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Abstract—The design space exploration (DSE) phase is used
to tune configurable system parameters and it generally consists
of a multiobjective optimization (MOO) problem. It is usually
done at pre-design phase and consists of the evaluation of large
design spaces where each configuration requires long simulation.
Several heuristic techniques have been proposed in the past and
the recent trend is reducing the exploration time by using analytic
prediction models to approximate the system metrics, effectively
pruning sub-optimal configurations from the exploration scope.
However, there is still a missing path towards the effective
usage of the underlying computing resources used by the DSE
process. In this work, we will show that an alternative and
almost orthogonal approach — focused on exploiting the available
parallelism in terms of computing resources — can be used to
better schedule the simulations and to obtain a high speedup
with respect to state of the art approaches, without compromising
the accuracy of exploration results. Experimental results will be
presented by dealing with the DSE problem of a shared memory
multi-core system considering a variable number of available
parallel resources to support the DSE phase1.

I. INTRODUCTION

The application-specific platform-based design approach is
a widely used technique to deal with the design complexity
of today’s computing architectures [1]. In this approach, a
parameterized platform template is customized to best fit in
application specific requirements. The customization process
consists of tuning the architectural parameters to optimize
the target figures of merit (e.g. performance, power/energy
consumption and chip area) using a multi-objective Design
Space Exploration (DSE) approach.

In this context, executable simulation models are valuable
tools to enable the accurate evaluation of the target opti-
mization objectives for a given platform configuration. To
implement the optimization process, nature inspired heuristics
might be used, such as genetic algorithms [2] and ant colony
optimization [3]. However, these heuristic techniques require
the simulation of many candidate platform configurations.
Due to the computational time required to carry out each
simulation, the DSE process might become unreasonably long.
To reduce the simulation time, a well-known solution is to
use analytic models to predict the simulation results [4]. Once
the analytic models are trained, they can be used to prune
the design space by focusing the exploration on the most
promising design space regions [4].

In this paper, we will demonstrate that state of the art ana-
lytic performance prediction techniques such as [4]–[7] do not
represent the best DSE approaches when a parallel computing
system (such as a multi-core processor or a computer cluster)
can be exploited to run concurrently different simulations.

1This work was supported in part by the EC under the grants HARPA
FP7-612069 and CONTREX FP7-611146.

When relying on analytic models to prune the design space
we shrink the number of simulations to be run in parallel
and we might reduce the benefits of a parallel simulation
environment. To tackle this problem, we suggest for the first
time to change the perspective and to predict the execution
time required to run a simulation rather than to predict the
simulation output itself. When simulating a computing system
the simulation time might vary significantly, especially when
considering a variable number of cores in a multi-core system
since the need to model shared resource contention within
the simulation model [8]. Variations in the simulation time
might generate significant underutilization of the available
computational resources when an iterative DSE approach [2],
[3], [5] is stacked waiting for the termination of a lengthy
simulation. Our intuition is that a better utilization of the
parallel computing resources can be obtained by scheduling
additional simulations when some computing resources are
predicted to become idle, thus gathering more knowledge
about the design space that lead to speedup the DSE process.
The proposed simulation scheduling is based on analytic
simulation time prediction modeling. When considering a 16-
cores or a 32-cores simulation environment, the proposed
technique has a speedup of about 2× in reference to state
of the art optimization algorithms [9]–[11].

The reminder of the paper is organized as follows. Section
II reports representative work in the field of DSE for multi-
core systems, while Section III is used to explain the work
motivations more in detail. Sections IV and V respectively
present the proposed methodology and its empirical evaluation.
Finally in Section VI we draw our conclusions.

II. BACKGROUND

In recent years, the multi-objective DSE problem for multi-
core homogeneous [12] and heterogeneous [3] systems gener-
ated a lot of interest. Different heuristic algorithms have been
proposed in literature to tackle this problem [3], [7], [11].

The main issue related with the DSE problem concerns
the long simulation time required to evaluate a single system
configuration. This problem can be efficiently addressed by
exploiting analytic system models. These models are approx-
imations of system performance learned to fit the output
of some simulations [5], [13], e.g. by using the Kriging
interpolation [5] or genetically programmed neural networks
[13]. Another option to speedup the DSE process is to exploit
a parallel computing environment to concurrently evaluate
different configurations [14]. This approach has been exploited
in the field of iterative compilation [15] and dynamic memory
management [16].

