paper Organization: State-of-the-art schemes in HEVC workload 

balancing and complexity/power reduction are discussed in Section 

II. Section III briefly discusses HEVC background and outlines our 

motivational analysis. In Section IV, the proposed scheme is 

discussed in detail. Experimental results are presented in Section V. 

We conclude the paper in Section VI. 
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Fig. 1: Overview diagram of our novel contributions 

II. RELATED WORK 

As pointed out in the previous section, real-time encoding via 

HEVC is difficult to achieve. Therefore, efficient algorithms and 

architectures are required for processing HEVC workload. Usually, 

coding efficiency is compromised, HEVC specific ASICs are 

proposed or large silicon area is consumed for gains in computational 

complexity. In addition, due to the high workload of HEVC, high 

power consumption and the elevated temperatures of the underlying 

hardware platform are expected for HEVC. A comprehensive analysis 

of these and additional issues with HEVC encoding is detailed in 

[12]. General categorization of workload mapping techniques on 

many-core systems is presented in [14]. Unlike general purpose 

techniques, our approach exploits the application-specific properties 

of HEVC for workload mapping and improved power efficiency. In 

addition, a number of schemes regarding the workload management 

of video encoders have been proposed in the literature [15]. However, 

they do not exploit the advantages offered by many-core systems for 

video encoding. For example, in [16], authors have proposed to limit 

search comparisons of the best coding configuration in HEVC, 

depending upon the encoding history. In [17], the workload of H.264 

encoder on a single core processor is controlled by analyzing the 

Motion Estimation (ME) process. In [18], a joined distortion-

complexity scheme is proposed for H.264, by configuring ME and 

mode decision. The above mentioned works focus only on single core 

implementation, and do not consider the underlying hardware 

properties. A SIMD implementation of H.264 on many-core 

processor is given in [19], but it does not consider workload mapping 

and balancing. Additionally, a multitude of works in the direction of 

reducing the complexity of HEVC encoding also exist. [20] 

implements early skip approaches to reduce HEVC configuration 

searches. Software and hardware collaboration is exploited in [11] to 

reduce the total time complexity and energy consumption of HEVC 

Intra encoder, by mapping the compute intensive part of the encoder 

to hardware. [21] and [22] configure the total Intra modes tested for 

the HEVC encoding process and reduce the time complexity. VLSI 

architecture for efficient Intra prediction is given in [23]. In short, 

state-of-the-art complexity reduction and workload balancing 

schemes of HEVC do not consider workload balancing on multiple 

cores to exploit the inherent parallelism offered by the HEVC 

standard.  

III. OUR ANALYSIS OF HEVC ENCODER 

A. Brief Background of HEVC 

Compared to H.264, additional compression tools are added to 

HEVC encoding engine to boost its compression efficiency. In Fig. 2, 

the video partition hierarchy of HEVC encoder is shown. The frames 

to be encoded are grouped in Group of Pictures (GOP). Each GOP 

contains M video frames and there are K tiles (T) in each frame, 

where K ≥ 1. A frame can also be divided into independent slices. 

In HEVC, each tile is divided into a Coding Tree Units (CTU) of size 

64×64 pixels or smaller. A CTU is recursively subdivided into 

smaller, square sized blocks called Coding Units (CU). Maximum CU 

size can be equal to the CTU size and minimum CU size is 8×8 

pixels. CU is the basic entity of compression in HEVC. Intra mode 

predictions and motion estimation is performed for individual CUs. 
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Fig. 2: HEVC video partition hierarchy 

Similar to H.264, CU encoding has sequential dependencies with 

its neighboring CUs, and hence forbids parallel encoding of CUs. On 

the other hand, a tile encompasses a set of CTUs for HEVC encoding, 

and CUs in one tile are independent of CUs in the other tiles. Same is 

true for slices. However, note that each slice is treated as an 

independent entry in the bitstream, thus requiring addition bits to 

present the slice-headers.  

B. HEVC Analysis 

From the discussion in Section III.A, it is evident that tiles can be 

processed via independent encoding threads. Although GOP, frame 

and slice [13] level parallelism can also be exploited in place of tiles, 

but tiles are preferred for 2 reasons: 

1- Tiles are at the lowest level of coding hierarchy. Therefore, they 

will consume least system memory, and hence, will be fastest 

among other parallelisms.  

2- Unlike slices, tiles do not have their associated headers. Thus, 

tiles exhibit the potential to provide relatively better output video 

quality compared to slices.  

Therefore, in order to achieve fast encoding at minimal video 

quality loss, we propose utilizing HEVC parallelism at tile-level. 

Fig. 3 shows the histogram of percentage difference in time 

complexity and output compressed bytes generated between 

collocated tiles within consecutive frames of a video sequence (see 

Fig. 9). For Fig. 3(a), the horizontal axis presents the percentage time 

difference, β, between collocated tile number 0 of consecutive video 

frames. β is given by the following formula: 
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Here, T0(t,i) presents the time taken to encode the 0th tile (first 

tile) of frame i. As seen, the time complexity for collocated tile is 

highly correlated. Identical formula is used for Fig. 3(b) by replacing 



time with total bytes. Similar to the time complexity, the number of 

compressed bytes generated by collocated tiles is well correlated. 

Moreover, these curves can be estimated via a Normal (Gaussian) 

distribution. Thus, the correlation between collocated tiles can be 

exploited to determine the estimated bit-rate and time complexity of 

the current tile, which can be translated to determine the workload.  
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Fig. 3: Difference histogram of (a) Time and (b) Bytes for collocated tile 

number 0 of Foreman sequence (352×288) for 300 frames  

In Fig. 4, time complexities of individual tiles per frame are 

plotted for Keiba sequence (832×480). A total of 4 tiles are used with 

2 tile rows and 2 tile columns per video frame. We notice that the 

complexity of each tile not only differs from the other tiles, it also 

varies at run-time. Hence, the power consumption and idle times of 

each core may fluctuate over time owing to the changing workload. 

Therefore, the complexity of each tile is different and must be 

separately adapted to balance workload among multiple cores. This 

adaption must consider the frame-rate requirement and compute 

constraints. Further, number of tiles must not be unnecessarily 

increased as it will increase the power consumption of the system. 
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Fig. 4: Time consumption of each tile (4 tiles per frame, of 2×2 tile structure) 

of first 50 frames of Keiba sequence (832×480) 

In Fig. 5, the average time complexity and video quality curves 

for different tile structures for Foreman sequence (352×288) is 

plotted. We notice that increasing the number of tiles results in time 

complexity improvement (Fig. 5(a)). However, at the same time it 

results in small quality degradation as shown in Fig. 5(b). In fact, a 

single tile per frame generates the best quality. For T2 tiles per frame, 

T×T tile structure (i.e. T tile rows and T tile columns per slice) results 

in the best video quality [24]. Therefore, if possible, the total number 

of tiles within a slice must be minimized and the total tile-rows and 

tile-columns within a slice must be equal, in order to increase the 

video quality.  
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Fig. 5: (a) Average time per frame and (b) rate-distortion curves for Foreman 

sequence (352×288) with different tile structures 

IV. HEVC TILE-BASED WORKLOAD BALANCING 

The proposed software architecture for tile-based workload 

balancing of HEVC-Intra is shown in Fig. 6. The software is 

responsible for: 

1- Setting up the tile structure by considering hardware resources 

(operating frequency, total number of cores) and quality of 

service demands (frames per second). 

2- Allocating workload to each core by utilizing user’s tolerance of 

the output bit-rate. 

3- Managing the workload by adapting the operating frequency of 

each core in order to reduce power consumption. 