So far, in the field of optimization of computing systems
there has not yet been any comparison between the advantages
of using a parallel computing environment and an analytic978-3-9815370-2-4/DATE14/©2014 EDAA



Fig. 1: Comparison of traditional prediction techniques aimed
to prune the design space and the proposed one to minimize
the idle times of simulation threads.

performance prediction model, nor their joint exploitation.
In this paper we are going to present a comparison among
the two approaches and demonstrate that the introduction of
performance prediction model might lead to a suboptimal
utilization of the underlying parallel computing environment.
Then, we propose a novel technique to exploit prediction
techniques in parallel computing environment for the DSE of
multi-core architectures.

III. MOTIVATIONS

So far, several works proposed to speedup the DSE process
by pruning some simulations that have been predicted to be
suboptimal by means of an approximate system model. We
believe that this state-of-the-art approach is very good when
considering a sequential simulation environment, but it might
be suboptimal when considering a parallel computing system
(where different simulations can run in parallel).

Let us consider for example that we need to simulate 4
architectural configurations whose simulations take 1, 2, 3 and
4 time units respectively. Let us consider that we decide to
skip the 2nd and 3rd simulation since the approximate system
model suggests us that these represent suboptimal solutions.
Thus we simulate only the 1st and the 4th configuration. Con-
sidering a sequential simulation environment those simulations
take 5 time units and the approximate model allows us to
save 50% of the simulation time (simulating all configurations
takes 10 time units). However if we would have had a parallel
computing system where 4 simulation threads can run in
parallel, we would have obtain no speedup by skipping the 2nd

and 3rd simulation because we have to wait for the termination
of the longest simulation. Thus, the simulation throughput is
not improved since two simulation threads will execute no
simulations (traditional approach in Figure 1).

In this paper, we propose a different methodology to bet-
ter exploit parallel simulation environments. Our basic idea
consists of scheduling more simulations (rather than to prune
them). Additional simulations can be efficiently scheduled
when some computing resources would be otherwise idle. To
this end, we suggest to use approximate models to predict
the time required to execute the simulations (rather than
predicting the quality of the architectural configurations). This
will allow us to improve the simulation scheduling to better
exploit the available computing resources. In the example
(proposed approach in Figure 1) we consider that 2 additional
simulations can be scheduled (reserve simulations). These
simulations taking 2 time units each will not affect negatively
the DSE time but will improve the simulation throughput

Fig. 2: The base MOA algorithm (continuous lines and boxes)
and the additional modules to implement the proposed DES-
PERATE approach (dashed lines and boxes).

(number of simulations per time unit) thus providing additional
information and potentially lead to the identification of better
architecture configurations.

IV. THE PROPOSED METHODOLOGY

The base optimization algorithm on which we develop
the DESPERATE methodology is the Markovianity-based Op-
timization Algorithm (MOA) [9] that has been selected for its
efficiency. In the experimental Section we will demonstrate
that the chosen algorithm is faster than traditional genetic
algorithms. MOA is an iterative optimization process as shown
by continuous lines and boxes in Figure 2. At every iteration, a
set P of n candidate configurations is sampled from the design
space with a given probability distribution. This configuration
set is simulated. We assume that all simulations are indepen-
dent, thus they can be executed in parallel by using different
simulation threads on a parallel computing infrastructure. Once
all simulations are completed, simulation results are processed.
First the set B representing the m best configurations is
identified. Then, a Markov network is learned to model the
probability distribution that best fits the distribution of the set
B [9]. The next iteration is initialized by sampling this new
probability distribution. The MOA algorithm starts by setting
an uniform distribution as initial probability distribution and
it ends by returning the Pareto optimal configurations found
after running a given number of iterations. MOA belongs to
the class of optimization algorithms known as Estimation of
Distribution Algorithms (EDAs) since it iteratively estimates
the probability distribution of the optimal solutions.

The DESPERATE approach extends the MOA algorithm to
better exploit a parallel simulation environment when consid-
ering an optimization problem where evaluation time might
vary significantly (as in the case of simulation of multi-core
computing systems). The additional DESPERATE modules to
extend the MOA algorithm are reported in Figure 2 using
dashed lines and boxes. At every iteration, we update a simu-
lation time prediction model t̂. The first iteration proceeds as
for the MOA algorithm by sampling n configurations uniformly
distributed in the design space. The simulation time t(x) of
each configuration x is collected and used to fit the analytic
prediction model t̂. This analytic function is an approximation
of the simulation time t̂(x) ∼ t(x).