Before start of encoding, the total number of tiles required and the 

maximum workload of the cores is determined. While encoding, the 

input video is converted into tiles and forwarded to the respective 

cores. Cores process each tile individually and generate the 

compressed output, as well as the statistics required for workload 

balancing. These statistics are provided to the workload allocator. The 

workload allocator adaptively curtails or increases the computational 

workload of each tile, within the user’s tolerance of the bit-rate. The 

allocator’s output is passed to the workload manager, which 

dynamically scales the operating frequency of the cores, depending 

upon the estimated workload. In short, the software adapts the 

operating frequency and thus, controls the power consumption of the 

many-core system. 
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Fig. 6: Tile-based workload balancing for HEVC on many-core systems 

A. Tile Formation and Maximum Workload Estimation 

Before running HEVC-Intra encoding, the proposed scheme 

interacts with the hardware to determine workload mapping policy. 

Workload balancing of HEVC-Intra proposed in this work is a two 

step approach. First, the number of cores is determined to distribute 

the HEVC-Intra application’s workload. If cores are insufficient, the 

complexity of the HEVC-Intra encoder is curtailed itself, effectively 

curtailing the total workload.  

There are multiple complexity knobs in HEVC-Intra encoder which 

can be adjusted to reduce the total workload at the cost of increased 

output bit-rate. In this work, we propose to adjust the number of Intra 

predictions (or directions, given by θ) to curtail the computational 

complexity (these predictors are shown on the left side of Fig. 10). 

For HEVC-Intra, a set of angular predictors is searched to select only 

one prediction out of θ which results in the best rate-distortion metric. 

Note that θ can reach 35, and is a major bottleneck for HEVC-Intra 

encoders.  

The workload, ρk, of tile number k, with a frame-rate demand of fp 

frames per second is given by: 

  , , ,,   k CTU k QP K pQP N C f   (2) 

Here, Cθ,QP,K is the number of cycles consumed by a CTU of a 

frame with K tiles, with the given θ and QP values. NCTU,k is the total 

number of CTUs of tile k. Note that ρk actually denotes the total 

number of cycles consumed per second for the given tile. 



TileInitialize ( ):  
Input: Maximum number of cores K; Maximum frequency of a core 
fmax; Image dimensions W×H; Quantization Parameter QP; Frame rate 
in frames per second fp; 
Output: Total tiles Ttot and initial θinit per tile 

1. CTU,1 35,QP,1 pN C f ;    //Equation 2 

2. max tot init,1if(  f ){T 1; 35;}    
 
//Best RD configuration 

3. else{  

4. 
    

t AvailT 1;x ;Core true;     

5.     mi {1 to K cor ax t t maxes} if (x f ){T T 1;x x f ;{ }}       

6.     Availwhile(Core ){   //Some cores still available 

7.         tot tT TileMap[T ];  //Actual number of tiles 

8.         totwhile(T K){  

9.               t t tot tT T 1;T TileMap[T ];}    

10.         totk {1 to T }{
  //Test every core 

11.               totk CTU,k 35,QP,T pN C f ; 35;      

12.              k maxif ( f ){    //Curtail workload (reduce θinit) 

13. 
                   

while( 5){   

14. 
                       

5;  

15. 
                       totk CTU,k ,QP,T pN C f ;     

16. 
                       

k maxif ( f ) break;  } 

17.                  Availif ( 5 and Core false){ErrorAndExit( );}}    

18. 
              

init,k ;}   

19.          totk {1 to T } init,kif ( , 35){break;}    

20.          tot Avail t totif (T K){Core false;}  else{T T 1;}     

21.  } 

Fig. 7: Total tiles and θ initialization  

 

To initialize the total number of tiles (cores) and maximum possible θ 

(θinit,k) of tile k of the encoder, we use an algorithm as outlined in Fig. 

7. Initially, we test if it is possible to support 1 tile per frame with 

θ=35 using the maximum operating frequency, fmax (line 2), to 

support best video quality (see Fig. 5). If not, we adaptively increase 

the number of tiles (line 4) and hence involve more cores in encoding. 

This reduces the encoding pressure on cores. However, only a 

specific number of cores (K) can be used for HEVC encoding which 

is allotted by the user of the many-core system. The total number of 

tiles is adjusted for a better tile arrangement by reading a lookup table 

(lines 7-9). For example, higher video quality is obtained by having 

4×3=12 tiles instead of 1×11=11 tiles. Afterwards, we individually 

test the cores if they can fulfill their allotted workload (lines 11-12). 

If the workload is still not supportable, we start reducing maximum θ 

(lines 12 to 16) till a minimum possible value (5 in our case). 

For best compression efficiency, we try to utilize all the available 

cores with maximum θ (lines 6 and 20). We exit the program if 

minimum θ is not satisfied while using all cores (line 17), as it is 

impossible to sustain the current frame-rate. If the current cores 

support the workload, the function returns (line 19) and the HEVC-

Intra encoding can start. 

B. Workload Allocator 

The workload allocator engine is responsible for power-efficient 

workload adjustment of each tile by tuning the complexity knobs of 

HEVC-Intra encoder.  

For workload balancing, an adaptation interval is defined (see 

Fig. 8). The starting tile of this interval is always a fully searched (θ 

= θinit,k) tile to achieve best compression. This tile is known as the 

Key-Tile (KT). Workload of the same collocated tile in the future 

frames is gradually adjusted down (θ ≤ θinit,k) to reduce the tile-

workload and power consumption. These tiles are termed as Non-

Key-Tiles (NKT). However, if the total number of compressed bytes 

(B) for the current NKT increases beyond a certain threshold, τ, we 

increase θ, thereby increasing the workload (see Fig. 9(b)). The 

threshold is set statistically using the following equation: 

   
   RI    RI   

 
NKTs NKTs

B B    (3) 

In this equation, µ is the average bit-rate and υ is the variance of 

B, for all the NKTs in RI. For on-the-fly calculation of mean and 

variance of B, Knuth’s formula is used [25]. If a certain number of 

frames have been processed or B exceeds a threshold (τinit), adaptation 

and KT insertion is required. Mathematically, adaptation is done if: 

 1  initB n   (4) 

Initial τ of a RI, τinit, equals the bit-rate of KT. Here, n is a user-

defined parameter for tolerance in the bit-rate parameter. Higher 

tolerance will result in reduced workload and vice versa. For 

example, if the bit-rate of NKT is 25% more (n=0.25) than nearest 

KT’s bit-rate, KT is reinserted.  

For every CTU, if threshold in equation 4 is satisfied, θ is 

adjusted as: 

   

 

   RI

/ 2 if 0

if 0

 
    

 
 

 

init
NKTs

B

u x
x

u x


    



 (5) 

Here, u is a user defined parameter. Note that while employing 

equation 5, θinit,k also saturates θ as it is the maximum number of 

modes tested for the maximum operating frequency of the core for the 

tile k.  

The impact of θ on bit-rate and time complexity is shown in Fig. 

9. Extensive offline analysis is performed for different HEVC-Intra 

settings to predict the workload (given in equation 2), depending 

upon θ size. We can estimate the total cycles consumed per CTU, 

Cθ,QP,K using a regression fit of Fig. 9(a) and this is given by: 

5

, , 2

32.39 0.32 2.20
10

0.085 0.12

  
  

  
QP K

QP
C

K K

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Fig. 8: Example adaptation interval for sequence frames with 4 tiles 
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Fig. 9: Impact of θ on (a) time per frame and (b) bit-rate for different tile 

settings and QPs using the Foreman sequence (352×288) 

C. Workload Manager 

The workload manager adapts the operating frequency of each 

core, depending upon the workload of the core. From the discussion 

in Section IV.A, it is clear that the operating frequency of the core for 

tile k should be at least ρk(θ,QP,K). Given the user-defined threshold 

and θ adjustment, we can reduce the operating frequency even 

further, thus reducing the power consumption.  