In the following iterations, the probability distribution fit-
ting the best m configurations is sampled twice to generate
two sets, i.e. P and R. The set P represents the set of n
configurations to be simulated as for the MOA algorithm. The
set R represents a reserve list of candidate configurations to
be simulated if computational power is available.



Simulation time prediction model. To implement the
analytic simulation time prediction model we have been in-
spired by fitness prediction models used in other EDAs. In
particular, we consider the analytic model proposed in [17]
for the Univariate Marginal Distribution Algorithm (UMDA).
Let’s identify with Xi the value of the ith parameter for a
configuration x. Let’s define t̄ as the mean simulation time
computed over all the configurations executed so far and
t̄(Xi) as the mean simulation time computed only over those
configurations whose ith parameter has the value Xi. The
analytic simulation time prediction is computed as follows:

t̂(x) = t̄+
∑

i

(t̄(Xi)− t̄) (1)

Simulation Scheduler. The simulation scheduler in DES-
PERATE first schedules all configurations in P . Then, once
launched the simulations for all x ∈ P , it takes decisions
whether or not to launch simulations for the configurations
x ∈ R. The scheduler keeps track of each configuration
under execution. Let us indicate as S the set of configurations
currently under simulation and s(x) the time elapsed from the
instant we launched the simulation of x. Thus, the expected
remaining simulation time r̂(x) for the configuration x ∈ S is
approximated by using the analytic model t̂(x):

r̂(x) =

{

t̂(x)− s(x), if t̂(x) > s(x)
0, otherwise

(2)

Given the set of executing simulations we can compute the
overall expected idle time w(S) as:

r̊(S) = max
x∈S

(r̂(x)) (3)

w(S) =
∑

x∈S

(̊r(S)− r̂(x)) (4)

Where r̊(S) is the time needed for terminating the longest
simulation while r̊(S)− r̂(x) are the idle times, i.e. the time
each computational thread is expected to be idle.

Once all configurations x ∈ P have been launched, the
simulation scheduler waits for the termination of the next
simulation. At that point in time, the scheduler computes
w(S) by considering the new idle thread (for the simulation
just terminated). Then it parses the configurations x ∈ R,
and computes the idle time w(S′) considering that we would
launch the simulation of the configuration x (i.e. S′ = S∪x). If
launching the new simulation reduces the overall idle time (i.e.
w(S′) < w(S)), then the simulation is launched, otherwise the
configuration x is discarded from the reserve set.

When no configuration x ∈ R exists to reduce the idle
time, DESPERATE waits for the termination of the simulations
currently running. Then it continues as the traditional MOA

algorithm by identifying the set B and estimating its distribu-
tions by means of a Markov network (Figure 2). Besides, actual
simulation times are saved in the simulation time prediction
model and will be used to improve the prediction accuracy.

V. EXPERIMENTAL RESULTS

To validate the proposed methodology, we targeted the
customization of a symmetric on-Chip Multi-Processor (CMP)
architecture modeled by using the SESC [18] simulation
infrastructure. The overall experimental setup, including the
target design space and the target applications, is described in

our previous works [5], [12]. We compare the DESPERATE

approach in reference to two algorithms that do not use
any analytic prediction model to speedup the optimization
process: the Markovianity Optimization Algorithm (MOA) [9]
and a multi-objective genetic algorithm named NSGA-II [10].
Additionally, we compare to state-of-the-art approaches that
use analytic prediction model to approximate the simulation
outputs and thus to speedup the DSE process by reducing
the number of simulations. In particular we use a Metamodel-
Assisted NSGA-II (MA-NSGA-II) where the approximation is
based on an artificial neural network [11] and a last technique
that iteratively search on a Kriging model the best architecture
configuration to be simulated in the next iteration (named
OSCAR) [5]. We used a population size of 64 elements
for all the methodologies (except for OSCAR that is not a
population-based algorithm). The exploration process is done
by launching the simulations on a homogeneous infrastructure
including several Intel Xeon processors running at 3GHz.
The comparison has been carried out in terms of average (i)
exploration speed-up and (ii) ADRS, Average Distance from
Reference Set [4], improvement. The average values have been
extracted over the SPLASH-2 applications used in [5].