Intra Mode Prediction: Adjusting θ will increase or decrease the 

workload. However, notice that the most probable best 

prediction/direction must be intelligently included in θ to achieve the 

best RD metric. Usually, the intra prediction mode selected 



Table I: Runtime dynamic power and power savings for different sequences 

with and without workload adaptation on Sniper x86 simulator 

Sequence Dimensions 
Cores 

Used 

Power [W] Power 

Savings Adaptive Non Adaptive 

Foreman 352×288 8 53.0985 121.306 53.23% 

Flower 352×288 8 61.4772 112.62 45.41% 

Coastguard 352×288 8 75.2263 126.032 40.31% 

Vassar 640×480 24 271.1 440.523 38.46% 

Ballroom 640×480 24 249.685 437.067 42.87% 

Flamenco 640×480 24 252.813 418.359 39.57% 

Table II: Average quality PSNR [dB], Rate [KBps] and time per frame [msec] 

on a real-world core i7 processor (n=0.2, QP=22 till 37, fp=23, 4 threads) 

Sequence 
Adaptive θ Non Adaptive θ 

PSNR Rate Time PSNR Rate Time 

Ballroom 38.35 542.1 138 38.39 517.4 181 

Exit 39.67 350.4 94 39.87 300.0 138 

Flamenco 39.66 388.1 102 39.68 379.7 133 

Vassar 38.35 479.4 100 38.40 447.1 157 

Keiba 39.22 624.4 127 39.32 555.3 168 

 

corresponds to the direction of texture flow. Therefore, we also 

determine the most probable prediction and θ is centered on this 

prediction. This prediction/direction is obtained by sorting a 

histogram created by gradients of each individual pixel [22][26]. The 

gradient computation involves overhead as each individual CU pixel 

needs to be processed. However, we propose a much simpler solution, 

similar to the one presented in [27], as demonstrated in Fig. 10. 

Computing running differences over the boundary of current CU 

under test can give a good estimate of the location of a line passing 

through the CU, and thus, the texture flow or edge direction is 

obtained, as shown in the figure. This flow direction is translated into 

intra prediction mode. Only the predictors in the vicinity of this 

direction are tested, where the size of the neighborhood, θ, is 

adjustable.  
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Fig. 10: Intra mode prediction via edge extraction for HEVC 

V. EXPERIMENTAL SETUP AND RESULTS 

A. Software Architecture and Simulation Setup 

HEVC reference encoding software (latest: HM-12.1) is provided 

by Fraunhofer institute on their website [28]. However, the reference 

software is not optimized for any specific processor. There are no 

threading capabilities available and it is very difficult to map the 

source code to include tile-based threading. Additionally, the times 

consumed by setup and irrelevant test conditions are too large and 

needlessly intrude into the coding complexity. There are other open-

source encoders available (e.g. x265 [29]), however, these encoders 

do not include the workload balancing and adaptations required by 

this work.  

 

Fig. 11: (Top) Proposed HEVC-Intra encoder and (Bottom) simulation setup 

Therefore, we have developed a C++ based multi-threaded HEVC 

Intra-encoder in our lab. It is open source and available for 

download
2. With 1-tile (single thread) configuration, our software is 

~13× faster than HM-9.2 reference software for full-HD (1920×1080) 

video sequences. Thus, it facilitates the embedded systems, 

architecture, and video coding communities to perform (1) research, 

development, and testing of various video related concepts at both 

hardware and software levels, (2) fast simulation and evaluation, (3) 

accurate complexity analysis. Source can be compiled on Windows 

and Linux-based operating systems. The parallelization schemes and 

tile formation can be configured by the user during start-up. Tile jobs 

are pushed to a work queue and the available cores pop the encoding 

jobs from this queue. Currently, we only utilized tile-level parallelism 

Inter-encoding and further extensions for inter-prediction part and 

advanced management and adaptations are currently under 

development. 

Hardware platform simulation is performed via the Sniper many-

core simulator [30]. Sniper simulates x86 instruction set and supports 

DVFS. Only frequency scaling is considered, with a step size of 

±133MHz. Power numbers are generated via McPAT [31]. 

B. Results and Discussion 

Table I shows the total power consumption for the supported 

frame-rate fp=23, with n=0.2 (equation 4) and fmax=5GHz, for multiple 

sequences. For comparison, we have also shown power consumption 

on a baseline implementation without workload adaptation (no 

workload allocator and manager). We notice that the workload 

allocator and manager contribute significantly to power reduction. 

The power savings are given by: 

 Power Saving (%) 1 100  Adaptive NonAdaptiveP P  (6) 

Although these results are demonstrated for up to VGA 

(640×480) resolutions for a reasonable simulation time, similar 

results in power savings are expected for HD (1920×1080) 

resolutions and above. A detailed analysis of core frequencies and θ 

for the Foreman and Ballroom sequence is shown in Fig. 12 for 

different tiles. For the Foreman sequence, proposed HEVC-Intra 

software is given a total of 8 cores. The tile generator algorithm (see 

Fig. 7) chooses 6 out of the 8 cores with maximum coding efficiency 

(θinit=35) to support given fp. Thus, 2 cores are not utilized (only 6 tile 

compressor threads are created) and they can be shut-down or used by 

other applications. Ballroom sequence is provided with 24 cores. 

Algorithm in Fig. 7 selects all 24 cores and creates 24 instances of the 

tile compressor. Moreover, θinit for half of the cores is set to 25 

instead of 35, due to high workload. Notice how the workload 

allocator of each tile adapts θ with each frame by testing equation 3 

                                                           
2 http://sourceforge.net/projects/ces265 
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and 4. For tile 0 of Foreman sequence and Tile 14 of Ballroom 

sequence (Fig. 12(a) and (d)), the bit-rate smoothly decreases, thus 

the reduction in θ by the workload allocator and the operating 

frequency by the manager. We notice that with every frame, θ and the 

operating frequency of the core increases or decreases, depending 

upon the bytes threshold.  

The proposed software architecture is also run on a real-world 

core i7 computer, running Ubuntu, without operating frequency 

scaling, using only 4 static threads. Average video quality, bit-rate 

and time complexity for various sequences is tabulated in Table II. 

Notice that even on the above real-world platform (without SIMD or 

vector instructions), our software architecture produces high 

throughput (6-8 frames per second). Fig. 13 shows the video quality 

and time relationship with the bit-rate. We achieve performance 

improvement of ~1.3-1.57× with small video quality degradation. 
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Fig. 12: Bit-rate, frequency and θ adaptation of (a) tile 0, (b) tile 4 for 

Foreman sequence and (c) tile 0, and (d) tile 14 of Ballroom sequence 
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Fig. 13: Impact of θ adaptation on video quality and average time per frame 

for (a) Ballroom (VGA: 640×480) (b) Vassar (VGA: 640×480) 

VI. CONCLUSION 

In this work, a novel software architecture of HEVC-Intra 

encoding with run-time power-efficient workload balancing on many-

core systems is presented. A video frame is adaptively divided into 

tiles. This division aims at distributing the workload on multiple 

cores, based upon the frame-rate requirement as well as the maximum 

operating frequency constraint of the underlying encoding hardware. 

Afterwards, power savings are obtained by exploiting user’s tolerance 

to the bit-rate increase. Workload of the cores is curtailed or 

increased with every frame at run-time by adjusting the total intra 

modes tested. This adjusted workload is used to adapt operating 

frequency, thereby reducing the power consumption of the many-core 

system. Also, to reduce the video quality degradation, the set of 

predictors is intelligently selected by edge extraction. Other HEVC 

complexity reduction scheme can be used in conjunction with the 

proposed approach, as long as the proper workload adjustment knobs 

are identified, allowing for more workload and frequency settings.  
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