(i) Exploration time. Figure 3a shows the average DSE
speed-up time of the proposed DESPERATE methodology with
respect to each one of the other exploration methodologies
when considering the time needed to reach an ADRS of
5%, 2.5%, 1% and 0.5% for different host environment setup
(from 1 to 32 cores to run simulations). The general trend
shown is that the speed-up of the DESPERATE methodology
increases by increasing the number of parallel resources used
to host the DSE phase due to the better exploitation of the
hosting computing facilities. In more detail, we can notice
two different areas defined by the first half and second half
of bars-clusters (respectively from 1 to 4 and form 8 to 32
hosting cores). In fact, while in the first set of results the
meta-model assisted techniques (i.e. MA-NSGA and OSCAR)
present the best results reducing the exploration time, this
does not happen in the second set where DESPERATE presents
the best results (over 1.5x) with respect to all the other
methodologies. The reason for this is mainly due to the better
usage of the computing resources exploited by DESPERATE

that is able to even overcome the acceleration introduced by
these metamodel-assisted methods. OSCAR does not scale
over the parallel environments, due to the non-population
based nature of the algorithm that does not use the parallel
computing facilities differently from the others techniques.

(ii) Quality of the final solution. Figure 3b presents another
perspective in the evaluation space by showing the average
ADRS improvement of the proposed DESPERATE methodol-
ogy with respect to the other exploration methodologies after
an exploration time equal to 0.1%, 0.2%, 0.3% and 0.4% of
the time needed to perform a full search on the different host
environment setup, ranging from 1 to 32 cores. The global
trend presented in Figure 3b is that increasing the number of
hosting cores the proposed methodology demonstrates to over-
come the other solutions due to a better usage of the computing
resources. Again, two different sets can be analyzed depending
on the number of the available computing resources, from 1
to 4 hosting cores and from 8 to 32. While in the second set
the DESPERATE approach presents better ADRS than the other
approaches, for a small number of computing resources (1 to 4
hosting cores) the behavior for NSGA-II and MOA is almost
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(a) DSE speedup of the DESPERATE methodology w.r.t. state of the art
approaches when considering different number of parallel simulation threads
and different target ADRS thresholds.
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(b) ADRS improvement when considering different number of parallel
simulation threads and different exploration time budgets relatively to an
exhaustive optimization process.

Fig. 3: Improvement of the DESPERATE methodology with
respect to the reference methodologies.

constant by showing respectively more or less the same or
two times the ADRS of DESPERATE. Regarding MA-NSGA
and OSCAR, while the former is better than the proposed
methodology up to 4 hosting cores, the latter is able to improve
the ADRS found by DESPERATE only for an exploration time
equal to 0.1% of the full search. The reason can be found in
the fact that OSCAR is a very fast algorithm to reach a good
solution but it suffers of falling in local minima (even if they
are very close to the optimal solution).

(iii) Utilization of the host computing resources. To com-
plete the comparative results, we want to give an outlook on
the different usage of the underlining computing resources.
While DESPERATE utilization is very close to 100% of the
computing resource, for the other methods the utilization
changes depending on the number of hosting cores. As stated
before, OSCAR does not scale due to its sequential nature
and uses only 1/n of the computing resources, where n is the
number of computing cores. MOA, NSGA-II and MA-NSGA-
II are very similar from the utilization point of view, since
they are all population-based methods, showing an average
reduction of usage of around 2.5% × n for the computing
platform configurations we adopted during the experiments.

VI. CONCLUSION

In this paper, we proposed a simulation scheduling tech-
nique to exploit a parallel simulation environment during the
optimization process. The proposed technique is based on the
definition of an analytic model to predict the time required to
execute the different simulations. This methodology has been

implemented on top of the Markovianity based Optimization
Algorithm (MOA). The underlying idea of the approach is
that, additional simulations taken from a reserve list can
be scheduled when some computing resources are predicted
to become idle. Experimental results compare the proposed
approach to state of the art DSE solutions. Overall, considering
the selected experimental setup, the proposed approach reports
a speedup up to 2× when considering DSE systems capable
to run 32 or 16 simulation threads in parallel.
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